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The Elastic Response of Creep 
Damaged Materials 
A series of stress change experiments on a batch of tough pitch copper are presented 
which were devised to evaluate the variation of Young's modulus with creep 
damage. Kachanov's model is used to describe the creep response and a model 
orginally proposed by Chaboche (1979) is found to adequately represent the elastic 
response of the material. A simple two-bar structure is analyzed to assess the effect 
of including the variation of elastic properties with creep damage in structural 
analysis. In most practical situations the added complexity involved in incorporating 
this effect does not strongly affect the structural response. 

1 Introduction 
Constitutive equations for the response of creep damaging 

materials have either been developed phenomenologically 
(Kachanov, 1958; Rabotnov, 1969; Leckie and Hayhurst, 
1975) or from an understanding of the internal microscopic 
processes that take place as the material creeps (Cocks and 
Ashby, 1982; Tvergaard, 1986). Despite the differences of 
these two approaches, the general structure of constitutive 
laws that are obtained are very similar. In each case the strain 
rate at a given instant in time is expressed in terms of the stress 
a and a number of state variables, o>it which measure the ex­
tent of damage in the material. The formalism is completed by 
developing laws for the rate of increase of the damage in terms 
of a and w,-. In each of these approaches it is generally as­
sumed that the damage does not affect the elastic properties of 
the material. 

The objective of this paper is to investigate the effect of 
creep damage on the elastic properties and examine how this 
influences the predicted response of component behavior. We 
limit our attention to material behavior in uniaxial tension, 
and describe the material response using a single state variable 
oi. Following the philosophy of the modeling of the creep 
response, we express the compliance at a given instant in time 
in terms of co. We could follow the mechanistic approach and 
assign a physical interpretation to o, such as the volume frac­
tion of voids or the proportion of cracked grain boundaries, 
and use the theoretical results of Duva and Hutchinson (1984) 
and Budiansky and O'Connell (1976) for the elastic response 
of porous and cracked media to construct appropriate con­
stitutive relationships. Here we prefer the phenomenological 
approach and define the state variable from the shape of the 
creep curve for the material. Young's modulus for a given 
value of a; is then determined from a series of elastic unloading 
and reloading tests. The measured response is compared with 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED 

MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME 
Applied Mechanics Division, July 20, 1987; final revision, April 6, 1988. 

the proposal of Chaboche (1979) for the variation of modulus 
with creep damage which is based on the physical interpreta­
tion of the damage variable proposed by Odqvist and Hult 
(1961). 

The proposed material model is used to assess the response 
of a simple two-bar structure to a constant load in Section 4, 
to give an indication of the likely effect of including the varia­
tion of Young's modulus in component analysis. 

2 A Phenomenological Description of Creep Failure in 
Uniaxial Tension 

The formalism adopted here was first proposed by 
Kachanov (1958) and later generalized by Rabotnov (1969). 
For simplicity we ignore the effects of primary creep; the in­
elastic strain rate at a given instant in time is then given by 

e = ^T^F (1) 

where n and </> are material constants and e0 is the steady-state 
strain rate at a suitably chosen reference stress a0. The state 
variable o> varies from a value of 0 at the start of a test to 1 at 
failure. The rate of growth of damage at a given instant can be 
obtained from the relationship 

£0 = ;— ( 2 ) 

where v and \j/ are material constants and 6>0 is the initial 
damage rate at a stress a0. The tests described in this paper 
were conducted at constant load and the stress used in equa­
tions (1) and (2) is the nominal stress (load/original cross-
sectional area). The damage, oi, in these equations then has 
two contributions: from the reduction of cross-sectional 
area and the growth of internal voids and cracks. 

During steady-state creep, to = 0 and the material creeps at a 
rate era, where 

ess = e0(o/o0)". (3) 

Figure 1 summarizes the steady-state response over a range 
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Fig. 1 Logarithmic plots of steady-state strain, rate versus stress for 
the two batches of copper 
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Fig. 2 Logarithmic plots of stress versus time to failure for the two 
batches of copper 
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Fig. 3 Normalized plots of (a) strain against time and (b) strain against 
damage 

of stress states for two batches of tough pitch copper tested at 
300 °C (designated batch A and batch B). Also indicated on 
Fig. 1 are the values of n and e0 obtained from the plots, 
where e0 was evaluated using a value of a0 = 30 MPa. 

Integration of equation (2) between the limits o> = 0 at / = 0 
and u = 1 at t = tf at constant stress gives 

1 e)' <i+iw>, l - ' (4) 

Stress-life curves for the two batches of copper are given in 
Fig. 2 where the values of (1 + \j/) 6i0 and v obtained by fitting 
equation (4) are indicated. A value of a0 = 30 MPa was again 
used in these calculations. 

Integration of equations (1) and (2) between the limits 
co = e = 0 a t / = 0 and u> = ai and e = e at / = / gives 

(5) 

4000 and 

t s s ' / 

•-0-ir 
H T O ) [ ' - 0 4 ) ~ ] - '* 

i + i -
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Loading curve 

Ac x 10J 

Fig. 4 Plot of stress a against change in strain Ai for a typical 
unloading/reloading test 

Substituting equation (5) into equation (6) gives the relation 
ship between creep strain and damage 

l + i/< 

ess'f 
- ( l -w) l + *-* ] . (7) 

When t = tf, equation (6) becomes 
l + y!< / ! + '/' \ 

1 + ^ - 0 / 
where e = ef is the strain at failure. Rabotnov (1969) proposed 
that this equation can be used to obtain appropriate values of 
ip and <t>. Use of this equation, however, proved unsuitable for 
determining </> and \p for the two batches of copper due to the 
scatter in the values of ef. For the present material a more con­
sistent result was obtained by fitting the shape of the creep 
curve by adjusting the values of </> and \p in equation (6). The 
best fit was obtained by use of <j> = 6.3 and \p = 7.1. Equa­
tions (6) and (7) are plotted in Fig. 3 using these values of 4> 
and i/-. 

3 The Variation of Young's Modulus With Creep 
Damage 

A relationship between creep strain and the damage 
parameter OJ was obtained in the last section, equation (7), for 
conditions of constant stress. We make use of this relationship 
here to develop an experimental procedure for evaluating the 
way in which the modulus varies with damage. 

3.1 Experimental Determination of Young's Mod­
ulus. A constant load creep testing machine was adapted to 
allow the load to be increased and decreased at a controlled 
rate. This was achieved by connecting a servometer to the 
jacking system located beneath the loading train. At intervals 
during the creep test the specimen was unloaded to approx­
imately 40 percent of the full load at a rate of 0.6 MPa/s. and 
then reloaded at the same rate. During this loading cycle the 
load was measured using a load cell situated beneath the 
specimen and the change in length of the specimen was 
measured by a ridge located extensometer fitted with an 
LVDT. 

A series of constant-load creep tests were performed on 
samples of copper from batch B at a temperature of 300°C. A 
stress of 32.4 MPa was selected for these tests to give a failure 
time of the order of 15 days. At regular intervals during the 
test the load was cycled as just described. A typical 
stress/strain loop obtained from a cycle is given in Fig. 4. 
Young's modulus was determined from the slope of the 
unloading curve as indicated in Fig. 4. This was found to give 
the most consistent values for the modulus. It was observed 
that if the specimen was held in the partially unloaded state, 
negative creep occurred. This type of behavior is consistent 

x Test 1 
o Test 2 

Eqn. (8) 

E 
U, 

E 

CO 

Fig. 5 The variation of Young's modulus with creep damage 

with the observation of Davies et al. (1973) who have con­
ducted controlled stress drop tests on a number of materials. 
Analysis of the negative creep rate suggests that the effect 
could result in a maximum decrease of approximately 8 per­
cent in the measured value of Young's modulus. This effect 
was most pronounced just before failure of the specimen. 
Measurements of the modulus taken over a short period of 
time suggests that the method of measurement was accurate to 
± 8 percent. 

The calculations of Young's modulus did not take into ac­
count any change in cross-sectional area of the specimen dur­
ing the course of a constant-load creep test. This is consistent 
with our interpretation of equations (1) and (2) and the defini­
tion of damage as described in Section 2. In the tests used to 
obtain the variation of E with damage, the strain accumulated 
at t/tj = 0.95 was typically 3 percent. At this time Young's 
modulus had reduced to 70 percent of its original value and, 
therefore, the major contribution to this reduction of modulus 
results from the growth of internal damage rather than from 
the reduction of cross-sectional area of the specimen. 

After completion of a test ess and tj were evaluated and the 
results were presented in the form of Fig. 3(a). These nor­
malizations were chosen to minimize, as far as possible, the ef­
fects of any variation between the different test specimens. 
The instances during the test when the load was cycled were 
then identified on this plot and the value of damage co, was 
determined from Fig. 3(b). The way in which Young's 
modulus, E ,̂, varies with to is shown in Fig. 5. The modulus 
has been normalized by the modulus of the damage-free 
material E measured at the beginning of the test at the test 
temperature of 300°C. 

3.2 Correlation of Experimental Results. The material 
model of equations (1) and (2) is often simplified by assuming 
that 4>-n and \j/=v. In this instance Odqvist and Hult (1961) 
assign a physical interpretation to co. They assume that co 
represents the effective cracked area fraction of material on 
any plane normal to the direction of loading and a/1 - co is the 
mean stress in the uncracked material, so that the strain rate is 
evaluated by using this mean stress, equation (7), rather than 
the applied stress. Chaboche (1979) have extended this inter­
pretation to the elastic response and propose that the elastic 
strain, ee, should be evaluated using the mean stress in the un­
damaged material and not the applied stress, i.e. 
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Table 1 Reference stresses for the two-bar structure of Fig. 
6, evaluated for n = 5, v = 4, /3 = 1, and X = 2 assuming (a) that 
Young's modulus is constant and (b) that the modulus is a 
function of creep damage. 

(a) (b) 

1 1.0^ a0 l.offf0 
3 1.02 <r0 \.0lao 

10 1.02 ff0 1.01 a0 
3 0 1.01 <r0 1.01 <70 

(l-co)E' 

Young's modulus for the damaged material is then given by 

E„ = (1-«)E (8) 

This equation is plotted in Fig. 5 and compares favorably 
with the experimental results. 

Micromechanical models of void growth during creep 
(Cocks and Ashby; 1982) result in a different form of creep 
constitutive law to that proposed by Kachanov (1958). The 
physical interpretation of co offered by Odqvist and Hult 
(1961) as used by Chaboche (1979) is therefore not strictly 
valid. If we accept that Kachanov equations as an adequate 
description of the creep curve then to should be interpreted as a 
parameter that provides a measure of the state of the material 
at a given instant in time which is determined from the shape 
of the creep curve. For a given creep response equation (8) 
provides a measure of the elastic response of the material. 
Since we have not assigned a physical interpretation to u, it is 
not possible to directly compare the result of equation (8) with 
the predictions of Duva and Hutchinson (1984) and Budiansky 
and O'Connell (1976) for the elastic response of voided and 
cracked media. 

4 Computed Failure Times for a Two-Bar Structure 

In this section the time to failure of the simple structure of 
Fig. 6 is computed for a material that creeps and damages ac­
cording to equations (1) and (2). The structure consists of two 
bars of lengths / and \ / and cross-sectional areas A and (SA, 
which are constrained to suffer the same extension under the 
action of a constant load P. Details of the calculations are 
presented in the Appendix, where, for simplicity, it is assumed 
that <j> = n and \p= v in equations (1) and (2). In the computa­
tions it is convenient to adopt the following normalizations 

P 
°0~ A(l+P) 

and 
1 

t?= 
f *„(! + ") 

for stress and time, respectively, where tf is the time to failure 
is a uniaxial test at a constant stress a0, and perform the 
calculations for different values of the quantity 

where eatf is the Monkman Grant constant (Monkman and 
Grant, 1956) and e„ is the elastic strain at a stress a0 

e0
e = ao/E. 

Small values of e correspond with low strains to failure, where 
the elastic response becomes increasingly important in deter­
mining the overall response of the structure. 

In the Appendix the effect of the variation of Young's 
modulus with creep damage is assessed by performing two sets 
of calculations. The modulus is either assumed to remain con­

stant or vary according to equation (8). The results for these 
two situations are presented in Table 1 for a range of values of 
e, in terms of the structural reference stress 

aR = oto0 

which is the stress required in a uniaxial test to give the same 
time to failure as the structure. 

The general trend for the two sets of results are similar, with 
the reference stress decreasing with increasing values of e. For 
small values of e the assumption that Young's modulus re­
mains constant gives the higher reference stresses, while for 
large e the two sets of calculations yield the same value of aR. 

These results can best be explained by examining the 
bounding results of Ponter (1977) for the life of creeping 
structures. Ponter (1977) proposed a global damage measure 

0 = i-[ ^ ^ V (9) 
where Kis the volume of the structure, which grows at a rate 

«~-£L(i)''" 
when the loading is uniaxial. Initially a structure responds 
elastically and the stresses redistribute with time due to creep 
and damage accumulation in the structure. This changing 
stress field must be taken into account in the evaluation of Q, 
equation (10). Ponter (1977), however, identified an 
equilibrium stress field that results in the absolute minimum 
value of 0. The appropriate stress field is the steady-state field 
for a creeping material with creep exponent equal to (v— 1). 
Assuming that the damage always grows at this minimum 
gives an upper bound to the life of a component, and thus a 
lower bound to the reference stress aR. 

Ponter (1977) has also demonstrated that use of a limit-load 
stress distribution for a perfectly-plastic material in equation 
(10) also provides an upper bound to the time to failure. More 
recently Cocks and Ponter (1989) have shown that the rate of 
change of Q remains virtually constant during the life of a 
component, and extrapolation of the initial rate of growth 
provides a good approximation of the time to failure. In this 
study the effects of elastic deformation were ignored and the 
stress field employed by Cocks and Ponter (1989) in equation 
(10) was the steady-state distribution. 

The calculations which led to the results of Table 1 were 
conducted using v = 4 and « = 5. For large values of e the 
stresses have redistributed to the steady-state distribution 
before there is any significant growth of the damage, and the 
stresses are at or near the steady-state values for the bulk of 
the life. The time to failure is then close to that obtained by us­
ing the steady-state stress distribution in equation (10). For 
small values of e, however, significant damage accumulation 
occurs as the peak elastic stresses relax and the steady-state 
stress distribution may never be achieved. In this instance the 
damage always accumulates faster than the minimum rate and 
a higher value of oR results. When the variation of Young's 
modulus with damage is included in the analysis the stresses 
are caused to relax faster in the initial highly stressed regions 
as the material becomes more compliant. This smoothing out 
of the stress field results in a lower global damage rate and a 
lower reference stress. 

5 Conclusions 

The variation of Young's modulus with a phenomen-
ological measure of creep damage has been obtained for a 
batch of tough pitch copper. It was found that the relationship 
proposed by Chaboche (1979) (equation (8)) adequately 
describes the results. 

The effect of including the variation of modulus with 
damage in the analysis of creeping structures was assessed by 
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Fig. 6 Two-bar structure analyzed in Section 4. Bar 1 is a length of / and 
cross-sectional area A and bar 2 is of length XI and cross-sectional area 
0A 

analyzing the simple two-bar structure of Fig. 6. It was found 
that its inclusion only affected the results for materials of low 
creep ductility. In these situations a conservative estimate of 
the life is obtained by assuming that the modulus remains con­
stant. We would expect this result to apply, in general, to 
structures composed of materials which damage according to 
an effective stress criterion under multiaxial states of stress 
(Leckie and Hayhurst, 1974). It is not possible, however, to 
extend these results to materials which fail according to a max­
imum principal stress criterion, as the stress field that gives the 
minimum global damage rate (Ponter, 1977) can differ 
significantly from the steady-state creep stress distribution 
(Cocks and Ponter, 1989). 

Monkman and Grant (1956) have analyzed the creep data 
for a range of engineering materials and find values of e0t°j- in 
the range 0.02 to .40. In practical situations the reference 
elastic strain e0

e is of the order of .001, giving values of e in the 
range 20 to 400. For these values of e inclusion of the variation 
of Young's modulus with creep damage in structural analysis 
has an insignificant effect on the predicted response of the 
structure. 
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A P P E N D I X 

Failure Analysis for a Two-Bar Structure 

When analyzing the two-bar structure of Fig. 6, it is conve­
nient to use the following normalized variables: 

E = — , S = o7o-0(l-co)andT = — 

where 

and / / = 
1 

A(l+p) —-1 6>0(l + v) 

Equations (1) and (2) for the creep response then become 

de 

dr 
•-e0tfb 

and 

du S" 

(Al) 

(42) 
dr (l + v) 

where the dots now indicate differentiation wr»t» T. The total 
strain rate at any instant is a combination of the elastic and 
creep responses 

e = ec + ee. (A3) 

The compatibility requirement for the two-bar structure is that 
the two bars must extend at the same rate, i.e., 

6, = Ae, (A4) 

where a subscript refers to the bar under consideration. The 
equilibrium condition can be expressed as 

E,+I8E2 = 1. (A5) 

Here we analyze the situations where the modulus E remains 
constant and varies according to equation (8). 

A.l Analysis for Constant E. When the modulus re­
mains constant the elastic response can be expressed as 

ee = e'0t (A6) 

where 

e« = <7„/E. 

Combining equations (A4), (A3), (Al), and (A6) then gives 

\i2 = ti=e(S"l-XS"2) (Al) 

where 

-_ Vf 

it can be expressed in terms of t2 using the rate form of equa­
tion (,45). Equation (Al) then becomes 

i2 = e(S1-\S"2)/(\ + P). (AS) 

This equation must be integrated along with 

and (1 + x) 

0>2 = 

(49) 

(l + v) 

to give the variation of stress and damage, with time. 
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An Eulerian integration scheme was adopted in the present 
analysis with the variation of a quantity, such as WI' during a 
time increment 15..7 being given by 

(A 10) 

where the quantities WI' w2' and E2 are evaluated using the 
values of S I and S2 at the start of the increment. A bar is taken 
to fail when W = 0.9, and the time to failure of the structure, 
7/' is evaluated by summing all the time increments 15..7 up to 
the instant when the second bar fails. The normalized 
reference stress is then given by 

(All) 

A.2 Analysis When E is a Function of w. When E varies 
with W according to eqn. (8), the elastic response becomes 

498/ Vol. 56, SEPTEMBER 1989 

(A12) 

Combining this with equations (A4), (A3), and (A4) gives 

"A52 - 51 = E(S1 - "AS1)· 

Substituting for 81 using the relationship of equation (AS) 
gives 

52 = (E(S'j- "AS'D + ({3Sz+1 + Sf+ 1)/(1 + v)(1- WI». 

1 +(3(l-w2)1(1-WI) 

This equation was integrated along with equations (A9) using 
the Eulerian scheme described in the last section. The 
reference stress was again evaluated using equation (A 11). 

Computations were performed using n = 5, v = 4, {3 = 1 and 
"A = 2 for a range of values of E. The results of these calcula­
tions are summarized in Table 1. 
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An Anisotropic Hardening Rule for 
Elastoplasfic Solids Based on 
Experimental Observations 
A hardening rule is described based on yield and memory surfaces. A memory sur­
face indicates the extent of loading, and a yield surface is the locus of the elastic 
region. We define a hardening modulus curve which relates the change in size of the 
yield and memory surfaces to the tangent modulus of the material at the maximum 
load. The evolution of the yield surface is described for both the proportional and 
nonproportional loading paths. Both quasi-static and stable cyclic loading is con­
sidered. An attractive feature of this nonlinear hardening law is that the material 
constants associated with it are limited—three in all—and they can be easily deter­
mined from a simple test. The predictions of the proposed hardening law are com­
pared with the experimental data for proportional and nonproportional loading 
paths, and are found to be in good agreement. 

Introduction 

Mechanical/structural systems in modern industrial plants 
are generally subject to complex loadings. Because of the 
functional requirements, design details, and manufacturing 
process, local plastic flow takes place in almost all of the im­
portant mechanical/structural components. Most design 
codes recognize the inevitability of such an occurrence and 
allow for the local stresses to exceed the elastic limit of the 
material under operational conditions (see, for example, 
ASME Boiler and Pressure Code (1983)). Furthermore, vital 
components, such as safety devices, have to be designed to 
withstand overload or prescribed accident/emergency condi­
tions. Generally, elastic-plastic analysis is carried out to 
demonstrate compliance with the requirements. However, the 
predictions of this type of analysis are only as good as the 
model assumed for the material behavior. 

The unprecedented advances in the computational methods 
and increases in the computer memory, now permit us to use 
more realistic hardening models, to some extent, indicative of 
the true material response. It is the objective of this paper to 
present a hardening model which is based on the observations 
made from the experimental data. An attractive feature of this 
hardening law is that the previously proposed classical harden­
ing rules can be derived as particular cases. Furthermore, the 
parameters required to specify the proposed model can be 
easily obtained from a simple test. 
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It is not within the scope of this paper to review the con­
tributions made by numerous investigators on the yield sur­
faces. Review articles such as Paul (1968), Ikegami (1975), 
Hecker (1976), and Phillips (1986) could be consulted for a list 
of such contributions. 

Background 

The constitutive relations of solids in the multiaxial stress 
states are generally extensions of observations made from the 
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Fig. 2 Yield and memory surfaces in two-dimensional stress space for 
shear prestrain of commercially-pure titanium, specimen Q 

uniaxial tension (or compression) tests. It may therefore be in­
structive to review briefly the material response to simple 
loading and unloading in the uniaxial stress state. Figure 1 
shows a typical stress-strain curve of a strain-hardening 
material. Up to OA the response is linear and the process is 
reversible. Upon further loading, permanent deformations set 
in as a result of the irreversible plastic flow. For example, 
when the loading is reduced at point B, the initial response is 
linear up to point C, and it is essentially parallel to OA. When 
the unloading is further continued, an irreversible domain is 
entered (CD). Reloading from D we again observe a linear 
portion DF^2(0A) followed by a nonlinear response FB'. 
Two important observations are: (a) the curve following 
reloading does not pass through the unloading point B and 
(b) the linear portion BC following the unloading is not equal 
to the sum of the linear portions in tension and compression, 
i.e., BC^2(0A). The latter is generally known as the 
Bauschinger effect. Another observation to note is that the 
linear portion upon unloading and reloading, C'F ' , depends 
on the maximum loading point B' . 

To define the linear response regions (OA, BC, DF, etc.) ex­
perimentally, one has to load beyond it, and enter into the ir­
reversible region. The imposed amount of plastic strain, 5e, 
has to be larger than the zone of measuring accuracy and small 
enough not to cause a change in the orientation of the 
crystalline structure. In experiments performed by Ellyin and 
Grass (1975), this limit was set equal to 20xl0~6 cm/cm 
(0.002 percent). The points A, F, C, etc., are then obtained 
from the back extrapolation of the tangent and the linear 
response (Phillips et al. (1972); Ellyin and Grass (1975)). 

The generalization to the biaxial stress state is shown in Fig. 
2. Two types of surfaces are shown in this figures. One which 
corresponds to point B in Fig. 1, hereinafter termed the 
memory surface; it indicates the extent of the maximum 
loading. The other surfaces corresponding to points A, C, F ' , 
in Fig. 1, are called yield surfaces, which indicate the locus of 
the elastic response. The surface corresponding to point A is 
the initial yield surface whose shape in the stress space is 
generally elliptical. 

Existing incremental theories of plasticity differ from one 
another in the choice of the hardening rule which specifies the 
change of the yield surfaces during plastic deformation. In an 
effort to better describe the experimentally observed evolution 

of the yield surfaces than the classical isotropic or kinematic 
hardening rules, "multi-surface" theories have been pro­
posed. For example, in Mroz's model (1967) a family of con­
centric hypersurfaces were introduced in the stress space cor­
responding to constant hardening moduli. The evolution 
equation was derived by assuming that the initial and subse­
quent surfaces were translated along the loading path without 
intersecting one another. 

The above model was subsequently simplified by Kreig 
(1975) and Dafalis and Popov (1975). In these models the 
family of constant moduli surfaces of Mroz were replaced by 
two surfaces: an outer bounding surface and an inner yield 
surface. The evolution equations then describe the motion of 
yield and bounding surface. For example, in Dafalis and 
Popov's (1975) model the motion of the yield and bounding 
surfaces is coupled, and is of a Ziegler (1959) type. A bonding 
or limiting surface simplifies the analysis, but its interpreta­
tion from a physical point of view can only be made at a 
limiting case. 

Interpreting the experimental observations, Phillips and Lee 
(1979), and Ellyin et al. (1975, 1983) arrived at similar conclu­
sions with some variation in details. It is to be noted that 
Phillips' experiments were in the small deformation range, 
while those of Ellyin are extended into the finite deformation 
domain. In Phillips and Lee's experiments on commercially-
pure aluminum, the evolution of the yield surface was explain­
ed in terms of a loading surface expanding isotropically in the 
stress space and passing through the maximum loading point. 
The motion of the yield surface was deduced to be in the direc­
tion of the prestress, da, when the angle with the normal n to 
the yield surface is small. If the angle between the two is large, 
then the motion is between da and n with da being the 
predominant factor. The experimental investigation on 
commercially-pure titanium by Ellyin et al. will be described 
next. 

Experimental Observations 

As mentioned earlier, experimental determination of yield 
surfaces requires special care and instrumentation. Generally, 
thin-walled tubes are subjected to combined axial force and 
torsion (or internal pressure). A strict determination of the 
yield point (limit of the material's elastic response) at various 
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axial prestrain , specimen N 

stress paths from a point inside the yield surface, is an essen­
tial prerequisite. The residual strain (accumulated plastic 
strain along various paths during determination of the yield 
surface) must be small enough to insure a closed yield surface 
corresponding to a given prestrain or prestress. 

Figure 2 shows the initial and subsequent yield surfaces cor­
responding to various torsional prestrains. Each surface is 
identified by a set of letters and numbers, T (Q-ia) where Q 
identifies the specimen and i = 2-5 denotes the subsequent yield 
surfaces; T (Q-la) being the initial yield surface. The sequence 
of loading for this test was ABCDEFGH. Two types of sur­
faces can be identified in this figure. A set of self-similar sur­
faces passing through the maximum loading point which are 
termed memory surfaces.' The memory surface at first coin­
cides with the initial yield surface and expands uniformly and 
remains self-similar with the increased deformation; thus it 
obeys the isotropic hardening model. On the other hand, each 
subsequent yield surface (locus of the elastic domain) changes 
in shape and moves in the direction of loading, but it always 
remains inside the corresponding memory surface. In the case 
of quasi-static loading, the subsequent yield loci gradually 
contract and tend towards a limiting value. Therefore they do 
not, in general, follow the kinematic hardening rule. In Figs. 
2, 3, and 5, the mean normal stress is identified by Qx and the 
mean shear stress by Qa. In the case of thin-walled tubes, 
Q x«a xand(2^«T^. 

To illustrate further the evolution of the yield surface, let us 
examine specimen "N" which is pretorqued initially, follow­
ing a path similar to that of the specimen Q (path ABC-
DEFGHIJK'), Fig. 3. The last surface corresponding to the 
torsional path J is denoted by T(N-6a). Note that in both 
cases, specimen Q and N, there is a strong cross effect, i.e., 
decrease in the elastic limit in shear is accompanied by a 
similar decrease in tensile elastic limit. In Phillips' investiga­
tions (1986) no such cross effect was observed. The reason is 
most probably due to the small magnitude of the prestrain in 
Phillips et al.'s experiments. In Figs. 2 and 3, the proportional 
part of the strain path is up to plastic shearing strains: 
(Y^)Af=8.5 percent, and (Y^)e = 13 percent. 

When the specimen N is further subjected to a nonpropor-
tional strain path K'KMM'LNPQRSS', the corresponding 
yield loci are denoted by P(N-7a) to F(N-lOa). It is seen that 
the subsequent yield surfaces change in shape and rotate, but 

always remain inside the memory surface. However, once the 
loading exceeds the previous maximum effective stress, (point 
J) the subsequent yield loci T(N-9a) and T(N-lOa) move almost 
parallel to the prestress path, QS. 

It is to be noted that the experimental data in Fig. 2 and 3 in­
clude whatever effect shear deformation (large or small) has 
on the material behavior.2 

Expressions for Memory and Yield Surfaces. As mention­
ed earlier, the memory surface obeys the isotropic hardening 
rule, and we use the stress as a parameter of loading history. 
Thus, the loading function is given by 

4>m=fm{aij)-c(o*) = Q, (1) 

where fm (cry) is the yield function, and c(o*) is the maximum 
value achieved by the function fm (a,-,) during the plastic defor­
mation. In particular, in the case of the von Mises yield condi­
tion we get: 

fm (au) = J2 and c (a*) = (J2)„ (2) 

where J2=SijSjj/2, and sjj = ajj — ukk5jj/3, is the deviatoric 
stress. 

For the subsequent yield surfaces, we use a combination of 
the kinematic and isotropic hardening models, i.e., 

4>y=fy{Oij-aij)-q = Q, (3) 

where ay's are the coordinates of the centers of the subsequent 
yield surfaces, and q is a measure of the yield surface 
contraction. 

In most two or multi-surface theories, the function q in (3) 
is taken to be proportional to the length of the plastic strain 
trajectory, 

e'=j(-^4^)' ,  (4 ) 
e.g., Mroz (1967), Dafalias and Popov (1975). In Tseng and 
Lee (1983) q is related to the plastic strain trajectory and 
plastic work, but no explicit relation is given. McDowell 
(1987a) advocates a constant value of q based on experimental 
data which is more appropriate for the stable cyclic loading. 
Note that a constant q indicates that the elastic regions does 
change with the imposed plastic strain history which generally 
may not be the case (e.g., see Figs. 2 and 3). 

'The term memory surface was used by Ellyin (1983) and independently by 
Tseng and Lee (1983), as opposed to Phillips loading surface. 

See Drucker (1985) for a discussion of treatment of the continuum rotation 
associated with the shear deformation. 
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An investigation of the experimental results reported by 
Ellyin et al. (1975, 1983) indicates that there exists a relation­
ship between the tangent modulus, E,, of the material and the 
ratio of the yield surface area (or memory surface) to that of 
the initial yield surface (see Fig. 4). This relationship will be 
termed the "hardening modulus curve." 

Expression for the Hardening Modulus Curve 

As discussed earlier, experimental results for a number of 
metallic materials indicate that the shape and size of subse­
quent yield surfaces do not generally remain constant with the 
increased plastic deformation. Therefore, it is suitable to use 
the area of the yield surface in the II-plane to indicate its rate 
of change. In Fig. 4, A is the area of the memory surface or 
the subsequent yield surface: A0 is the area of the initial yield 
surface (loading from a virgin state), and E0 is the tangent 
modulus at the point of the initial yield. When A/A0 > 1, the 
curve represents the relationship between the memory surface 
and the tangent modulus at the maximum load, E,. For 
A/A0<\, the curve depicts the relationship of the subsequent 
yield surface with the same tangent modulus. Generally speak­
ing, the slope of the curve at the A/A0 < 1, is steeper than that 
at A/A0>\. Note that the tangent modulus is constant when 
moving on a given memory surface. 

For the hardening modulus curve, the following relation­
ship would apply (Ellyin and Wu (1987)) 

M 
E. 

a) The hardening modulus curve 
of isotropic hardening material. 

b) The hardening modulus curve 
of kinematic hardening material. 

Fig. 6 Specia l case s o f the hardening modulu s curv e 

Table 1 
50A 

Young's 
Modulus 
E0 (GPa) 

103.6 
±1.2 

Material Properties of Commercially-Pure Titanium 

Shear 
Modulus 
G (GPa) 

40.7 
±1.3 

Equation (18) 

tf(MPa) 1/n 

607 6.936 
±70 ±0.9 

Equation (6) 

k 

0.3 
±0.05 

E,(u,k) = E0e -(«- (5) 
where oo = A/A0 represents the area ratio of the memory or 
yield surface relative to the initial value, and A: is a parameter 
indicating the extent of hardening. In general, 0<k< 1, and it 
controls the slope of the hardening modulus curve. Two dif­
ferent values for k can be chosen to represent the dissymmetry 
of the curve about theA/A0 = 1 axis. For a given material, k is 
constant and it can be determined through a suitable experi­
ment involving loading and unloading (see Fig. 1). 

The loading (strain) path program of the commercially-pure 
titanium is shown in Fig. 5 and the material properties are 
given in Table 1. The experimental results of specimen R (axial 
loading followed by partial unloading and subsequent tor­
sional loading) are depicted in Fig. 4, as well as the curve 
predicted by equation (5). For this case, k=\ for A/A0>\ 
and£ = 0.3 for.4/,40<l. 

It would be useful to analyze further the hardening modulus 
curve. Equation (5) can be written as, 

oj=l±kJln(E0/Et[ (6) 

If the stress-strain relation of the material is known, then at 
any given stress, we can calculate E,, and determine the RHS 
of (6). The positive sign in (6) is for the memory surfaces and 
the negative sign and, in general, is associated with the subse­
quent yield surfaces. For expanding yield surfaces one can use 
the positive sign with a different k value. 

It is clear from equation (6) that the rate of change of the 
subsequent yield and memory surfaces depend on the material 
parameter k. For smaller values of k, there would be smaller 
dispersion of the hardening modulus curve, with respect to the 
vertical line, u=A/A0 = 1. In the limit when k~0, the harden­
ing modulus curve collapse to line A/AB=\, and we obtain 
the kinematic hardening rule, Fig. 6(b). On the other hand, 
when the hardening modulus curve is symmetric with respect 
to line co = 1, we then recover the isotropic hardening rule, Fig. 
6(a). It is, therefore, clear that the hardening modulus curve 
Fig. 4, (equation (6)) can be viewed as a general description of 
the material hardening process, and the isotropic and 
kinematic hardening laws are but two particular cases of it. 
Whether equation (6) applies to more complicated strain paths 
than those shown in Fig. 5, remains to be verified. One 
limiting case could be a class of materials whose stable cycle 
curve is not unique (see section on cyclic loading). 

Evolution of Yield and Memory Surfaces 

The hardening modulus curve described in the previous sec-
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Fig. 7 Schematic representation of the motion of subsequent yield 
surfaces when remaining inside the memory surface 

tion indicates the relationship between the size of the memory 
or yield surfaces and the tangent modulus at the maximum 
load, E,, of the stress-strain curve. It does not, however, give 
the change of the position of the yield surface during the 
loading process. 

It was indicated earlier that subsequent yield surfaces move 
along the prestressing path for the proportional loading, Fig. 
2. For the nonproportional loading, the motion of the subse­
quent yield surface is more complex (see Fig. 3). The direction 
of its motion deviates from that of the loading path. Ellyin 
(1983), based on the analysis of the experimental results, 
deduced that the motion of the subsequent yield surface is as 
follows: The center of the yield surface moves parallel to the 
direction of the vector, connecting the starting point of the 
stress path (on the current yield locus) to a point on the cor­
responding memory surface whose exterior normal is parallel 
to the outward normal of the instantaneous yield surface at 
the start of loading. The above rule applies as long as the yield 
surface remains inside the memory surface. Figure 7 is a 
schematic representation of the motion of the subsequent yield 
surfaces with various prestressing paths (gi and Q2 are 
averaged principal stresses, Qi~ffi and Q2~<^2 m a thin-
walled section). For example, the motion of the subsequent 
yield surface TAB when prestressed along DF is obtained by 
finding point E on the memory surface whose exterior normal 
nE, is parallel to the outward normal at D, nD. The center of 
the subsequent yield surface then will move in the direction 
parallel to DE and will remain inside the memory surface. 

The evolution law thus described is, in a sense, a generaliza­
tion of that of Phillips. That is, in the case of mono tonic 
loading, the yield surface moves along the stress path and re­
mains tangent to the memory surface. However, once there is 
a reversed loading, the motion is according to the rule de­
scribed by Fig. 7, which is of the Mroz type. The necessity of 
describing two hardening rules is well described in the con­
cluding part of Phillips (1986) review of his experimental 
work. This, of course, could not be done by plasticity theories 
with either a single surface or those with limit surfaces. To 
describe the aforementioned evolution equation we note, from 
Fig. 7, that when the loading path remains inside the memory 
surface, the motion of the center of the subsequent yield sur­
face may be expressed as, 

daij = dli[{aij)m - (ou)y], (7) 

where (ay )y is the stress point on the yield surface at the begin­

ning of the loading increment, e.g., point D in Fig. 7 and 
(o-y)m is the corresponding point on the memory surface, e.g., 
point E in Fig. 7. 

For a monotonic or reloading path exceeding the current 
memory surface, the memory surface will expand and the yield 
surface will move in tandem with it, having the same tangent 
at the loading point. This condition is mathematically ex­
pressed as: 

4 dfyjOjj- • « ( / ) 

-ix-
. 3/)«(o-(/) 

] - 0 (8) 
day day 

where \i is a proportionality factor. 
Returning to Fig. 7 and relation (7) we note that the direc­

tion of outward normals at points D and E must be the same. 
Since the starting point of loading, i.e., (oy)D is known, our 
task therefore is to find the corresponding point (oy)E on the 
memory surface. The point on the memory surface is obtained 
from the solution of the following equations: 

dfm(°ij) .dfyioy-ay) 
=A 1 day 

(9) 

and 

fm(°ii) = ("//)» -C((7*) =  0 . (10) 

Equation (9) specifies the condition that the gradient of the 
memory surface at E is proportional to that of the subsequent 
yield surface at D (Fig. 7). The coefficient X in (9) is a propor­
tionality constant. The supplementary condition (10) ensures 
that (<T(,-)m is on the memory surface and thus satisfies equa­
tion (1). Note that in the aforementioned equations (oy)y, 
fm(<Jij)>fy(°ij-aij) a r e known, and thus we have ten equa­
tions in ten unknowns {oy)m and X. 

To determine the scalar d/i in (7), we use the consistency 
condition, i.e., when the stress point D remains on the yield 
surface during the loading process, then d<j>y = 0. From (3), 

<% = —±- (day - day )-dg = Q. (ID 

Substituting from (7) we get, 

^ d O y - d , 

dji = 
day 

(12) 
[(°kl)m- (°kl)yWy/doki 

The description of the hardening rule when the stress path 
remains inside the memory surface, is now complete through 
specification of four relations (7), (9), (10), and (12). 

Similarly, from (8) and (11), we get day and ft which com­
pletes the description of the hardening rule when loading ex­
ceeds the current memory surface. Note that in the previous 
formulation the function q is kept general, and a special form 
of it will be discussed in the following section. 

Particular Case: Plane Stress Condition 

Let us now consider the plane-stress case in more detail. The 
motivation for this stems from the fact that most experimental 
investigations are carried out on thin-walled tubular specimens 
loaded by a combination of tension-torsion. A state of plane 
stress then exists at the exterior surface of the tube. For the 
sake of illustration, we will assume that the material obeys von 
Mises' condition, then the memory surfaces (1) with condition 
(2) are given by, 

</>» (^2)max=0 (13) ,= (0l + lrt2
Xy)-

where a2 = 3J2. The above relation indicates a family of 
ellipses similar to von Mises yield criterion. 

The subsequent yield surfaces have a slightly distorted ellip­
tical shape. We may represent them by an anisotropic yield 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56/503 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



rxy (MPa) r x v (MPa 
Predicted 
Experimental 

Loading History 
O - A F - B - G —H—B'-

Error of Parallelism = 7% 

Predicted 

Experimental 

Loading History 

0 - . A H - B — D - F 

F 
Memory Surface 

E'(372.3, 91.36) 

0 2 (204.3,119.8)-
LSubsequent Yield Initial Yield^ 

Surface r(N-7a) Surface-

68.95 137.9 206.8 75 413.7 X103 

<JX (MPa) 
275.8 344.75 413.7 

ffx (MPa) 

Fig. 8 Comparison between experimental and calculated yield sur­
faces, and the corresponding point on the memory surface for an axial 
(tensile) loading path, specimen Ft 

function, or use a number of other proposals, for example, 
Phillips and Weng (1975), Eisenberg and Yen (1984), and 
Budinansky (1984). Since the purpose of this section is to il­
lustrate the proposed theory, for the sake of simplicity we will 
use von Mises-type yield criterion as a first approximation. 

In this case, (3) will be represented by, 

Fig. 9 Comparison between experimental and calculated yield sur­
faces, and the corresponding point on the memory surface for a tor­
sional loading path followed by a nonproportional tensile path, 
specimen N 
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-axyV -q = G. (14) <t>y=(ox-ax)
2 + 3(TXy-

It can be shown that in the case of both the von Mises and 
Tresca yield conditions, 

A(q) Q , , „ 
A0(o) a2 

and thus q = q(E,) can be found from the hardening modulus 
curve (6), i.e., 

q(E,)=<j2[\-k^n(E0/E,)2]. (16) 

Substituting from (16) into (14), the subsequent yield loci are 
given by, 

0 68.95 137.9 206.8 275.8 344.75 413.7 X 1 0 J 

a x (MPa) 
Fig. 10 Comparison between experimental and calculated yield sur­
faces, and the corresponding point on the memory surface for an 
oblique loading path followed by a nonproportional tensile path, 
specimen P 

corresponding point on the memory surface are obtained from 
(20). 

<t>y = (ax-ax)
2 + 3(TX),-axy)

2-(72[l-k-/ln(Eo/E,)2] = 0.(n) Comparison with Experimental Results 

The value of the tangent modulus, E,, for a monotonically in­
creasing load can be obtained, for example, from Ramberg-
Osgood type relation, 

e = (a/E0) + (a/K)w" 

which results in: 

E, =E„/[l + (E0/nK)(a/K) <»-W>>] 

(18) 

(19) 

In the previous equations n and K are parameters chosen to 
provide the best fit to the stress-strain curve of the material, 
E0 is the elastic modulus. 

To find the corresponding point of the memory surface, we 
use conditions (9) and (10). Noting that the gradient on the in­
stantaneous yield surface, cj>y, is taken at a definite point (D), 
substitution from (13) and (17) into (9) yields, 

(ax)m=\(ax-ax)y, 

^ xy t m *M ̂ xy ®-xyly (20) 

The coordinates of the loading point, D, and the center of the 
current yield surface (see Fig. 7) are known and consequently, 
the magnitude of the terms in the parentheses on the RHS of 
(20) can be calculated. Substituting from (20) into (13), the 
value of the X is then determined; thus, the coordinates of the 

Let us now examine some of the experimental results for the 
paths shown in Fig. 5. The results for the axial prestrain path, 
(specimen R) are shown in Fig. 8. As to be expected, the direc­
tion of the motion is along the prestress and the predicted 
coordinates from equation (20) are exactly the same as points 
F and H in Fig. 8. 

In the next two examples, the loading path is first propor­
tional and then a nonproportional path is imposed. For exam­
ple, in Fig. 9, the initial loading path is along the torsional axis 
(pretwist) followed by a nonproportional tensile prestrain 
(c.f., Fig. 3). The first subsequent yield surface in the non­
proportional path is T(N-7a) with its center at 0,. Now the 
loading path is from D to F. The experimental yield surface is 
T(N-8a) with its center at 02. 0,02 is the actual direction of mo­
tion. If a line parallel to 0,02 is drawn from D (loading point 
on yield surface T(N-7a)), it will intersect the memory surface 
at E. The point obtained from equations (20) is E ' ; the max­
imum deviation in parallelism in this case is about seven per­
cent. Similarly, in the case of combined (oblique) proportional 
loading followed by a nonproportional pretension path, Fig. 
10, the maximum deviation in the parallelism is about ten per­
cent. We therefore observe the agreement between the observ­
ed motion and the predicted direction is fairly good, not­
withstanding the von Mises shape approximation. 
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Plastic Flow Rule 

In this section, we will derive an incremental law relating the 
increment of the strain components to those of the stress and 
stress increment for the case of small deformations. The usual 
assumption regarding the total strain increment decomposi­
tion will be made, i.e., 

de;, = de% + d^j. (21) 

The increment of the elastic components of strain are 
related to the stress increment through the generalized 
Hooke's law, 

dee
v = -^ Y (1 + v)8ik5j, - v8y8kl^ dak,. (22) 

For the increment of the plastic strain components, the con­
sistency condition will impose that they be proportional to the 
quantity (Kachanov, 1971): 

dfy = 
dak. 

dak (23) 

where the increment dfy is carried out while the plastic strain is 
held constant. In addition, we can use von Mises flow rule 
which states that the increment of the plastic strain rate lies 
along the exterior normal of the yield surface, i.e., 

* $ = da,; 
for Vy A 

deKj = 0 for—-^-dakl 
dak. 

O a n d ^ =0 , 

< 0, or 0V<O, 

(24) 

where the proportionality factor "g" is a function of the 
material hardening. The relations in equations (24) along with 
the yield surface (3) completely determine the plastic strain 
increments. 

To determine the hardening function g, we proceed as 
follows: For metals, the plastic strain increment is not nor­
mally influenced by the hydrostatic pressure, thus: 

d&, 
day 

dfy 

Substituting from (25) into (24) we obtain, 

rdfy 3fy de1j=i 
dsa dsk 

-dst 

(25) 

(26) 

By specializing (26) to the uniaxial tension case, and noting 
that 

fy (ffy -ay)=q, and da/de" = Ef, we get, 

4<?£f &~k)q (27) 

where the value of the tangent modulus E, can be obtained 
from (19). 

An alternative and more general expression can be found by 
multiplying (26) by itself, and using definition (4) which yields 

g = de"/ 
dfy dfy / dfy 

day day \dakl 
dak (28) 

It is to be noted that the hardening function (27) or (28) con­
tains the loading history through the change of q, and E, is a 
function of the current stress level. Thus, g is a function of the 
loading history, and the current stress. A more restrictive 
assumption was made by Ziegler (1959) and retained by 
Dafalias and Popov (1975) in relating the stress and strain in­
crements. It was assumed that the projection of day and of 
day on the normal are the same. Substituting from (27) or (28) 
into (26) the increment of the plastic strain components is 
completely determined. 
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If we employ (28) for the hardening function g, then func­
tion q in (3) could also be related to the length of the plastic 
strain trajectory, eP. However, using (27) and (16) simplifies 
calculation considerably. 

Combining (26) and (22) we obtain, 

dey = [~[(1 + v)8ik8j, - v8y8kl] + cg^- j^-] dakl (29) 

where, 

c = 1 for 
dfy 
dak, 

dfy 

dakl > 0 and </> = 0, 

c = 0 for -^-daki<0, or <j>y<0. 
dak, 

(30) 

It may be more convenient to express (29) in its inverse 
form, i.e., 

do a -Lykidtkt (31) 

where LiJkl can be found after certain algebraic manipulations 
(Ellyin and Xia (1987)). By suitable definition of stress and 
strain rates, (31) can be generalized to the finite deformations 
(see Neale (1981)). However, this is beyond the scope of this 
paper and will not be discussed further. 

Reversed and Stable Cyclic Loading 

The hardening modulus "g" given by (27) requires calcula­
tion of the tangent modulus, E,. As pointed out earlier for the 
monotonically increasing load, this can be calculated from 
(19). Also, when the stress path is inside the yield surface, the 
tangent modulus is E0. Thus, for any stress path outside the 
yield surface and inside the memory surface, the tangent 
modulus must have a value between the two aforementioned 
values. For example, we note from Fig. 11 that for every point 
on the yield surface, there is a definite distance 8 between it 
and the memory surface, e.g., D0E. We seek a relationship 
between 5 in the stress space and d of the uniaxial stress-strain 
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curve, (c.f., Fig. 11 (a) and (£>)). Referring to Fig. 11 (a), an 
elastic unloading will take place from B to C. Continuing the 
reversed loading, the plastic flow will occur and the yield sur­
face will move as shown in Fig. 11 {b). We note that the ratio, 

d2 S2 
(32) 

uniquely determines the corresponding point on the reversed 
loading path. At C, d2 = 0 and r= oo, thus E, =E0 and at E', 
d\ =0, r = 0 and E, =£, ( £ , ) . Thus, r will be chosen to correlate 
the tangent modulus (and E, for any loading path inside the 
memory surface). From (18) we get, 

E< = 

1+-
En [" CTmax + rao 

L (l+r)K nK L (l+r)K 

(«-!)/« 
(33) 

In the multiaxial stress state, 5t is the distance between the 
current stress point D and the corresponding stress point on 
the memory surface whose outward normal is parallel to that 
at point D. The distance 52 is measured from the point of the 
onset of the plastic flow D0, to the point D (see Fig. 11 (b)). 
The distance between two points is measured in the stress 
space and its projection in the deviatoric space, 8, is given by 
the Euclidian metric, 

8=[(^>-4,W-«(J))]1 (34) 

The rule of determining the tangent modulus has certain ad­
vantages to those proposed by Dafalias and Popov (1975), and 
Tseng and Lee (1983), i.e., 

EP=EZ "'(1+tr) (35) 

where 8,„ is the value of 8 at the initiation of yield for each 
plastic loading. Since 8,„ changes for plastic loading and 
unloading, then one may encounter a situation whereby 
S>5,„. In addition, the value of h has to be found through fit­
ting by a number of material parameters. McDowell (1987) 
has discussed various proposals for the hardening modulus h, 
and concludes that one should normalize 8 with a parameter 
which is a function of history of loading. The parameter r, as 
defined by equation (32), satisfies such a requirement. It is to 
be noted that the proposed theory is an incremental formula­
tion and, as a result, no jump discontinuities are experienced 
during any elastic unloading process where dq = 0. 

Figure 12 is an example of the stable hysteresis loops for a 
proportional biaxial cyclic loading. In this test a circular cylin­
drical specimen was subjected to cyclic axial load and constant 
external and fluctuating internal pressure. (For the description 
of the experimental setup, see Ellyin and Valaire, 1982). The 
specimen was subjected to equi-biaxial strain (ea = et) under 
deformation-controlled mode with zero mean strain. The 
material is ASTM A-516 Gr. 70 steel and all the pertinent 
mechanical and cyclic properties are given elsewhere (Ellyin 
(1984)). It is to be noted that the stable uniaxial cyclic curve is 
used to predict the biaxial stable response. The experimental 
hysteresis loops are very similar to those predicted by the 
theory and only the maximum and minimum values are in­
dicated on the figure. 

It may be pertinent to mention that the motion of yield sur­
faces for stable proportional loading is similar to that of the 
monotonic loading (see, for example, Ellyin and Neale 
(1979)). For the cyclic loading, the monotonic stress-strain 
curve has to be replaced by stable cyclic loading curve whereby 
the strain hardening or softening of the material is taken into 
account. In the case of nonproportional cyclic loading, some 
materials show additional hardening (e.g., see Lamba and 
Sidebottom (1978)). While the evolution of the yield surface 
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Fig. 1 2 Stabl e hysteresis loops for an equibiaxial proportional strain-
controlled loading and comparison with experimental values 

can be described by (7) and (8), the transient response cannot 
be predicted from the uniaxial cyclic curve alone. This type of 
behavior will require specification of additional material 
parameters (see, for example, Kremple (1984), McDowell 
(1985), and Ellyin and Xia (1988). 

Conclusions 

The elastoplastic response of solids is modeled based on two 
types of surfaces, memory and yield loci. A memory surface, 
4>m, indicates the extent of the loading, and a yield surface, <j>y, 
portrays the locus of the elastic region. Based on the ex­
perimental observations, a hardening modulus curve is de­
fined which establishes a relationship between the memory 
and yield surfaces in the II-plane with the tangent modulus of 
the material at the maximum load. Thus, it becomes possible 
to predict change in size of the subsequent yield surface from 
the stress-strain relation of the material. 

The evolution of the yield surfaces is predicted from the 
position of the loading on the yield surface. The motion of the 
center of the yield locus is parallel to the direction connecting 
the starting point of the stress path to the point on the memory 
surface whose exterior normal is parallel to the outward nor­
mal of the instantaneous yield surface at the start of plastic 
deformation (see Fig. 7) as long as the stress path remains in­
side the memory surface. This evolution is described 
mathematically and the hardening rule of the solid is given by 
three equations (7), (9), and (12). When the stress path moves 
outside the memory surface, then the motion of the center of 
the yield surface is given by (8) and (11). 

An attractive feature of the proposed hardening rule is that 
it contains only three material constants which can be easily 
obtained from a simple test. The prediction of the proposed 
theory are compared with test results for various proportional 
and nonproportional loading paths, and the agreement is 
found to be fairly good (see Figs. 8-10). 

The change of tangent modulus during reversed loading is 
described by relations (32)-(34) and an example of stable 
cyclic loading is given in Fig. 12. 

Based on the proposed hardening rule, an explicit relation­
ship is given relating the increment of the plastic strain to the 
stress and stress increments, equations (29)-(31). 
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On the Inversion of Residual 
Stresses From Surface 
Displacements 
When plastic damage regions are accumulated in a material, there exist residual 
displacements on the surface of the material after all the loadings are removed. The 
residual displacements are defined as the difference between before and after 
loading, and can be measured experimentally without destruction of the material. 
This paper addresses the problem of evaluating the residual stress field caused by the 
accumulation of the plastic damage regions in a subdomain of the material. The 
problem is formulated as a system of integral equations relating the surface 
displacements to the unknown plastic strains. The damage domain, which appears 
as the domain of integration of the integral equations, is also unknown. Determina­
tion of the shape of the damage domain, together with the plastic strains, is a very 
complicated nonlinear problem. In addition to the residual surface displacement 
data, it requires more information about the loading history or other restrictive 
assumptions. However, the residual stress field in the vicinity of the damage domain 
is obtained after the equivalent damage domain and the equivalent plastic strains are 
introduced. The problem is an inverse problem, which is substantially different from 
the conventional forward analysis of structural mechanics. Special attention is given 
to the uniqueness and stability of the solution. 

1 Introduction 

The term "inverse" or "ill-posed" problems includes a 
huge variety of problems of different sorts and origins. Usual­
ly it implies identification of inputs from outputs, or deter­
mination of unknown causes from known consequences. 

Inverse problems are becoming more and more important in 
many fields of science and engineering. Stanitz (1988) studied 
the problem of designing a channel for arbitrarily prescribed 
velocity distribution along the channel walls. Dulikravich 
(1988) presented a methodology to determine shapes, sizes, 
and location of coolant flow passage in an internally cooled 
turbine if temperature and heat fluxes are specified. The 
problem of determining the coordinates of an airfoil for a 
given surface pressure distribution was investigated by Sobiec-
zky (1988). The recent progress of inverse problems related to 
structural mechanics has been reviewed by Kubo (1988). Other 
typical examples of inverse problems include reconstruction of 
a tomographic image from X-ray shadow pictures, inverse 
scattering for detecting defects of materials, determination of 
mass distribution of mechanical structures by their natural fre­
quencies, estimation of the properties of the earth, identifica­
tion of heat conductivity from boundary temperature distribu­
tion, etc. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS, Manuscript received by the ASME 
Applied Mechanics Division, October 13, 1988; final revision, February 6,1989. 

In our previous papers (Mura, Cox, and Gao (1986), Gao 
and Mura (1988a), and Gao and Mura (1988b)), we have con­
sidered the inverse problem of damage evaluation from the 
residual surface displacements. A numerical scheme has been 
developed to solve the corresponding ill-posed integral equa­
tions of the first kind. The problem is essentially a nonlinear 
problem since the shape of the damage domain is unknown to 
us. The concept of equivalent damage domain and equivalent 
plastic strains was introduced to avoid the nonlinearity of the 
problem. The equivalent damage domain can be chosen as any 
domain covering the real damage domain. The equivalent 
plastic strains are the fictitious plastic strains inside the chosen 
damage domain, which generate the measured residual surface 
displacements. This enables us to compute some characteristic 
quantities associated with the damage of the material. These 
quantities include lower bounds of the strain energy or any 
other quadratic functions of the plastic strains, etc. In this 
paper, we extend the previous results to the inversion of the 
residual stresses caused by the plastic damages. In the 
engineering problems of damage evaluation, we are very much 
interested in the residual stress field in the vicinity of the 
damage domain because it determines whether the damage do­
main is going to be stable or begin to propagate. 

2 Fundamental Equations 

Plastic strains ef, are accumulated in a subdomain fl of the 
given body D (see Fig. 1) after a series of unknown loading. 
The subdomain Q is called the damage domain, and its shape 
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Fig. 1 The domain occupied by the material is denoted by D. Plastic 
strains are accumulated in ft, a subdomain of D 

Fig. 2 An equivalent damage domain ft* is chosen to cover the actual 
damage domain ft 

and location are generally unknown. We use the residual sur­
face displacement data to evaluate the residual stresses caused 
by the unknown plastic strains ef,. The residual surface 
displacements are relative and are defined as the difference 
between before and after loading. 

The displacements and stresses due to e£, are denoted by w,-
and <jjj, respectively. The equations for equilibrium are 

Oij,; = 0, in D. (1) 

The boundary conditions for free surface forces are 

<FU rij = 0, on 3D, (2) 

where «y is the exterior unit normal vector on 3D, the boun­
dary of D. The continuity conditions of tractions on dQ, the 
boundary of fi, are 

[<jy]nj = 0,ondQ, (3) 

where [ ] = (out) - (in). 
By using Hooke's law 

Oii = Cm{.ukJ-4i), (4) 

we rewrite (1), (2), and (3) as 

C,jki "kjj = Cm tfu in D, (5) 

Cuki (ukJ-$,) nj = 0, on 3D (6) 

and 

[cukl (ukJ - 4i)]"j = o, on an, (7) 
respectively. CiJk, in the previous equations are the elastic 
modulus tensor of the material. 

We will find a relation between the residual surface 
displacements and the plastic strains. 

Due to the symmetry of the elastic moduli Cijkh the Betti-
Maxwell reciprocal relation holds, 

CmGkmJ (x -x ' ) (« , j (x ) -eg(x) ) 

= Cm (Hw(x)-e£,(x)) G , m J ( x - x ' ) , 

where Gkm ( x - x ' ) is Green's function for an infinite elastic 
medium and satisfies the equation of equilibrium for a point 
force with the unit magnitude, 

CUM GkmM (x - x ' ) = - 8imd(x- x')• (9) 

5im is the Kronecker delta and S (x -x ' ) is Dirac's delta 
function. 

When (8) is integrated in the domain D with respect to x and 
the integrations by parts are applied, we have 

Cm GkmJ(x-x') Ui(x)nj ds (x) 

- ]D Cm GkmM (x-x')M /(x)tfx 

- \D Cm GkmJ ( x - x ' ) efj(x)dx 

> „ C'Jki ("*,/ (x> - e"ki ( x » °im (x - x)rijds(x) 

- j B Cijkl {ukM{x)- fPkhj (x)) Gim(x-x') dx (10) 

where ds is the surface element of 3D and dx is the volume ele­
ment of D. The boundary integrals on 3fi disappear due to the 
continuity of «,- and oyrij. Equation (9) is substituted into the 
second integral in the left-hand side (10). The right-hand side 
in (10) is zero due to (5) and (6). Finally, (10) becomes 

] 0 Cijkl Gkm, i (x - x ' ) efj(x)dx = 

(11) 

] gD
 cm Gkn,t i (x - x')«,- (x)fijds (x) + /3 um (x') 

since eg- = O i n D - Q , where/3=1 forx ' eZ>and/3= 1/2 forx ' 
e 3D (see Kinoshita and Mura (1956)). 

When x ' is considered on 3D, the equation (11) is the 
Fredholm integral equation of the first kind for unknown eg 
under given «,(x') on 3D. Since plastic strains are incom­
pressible, the condition 

e"kk = 0 (12) 

is imposed to (11). 

3 Discussion on Uniqueness 

When the surface displacements are measured experimental­
ly, the left-hand side in (11) is known. The equations (11) are, 
therefore, equations for unknown plastic strains eg-. The solu­
tion is, however, not unique. This nonuniqueness is easily 
shown by the existence of the impotent eigenstrains (see 
Furuhashi and Mura (1979)). If compatible plastic strains are 
defined in fi and the corresponding displacements vanish on 
dfl, these plastic strains are impotent eigenstrains which do not 
cause any elastic field in D. Therefore, the addition of these 
plastic strains to eg provides the same surface displacements 
on 3D. 
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Fig. 3 Displacements and surface tractions are zero on S-|, a part of 
the boundary of R 

Fig. 4 The equivalent damage domain !!* are partially intersected with 
the actual damage domain ft 

Although determination of eg is not unique, it can be shown 
that the stress field caused by eg is uniquely determined in 
some parts of the material from the surface displacement data. 

Choose a domain ft* such that ft* covers Q (see Fig. 2). Find 
proper plastic strains eg(ft*) in ft* which provide the same sur­
face displacements as those caused by eg(fi) in Q. Then, the 
displacement and stress fields caused by eg(ft) and those 
caused by eg (ft*) are identical in the domain D — Q*. 

This identity is based upon the following lemma. 
Lemma: Let Sj be a part of boundary of an elastic body R 

(see Fig. 3). If surface displacements and force tractions are 
zero on S[, the displacements and stresses in R are identically 
zero. 

The difference between the elastic field caused by eg(fi) in ft 
and that caused by eg (ft) in ft* is an example of this lemma, 
where R = D-Q* and S, = dD. 

In the proposed inverse problem, the unknowns are not only 
eg but also the location and size of ft where eg are caused. 
However, the identity of the stress field mentioned previously 
leads to a new idea to evaluate the residual stresses in £>-ft* 
uniquely if ft* can be chosen properly. 

The lemma has been proved by Gao and Mura (1988b) for 
the two-dimensional case. The lemma may be proved for the 
three-dimensional case as follows. 

Let Uj and ay be the displacements and the stresses which 
give the zero displacements and the zero force tractions on S,. 
Consider another set of displacements u- and stresses a'y which 
give the zero displacements on S2 but arbitrary force tractions 
on Si. Assume that both of ay and a'y are in equilibrium. 
Then, the Betti-Maxwell reciprocal relation yields 

)Si+S2 

o[iuinids = = \ 
•>Si+S2 

0yU(njds (13) 

where tij is the outward normal vector on the boundaries S, 
and S2 and S, +S2=dR. It is obvious that the right-hand side 
in (13) is zero from the conditions of the problem. Therefore, 
(13) leads to 

This lemma can be extended to the case when 0* and ft are 
partially intersected as shown in Fig. 4. In this case R is the do­
main bounded by dD and d(ft+ft*). The lemma can be further 
extended to the case of steady-state elastic wave, where the 
Green's function gkm (x - x ' ) is defined as (see Mura (1982)): 

Cyklgkm,y(x-x') + pu2gim ( x - x ' ) + 8imS(x-x') =0(15) 

where p is the density and o) is the frequency. 
Accordingly, the uniqueness theory for the residual stresses 

may be properly modified. 
Any domain covering the damage domain ft can be chosen 

as an equivalent damage domain ft*. However, we want to 
choose ft* as close to ft as possible so that the stresses near the 
boundary of ft* provide a good representation of the stresses 
in the vicinity of the actual damage domain ft. The residual 
stresses in the vicinity of the damage domain are very impor­
tant quantities in the engineering problems of damage evalua­
tion. They determine whether the damage domain is going to 
be stable or begin to propagate. 

4 The Variational Problem 

We have proposed to solve the integral equation 

\Q, CijklGkmJ (x-x ' )eg(x) t fx = 

J BD °iJkl Gkm''(X ~ X ' ) M ' ' ( ^ " j d s ( X ) + ~2~Um ( X ' ) 

(16) 

for x ' e 3D, where ft* is chosen properly and (Pkk = 0. The 
equation (16) is written as follows for the two-dimensional 
case: 

[ K(x,x')V(x)dx = U(x'). x'edD (17) 
J n* 

)s2 

o'jjUjiijds^O. (14) 

The integral on Sj vanishes since w; = 0 on Sj. By choosing 
proper a-jtij on Si, we can assign any value of a'yrij on S2. It 
means that ojjfij on S2 can be chosen arbitrarily. Then, it is 
concluded that w, = 0 on S2. Consequently, «,• is zero 
everywhere in R. 

where 

K(x,x') = 
£-Vi2 Gnj , C(j22 Gjij — Cjjii Gnj 

Vtfl2 "/2,y i Q/22 Gaj~Cyii Gi2j 

V(x)=[7f2, e?2]r,7?2 = 2e?2 

(18) 
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U(x') = x, 

~~ L„ cuki Gklj(x-x')ui(x)nj(x)ds(x) + 0.5u1(x)' 

Cijki Gk2J(x-x')ui(x)nj(x)ds(x) + 0.5u2(x') 

u 8D 

Gy(x-x') = —— [ - ( 3 - 4 ^ LogfT?) 

?^^?^^^^^^^[^^^^?????^^^ 

(19) 

(Xi-X'i)(Xj-Xj) 

R2 
• ) • 

R2 = (Xl-x[)2 + (x2-xi)2. 

Further simplication leads to 

K(x, x ' ) = 
4TT(1 - v)RA 

x2[(2K - 3)x2 + {2v - l)x\], x, [4(1 - v)x\ - 4PX2
2] 

X ? [ ( 2 K - 3 ) X | + (2v-l)x\], x2{Avx\-4(1 - v ) x \ \ J (20) 

where 

Xj = Xy —- Xj X2
 = X2 ~ X2 • 

Of all the V(x) satisfying (17), we look for the one which has 
the smallest L2 norm, i.e., we pose a new minimal problem 

Fig. 5 Unit plastic strains (see (28)), are distributed in the damage do­
main ft. The equivalent damage domain ft* is chosen to recover the 
residual stress field outside ft* 

The problem (22) has the unique solution and the solution is 
stable to the small perturbation of the input data U(x'). The 
detailed discussion can be found in Gao and Mura (1988a). 

The problem (22) is equivalent to its Euler equations 

f K*(x,s)V(x)tfx + aV(s) = U*(s) 

Min MV(x)M2 

subject to 11 f K(x, x ' )\{x)dx - U(x') I 12 = 0, 
Jn* 

(21) 

and 

where 

s e O * 

/ ( « ) = 0, 

(23) 

(24) 

where I N N 2 is the square of the L2 norm, i.e., the inner 
product of the function with itself on the domain it is defined, 

II V(x) l l 2 =f \T(x)\(x)dx 

and 

II f K(x, x ' )V(x)dx-U(x ' )N 2 

JH' 

= \3D [ [ J KU,x ' )K(x)«fe-U(x ' ) ] 

X \[ ( K(x, x')V(x)e?x-U(x')l]rfx', 

where the superscripts " 7 " indicate the transposes of the 
matrices. 

For an engineering problem, our experimental meas­
urements always contain error. U(x') is only an approxima­
tion of the exact displacements U° (x') such that 

I I U ( x ' ) - U ° ( x ' ) l l 2 < e , 

where e is a small, positive number. Therefore, the problem 
(21) is changed into 

K*(x,s)= [ KT(s,x')K(x,x')dx' 
J 3D 

Sfi l* , (25) 

U*(s)= f KT(.s,x')V(x')dx' 
JD 

s e Q* (26) 

and 

/ ( a ) = l l f K(x,x')V (a>(x)fifx-U(x')ll2-e. (27) 
Jn* 

V(a) (x) in the equation (27) is the solution of (23). 

5 An Example 

Numerical results are given for the problem shown in Fig. 5. 
Domain D is the half space x2 > 0 and 3D is the free surface 
x2 = 0. After a series of unknown loading, plastic strains are 
accumulated in domain 

n = [ x l r < 0 . 2 ) , (28) 

where 

Min IIV(x)ll2 

subject to . 11 [ K(x, x ')V(x)rfx - U(x) 112 = e, 
(22) 

r = Vx2 + (x 2 -2 .0) 2 . 

The rest of the material remains elastic. The distribution of the 
plastic strains in fl is 

Our goal is to solve (23) and (24) for ef, by using the surface 
displacement data caused by the plastic strains (29). Once (Pkl 

(29) 
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Table 1 Comparison of the computed plastic strains with the actual 
plastic strains from (29). SI is given in (28) and 11* = (xlr<0.3), where r2 

xf + (x2 -2.0)2. 

ELEMENT 

Coordinate Element # y 

0<esn;/3; OsrsO.1 
x/3<9S27t/3; 0<r<0.1 
2n/3S6<7t; OsrsO.1 
itse<47t/3; 0sr<0.1 
4j i /3<8£5n/3; OsrfiO.1 
5it/3£9£2n; 0sr<0.1 
0<9<jt/6; 0.1^r<0.2 
ir/6<9<jr/3; 0.1sr<0.2 
it/3<e<it/2; 0.1<rs0.2 
E/2<6£2ji/3;0.1<rs0.2 
27t/3s6<5x/6; 0.1sr<0.2 
5it/6£B<Tc; 0.1<r<0.2 
nfie£7n/6; 0.1sr£0.2 
7jt/6<6<4it/3; 0.1sr<0.2 
4jt/3<9<3x/2; 0.1Sr£0.2 
3it/2se<5it/3; 0.1<rS0.2 
5 T I / 3 < 9 £ 1 ln/6; 0.1srs0.2 

l l ) t /6£6<2x; 0.1<r<0.2 
0£8<7t/8; 0.2<rs0.3 
X/S<B<K/4; 0.2<r<0.3 

7t/4<6<37i/8; 0.2sr£0.3 
37i/8<esit/2; 0.2<r<0.3 
7t/2<9<5it/8; 0.2<r<0.3 
5it/8£9<3it/4; 0.2sr<0.3 
37t/4<8<7!t/8; 0.2<r<0.3 
7it/8£9£7t; 0.2sr<0.3 
n<B<9)i/8; 0.2sr<0.3 
9it/8<8<57t/4; 0.2<r<0.3 
5it/4S8<llx/8; 0.2<rs0.3 
l l j t/8se<3n/2; 0.2<r£0.3 
3it/2£8<13x/8; 0.2<rs0.3 
3it/8se<7ic/4; 0.2SK0.3 
jt/4<9sl5ji/8; 0.2<r<0.3 
157t/8se<27i: 0.2<r<0.3 

COMPUTED 
P E P 

12 22 

ACTUAL 

1 

2 

3 

4 

5 

6 

7 

B 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

0.68 

0.82 

0.90 

0.81 

0.65 

0.60 

0.71 

0.80 

0.77 

0.80 

0.78 

0.67 

-0.18 

0.18 

0.53 

0.66 

0.49 

0.12 

-0.20 

-0.24 

0.06 

0.39 

0.25 

-0.05 

0.13 

0.36 

0.08 

-0.24 

1.0 

1.0 

1.1 

1.1 

1.1 

1.0 

0.64 

0.64 

0.74 

0.82 

0.79 

0.75 

0.81 

0.89 

0.83 

0.76 

0.80 

0.75 

-0.07 

-0.14 

0.04 

0.29 

0.40 

0.29 

0.03 

-0.16 

-0.06 

0.27 

0.35 

0 

-0.18 

0.18 

0.46 

0.25 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

r=0.3 

Fig. 6 Grid pattern and element numbers of the equivalent damage do­
main a* 

are obtained, we can compute the stress field on the boundary 
dfi* and outside of fi*. 

In applying our method to an engineering problem of 
damage evaluation, we need to measure the residual surface 
displacements experimentally. There are many techniques 
available for this purpose. For example, the sterescopic 

Fig.7 Residual stress at a„ at r/a * = 1.1,where r - V x 2 + (x , - 2 ) * -
The solid line is the computed result and the dashed line is the one in­
duced by the plastic strains in (29). 

Fig. 8 Residual stresses a„ and orB and r/a* = 1.5 

r / a " 

Fig. 9 Residual stresses o„ and am at 0 = T / 2 

analysis of optical micrographs (Cox and Morris (1986, 
1988)), determines the relative displacement fields by compar­
ing a pair of optical micrographs, one taken before the 
loadings are applied, and the other is taken afterwards. The 
objective of this paper, however, is to demonstrate the 
numerical inversion of the stresses if the experimental data are 
provided. Therefore, instead of measuring the surface 
displacements experimentally, we plug (29) into (16) and solve 
(16) for the surface displacements um (x'). This is a well-posed 
conventional forward analysis. The domain Q* in (16) is 
chosen as fi given in (28). The computed surface displacements 
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should be the same as the one obtained from experiments. We 
use this computed surface displacement data in our inverse 
computation. That is, we solve (17) for unknown ef; by using 
the computed surface displacement data. 

The equation (16) is equivalent to (23) and (24). Therefore, 
the equations we need in the inverse computations are (23) and 
(24). 

For any chosen positive a, the equation (23) is a well-posed 
Fredholm integral equation of the second kind, and can be 
solved by using conventional techniques. An interation pro­
cedure is utilized to make a satisfy the equation (24). 

It has been proved (Gao and Mura (1988a) that/(a), de­
fined in (27) is an increasing function and 

lim / (a )>0 , lim / (a )<0 . 
a-+o° a-0 + 

Therefore, the following algorithm is employed to solve (23) 
and (24): 

1 e is chosen from our knowledge on the accuracy of the 
displacement data. 5 is a small positive number for con­
vergence criterion. 

2 Choose positive numbers a{ and a2 such that a, < a2, 
/ ( a , ) <0and/(a 2 ) > 0. 

3 Let a = a, +a2 /2 and solve (23). If l/(a)l <6 then taken 
V(a)(x) as the solution and stop. Otherwise, go to the next step. 

4 If/(a) > 0, let a{ = a2,
 ai — a- Otherwise, let a, = a, 

a2 = a2. 
In any case, go to Step 3. 
Figure 6 shows the meshes of discretization for 0*. Table 1 

shows the actual and computed plastic strains. The actual 
plastic strains are those from (29), while the computed ones 
are obtained by solving (23). 

Figures 7-9 illustrate the residual stresses. The dashed lines 
are the actual stresses. The solid lines are the computed 
stresses. 

This example indicates that the equivalent plastic strains in 
the equivalent damage domain Q* may be substantially dif­
ferent from the actual plastic strains in Q. However, the 
stresses induced by the equivalent plastic strains are equal to 
the actual ones outside Q* (the deviations between solid and 
dashed lines in Figs. 7-9 are due to the errors of numerical 
computations). This confirms our prediction in Section 3 of 
this paper. 

6 Conclusion 

In this paper, the surface displacement data are utilized to 

evaluate the residual stress field in the vicinity of the damage 
domain caused by a series of unknown loading. It has been 
shown that the equivalent plastic strains, though different 
from the actual ones, induce the actual stresses outside of the 
equivalent damage domain. 

The plastic strains ep
kl in this paper can be interpreted as 

eigenstrains. Eigenstrain (Mura (1982)), is a generic term 
representing nonelastic strains caused by thermal expansion, 
geometric misfit, phase transformation, etc. The existence of 
cracks and inhomogeneities can be simulated by appropriate 
distributions of eigenstrains in the homogeneous materials. 
Therefore, the results of this paper can be extended to the in­
version of residual stresses caused by cracks and in­
homogeneities, etc. 

Acknowledgment 

This research was supported under U.S. Army Research Of­
fice Contract Number DAAL03-88-C-0027 through a subcon­
tract with Rockwell International Science Center. 

References 

Cox, B., Morris, W., and James, M., 1986, "High Sensitivity, High Spatial 
Resolution Strain Measurements in Alloys and Composites," Proc. Conf. on 
Nondestructive Testing and Evaluation of Advanced Materials and Composites, 
Colorado Spring, Co., pp. 25-39. 

Dulikravich, G., 1988, "Inverse Design and Active Control Concepts in 
Strong Unsteady Heat Conduction," Appl. Mech. Rev., Vol. 41, pp. 270-277. 

Furuhashi, R., and Mura, T., 1979, "On the Equivalent Inclusion Method 
and Impotent Eigenstrains," J. Elasticity, Vol. 9, pp. 263-270. 

Gao, Z., and Mura, T., 1988a, "Evaluation of Plastic Damages from Surface 
Displacement Data," submitted to Int. J. Solids Structures. 

Gao, Z., and Mura, T., 1988b, "Nondestructive Evaluation of Interfacial 
Damages in Composite Materials," Int. J. Solids Structures, in press. 

James, M. R., Morris, W., and Cox, B., 1988, "High Accuracy Ultimate 
Strain Field Mapper," submitted to Experimental Mechanics. 

Kinoshita, N., and Mura, T., 1956, "On the Boundary Value Problem of 
Elasticity," Res. Rep., Faculty of Engng., Meiji Univ. No. 8, pp. 1-7. 

Kubo, S., 1988a, "Inverse Problems Related to the Mechanics and Fracture 
of Solids and Structures," JSME International Journal, Vol. 31, pp. 157-166. 

Mura, T., 1982 and 1987, Micromechanics of Defects in Solids, Martinus 
Nijhoff Publ. 

Mura, T., Cox, B., and Gao, Z., 1986, "Computer-Aided Nondestructive 
Measurements of Plastic Strains from Surface Measurements," Proc. Int. Conf. 
on Computational Mechanics, Tokyo, Vol. 2, pp. 43-48. 

Sobieczky, H., 1988, "Research on Inverse Design and Optimization in Ger­
many," Appl. Mech. Rev., Vol. 41, pp. 239-246. 

Stanitz, H., 1988, "A Review of Certain Inverse Problem Methods for the 
Design of Ducts with 2- or 3-Dimensional Potential Flow," Appl. Mech. Rev., 
Vol. 41, pp. 217-238. 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56/513 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



I. U. M ah mood 
The University of Oklahoma, 

Norman, Ok. 73019 

M. 0. Faruque 
University of Petroleum and Minerals, 

Dahran, Saudi Arabia 

M. M.Zaman 
School of Civil Engineering and 

Environmental Science, 
The University of Oklahoma, 

Norman, Ok. 73019 

Application of an Internal Variable 
Constitutive Model to Predict 
Creep Response of an Aluminum 
Alloy Under Multiaxial Loading 
This paper discusses the application of an internal variable, creep constitutive 
model, where the concept of piecewise linearity in the effective stress-creep strain 
rate relationship is utilized. Since the concept of piecewise linearity is assumed, an 
explicit functional form for creep strain rate at all levels of stress and temperature is 
not required. The aforementioned constitutive model is used to predict the creep 
response of an aluminum alloy (2618-T61) at 200°C and subjected to multiaxial 
loading. The results are compared with available experimental results. The model 
shows excellent agreement in the trend of creep response. The quantitative values 
also agree quite good with the experimental results. 

Introduction 
Many researchers (Besseling, 1953; Garaflo, 1965; Hender­

son, 1979; Kocks, 1976; Krans, 1980; Krempl, 1974; Laften 
and Stouffer, 1978; Odqvist, 1974; Ostrom and Lagneborg, 
1976; Rabotonov, 1969; Robinson, 1978) in the past have 
presented phenomenological theories to describe transient and 
steady-state creep behavior of materials. These models 
generally assume the creep strain rate to be a specified func­
tion of the applied stress, the time elapsed after the application 
of stress and the current temperature, if the model is 
temperature-dependent, as such they can not satisfactorily 
predict the instantaneous increase in creep strain rate caused 
by stress reversal. It has been experimentally observed that 
stress changes cause transient noncoaxiality between the stress 
tensor and the creep rate tensor. Reliable prediction of creep 
response needs constitutive models with the desired internal 
variables related to physical mechanisms which govern the 
behavior of the material under stress. 

Kujawski and Mroz (1980), Leckie and Ponter (1974), 
Malinin and Khadjinsky (1972), Hart (1976), Miller (1976), 
Larsson and Storakes (1978), Chaboche (1977), and Faruque 
(1985) proposed phenomenological theories in which the creep 
strain rate is assumed to be dependent on the applied stress as 
well as on a number of hardening parameters. 

Mroz and Trampczynski (1984) proposed a constitutive 
model based on the concept of kinematic hardening and tak­
ing account of the memory of minimal prestress on the back 
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stress space. In their formulation, they assumed the existence 
of a creep potential whose gradient with respect to the stress 
tensor yields the creep rate tensor. 

A constitutive model based on the two-surface kinematic 
and isotropic hardening concept of the plasticity theory was 
proposed by Chaboche et al. (1979). This concept was later ex­
tended by Murakami and Ohno (1982) and Ohno et al. (1985). 
Certain models developed based on the visco-plasticity theory 
are proposed by Kujawski and Mroz (1980), Bodner and 
Merzer (1978), and Cernocky and Krempl (1980). Viscoelastic 
models were proposed by Cho and Findley (1980, 1981, 1982, 
1983a, 1983b, 1984), Ding and Findley (1984a, 1984b, 1985), 
and by Lai and Findley (1980, 1982). Krieg (1977), Hart 
(1976), Miller (1976), Paslay and Wells (1976), Ponter and 
Leckie (1976), and Robinson et al. (1976) have proposed 
unified creep and plasticity models. Krieg et al. (1978), 
Swearengen and Rhode (1977), Swearengen et al. (1976), and 
Lagneborg (1971, 1972) considered thermally-activated 
mechanisms such as dislocation climb and mass diffusion in 
their models. 

In most of the creep models described, it is assumed that a 
single creep strain-rate equation is applicable over all levels of 
temperature and stresses. Hence, the predicted response does 
not always agree with the experimental results. 

Faruque and Zaman (1988) recently proposed an internal 
variable creep constitutive model in which the concept of 
piecewise linearity in the effective stress-creep strain-rate rela­
tionship was utilized. Since the piecewise linearity concept is 
assumed, the creep strain rate need not be expressed by an ex­
plicit functional form. The present paper is concerned with the 
application of this model to predict the creep response of an 
aluminum alloy (2618-T61) under multiaxial loading. The 
results are compared with the available experimental results. 
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Fig. 1(a) Typical ic - R response curve showing piecewise linear ap­
proximation (<:c = equivalent uniaxial creep strain rate) 

Fig. 1(b) Actual and approximate creep moduli between two con­
secutive modes (i:C = equivalent uniaxial creep strain rate) 

Description of the Model 

The general description and the formulation of the model 
are presented in a recent paper by Faruque and Zaman (1988). 
A summary of the model is presented in this section. 

The creep strain-rate tensor ic is expressed as follows: 

ic=~XR (1) 
E 

where, £ is a secant creep modullus associated with the creep 
surface F~ 0 and X is a unit tensor defined by 

Grad F 
X~ NGradFII ' ( 2 ) 

F= 0 defines the creep surface in the effective stress space as 

3 
F= tr(r2)-R2=Q. (3) 

The effective stress tensor T is defined by 

T = S - a (4) 

where S and a are deviatoric stress tensor and back stress ten­
sors, respectively. 

An important feature of the proposed model is the piecewise 
linear approximation of the actual (equivalent uniaxial) effec­
tive stress (equivlaent uniaxial) creep strain-rate relationship 
as shown in Fig. 1(a). Referring to Fig. 1(b), secant creep 
modulus, E, for any (equivalent uniaxial) effective stress (R) 
can now be written as 

E R L £,._! 

{R-R,^) 1 R, 

R,-,) V E: (*, 

R 

where R, and J?;_t are (equivalent uniaxial) effective stresses 
and Ej and Et_ x are the secant creep modulii at nodes /' and 
/— 1, respectively. 

In equations (1) and (3) R is the radius of the creep surface 
at any instant t and is defined by 

R2=J_tr{T2). ( 5 ) 

The time rate of back stress a. may be expressed as 

da 

IT -B (as-a) (6) 

where, as is the saturated back stress tensor defined by 

as = vh(\\s\l,T) (7) 

T being the absolute temperature and v being a unit tensor 
defined by 

i> = S/I ISII . (8) 

In equations (6) and (7) the specific form of h for 
poly crystalline materials are chosen as follows: 

h = H( MSI I) U-G(T)] (9) 

where, H is an unknown function of the applied stress, and 
G(T) is temperature-dependent function having the expres­
sions: 

H=A(\\S\\)m (10) 

G ( r ) = e x p ( - Q / / J T ) . (11) 

In equations (10) and (11), A and m are material constants, Q 
is the activation energy, R is the universal gas constant, and T 
is the absolute temperature. 

Evaluation of Model Parameters 

For uniaxial creep, the constitutive equations for as and a 
can be written as: 

as=A lal'"[l-exp(-Q//?7 ,)]sgn(ff) (12) 

a = B(as-a) (13) 

where A, m, Q, R, and B are unknown material constants. 
For a set of uniaxial creep tests at the same temperature 

as=A lo-|"'sgn(o) (14) 

where A = A [ 1 - exp( — Q/R T) ] is a modified parameter which 
combines A, Q, and R. To predict creep response at a 
temperature other than the test temperature, the parameters, 
A, Q, and R needs to be determined explicitly. 

The parameters A and m can be determined directly if the 
back stresses at saturation, cts, are known for a number of 
uniaxial creep test. By using the data reported by Krieg et al. 
(1978) and least-square fit of equation (14), the material con­
stants were determined to be A =0.6 and m= 1.0. Note that 
because experimental values for the as was not available for 
2618-T61 aluminum, the data (15) for < 111 > aluminum was 
used here. The secant modulii values, E, obtained from T— ic 

curve for aluminum 2618-T61 and reported by Faruque and 
Zaman (1988) are used to predict the creep strain rate. 

Discussion of Results 

The model discussed in the preceding section is used to back 
predict the creep strain of aluminum alloy 2618-T61. The 
model-predicted creep strain rates are integrated to obtain the 
creep strain at any instant of time. The time-independent 
elastic strains are added to the creep strain to obtain the total 
axial or shear strain. Two sets of results are reported: 

(1) multiaxial creep under proportional loading and 
(2) multiaxial creep under side steps of tension and torsion 

and stress reversal. 

The results are compared with the experimental results 
reported by Ding and Findley (1984) and Findley and Lai 
(1981). Loading histories or sequences are shown in each 
figure. Figure 2 shows the temporal variation of axial strain 
under tensile loading. In the experiment, the direction of 
loading remained constant and the magnitudes were changed 
abruptly. The tensile load was applied instantaneously and 
maintained for 48 hours. The load was withdrawn abruptly 
and a period of recovery followed. The load was then taken 
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Fig. 2 Tensile strain under tensile loading 
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Fig. 5 Shearing creep strain-rate variation with time under torsional 
loading 
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Fig. 3 Axial creep strain-rate variation under tensile loading 
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Fig. 4 Shearing strain under torsion loading 

abruptly to original level. The next steps comprised of 
gradually lowering the tensile load until all loads were re­
moved. In the next steps the load was gradually increased to 
the original level. The results compare favorably with the ex­
perimental result. The trend is in excellent agreement. Quan­
titatively, the predicted values deviate in the successive loading 
steps. The maximum difference between the predicted and 
observed response was approximately 13 percent. The devia­
tion may be due to the effect of isotropic hardening which was 
not included in the model. 

Figure 3 presents the variation of creep strain-rate with time 
for the loading case shown in Fig. 2. It is observed that any 
change in the state of stress causes a jump discontinuity in the 
creep strain-rate. This is similar to experimental observations. 

Figure 4 shows shear strain variation with time under pure 
torsional loading. Here, also, the experimental results and the 
predicted values show consistent trend. Figure 5 shows the 
creep strain-rate under the same torsional loading. In both 
Figs. 2 and 4, the removal of load was followed by a period of 
creep recovery. The reloading steps always resulted in tran-
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Fig. 6 Tensile strain under proportional combined tensile and torsion 
stress 
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Fig. 7 Shearing strain under proportional combined tensile and torsion 
stress 
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Fig. 8 Creep strain-rate variation with time under proportional com­
bined tensile and torsional stress 

516/ Vol. 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



119.5 
172.4 

122.0 I 1 122.0 

. ,MPa 
~l 69.0 99 ..1 

Fig. 9 Tensile strain tor combined tension and torsion creep under 
side steps of loading, unloading, and recovery 
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Fig. 10 Shearing strain for combined tension and torsion creep under 
side steps of loading, unloading, and recovery 

sient creep strain. Partial unloading resulted in creep recovery 
if the unloading was substantial, otherwise it resulted in tran­
sient creep as may be seen in the fourth load step in Fig. 2. The 
experimental results also showed similar trends. 

Figures 6 and 7 show the axial strain versus time and shear 
strain versus time relationships, respectively, for the combined 
proportional tension and torsional loading. In both cases the 
predicted and experimental results agree very well both 
qualitatively and quantitatively. Figure 8 shows the variation 
of axial and shear creep strain with time under the same 
loading. 

Figures 9 through 12 show creep behavior of aluminum 
alloy 2618-T61 under side steps of tension, torsion, and stress 
reversal. Figure 9 shows the total strain versus time response. 
In Step 2, when the axial stress a was increased keeping the 
torsional stress, T constant, there was a small increase in creep 
rate; however, increase in T at constant o resulted in a large in­
crease of creep rate. Reducing T at constant a decreases the 
creep rate significantly. In the next step, the decrease of a at 
the constant r did not significantly reduce the creep rate. This 
behavior is similar to experimental observations. Creep 
recovery occurred when a was completely removed. 

Figure 10 shows the result of the same test with plots of 
shear strain versus time. The creep rate in shear increased 
significantly when r was increased at a constant a. Partial 
unloading of T did not result in creep recovery. Full unloading 
of T resulted in creep recovery of shear strain component. 
Another observation in both the figures is that the complete 
unloading of one component keeping the other component 
constant did not affect the behavior of creep associated with 
the constant component. This is exactly the trend observed in 
experimental results as well. 

Figures 11 and 12 show the strain (axial or shear) versus 
time relationship for combined tension and torsion under side 
steps, partial and complete reversal of torsion. It is observed 
that initial torsion with no tension induced only shear creep 
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Fig. 11 Tensile strain for combined tension and torsion creep under 
side steps, partial and complete reversal of torsion 
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Fig. 12 Shearing strain for combined tension and torsion creep under 
side steps, partial, and complete reversal of torsion 

strain. Reversal of torsion did not affect the recovery of axial 
component after the tensile loading is fully removed. In Fig. 
12 it is observed that partial unloading did not result in creep 
recovery. Full unloading resulted in creep recovery with creep 
rate decreasing with time. Unloading of the tensile component 
did not affect the creep recovery process in shear. Reverse tor­
sion induced a larger creep rate decreasing with time. Step up 
of shear load increased the creep rate. The trends are in all 
cases similar to experimental results. 

Conclusions 

An internal variable creep-constitutive model is used to 
predict the response of aluminum alloy 2618-T61. Piecewise 
linearity of effective stress-creep strain-rate is assumed and the 
results are compared with experimental results. The model 
shows excellent agreement with experimental trends and 
results. The quantitative results show good agreement and 
may be improved by considering another internal variable, D 
(Drag stress) which represents isotropic hardening and by in­
corporating creep strain-rate explicitly into the evolution law 
for the back stress and drag stress. 

References 

Besseling, J. F., 1953, "A Theory of Elastic Plastic and Creep Deformation 
of an Initially Isotropic Material Showing Anisotropic Strain Hardening, Creep, 
Recovery, and Secondary Creep," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 25, pp. 529-536. 

Bodner, S. R., and Merzer, A., 1978, "Viscoplastic Constitutive Equations 
for Copper With Strain History and Temperatures Effects," ASME Journal of 
Engineering Materials and Technology, Vol. 100, pp. 338-394. 

Cernocky, E. P. , andKrempl, E., 1980, " A Theory of Thermoviscoplasticity 
Based on Infinitesimal Total Strain," Int. J. Solids and Structures, Vol. 16, pp. 
723-741. 

Chaboche, J. L., 1977, "Viscoelastic Constitutive Equations for the Descrip­
tion of Cyclic and Anisotropic Behavior of Metals," Bull. Acad. Polon. Sci., 
SerSci. Tech., Vol. 25, p. 33. 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56/517 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Chaboche, J. L., Dang Van, K., and Cordier, G., 1979, "Modelization of the 
Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel," Trans. 
5th Int. Conf. Struc. Mech. Reactpr Tech.,1. A. Jaeger, and B. A. Boley, eds., 
North-Holland, Amsterdam. 

Cho, U. W., and Findley, W. N . , 1980, "Creep and Creep Recovery of 304 
Stainless Steel Under Combined Stress With a Representation by a Viscous-
Viscoelastic Model," ASME JOURNAL OF APPLIED MECHANICS, Vol. 47, pp. 
755-761. 

Cho., U. W., and Findley, W. N., 1981, "Creep and Creep Recovery of 304 
Stainless Steel at Low Stresses With Effects of Aging on Creep and Plastic 
Strains," ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 785-790. 

Cho., U. W., and Findley, W. N., 1982, "Creep and Plastic Strains of 304 
Stainless Steel at 593°C Under Step Stress Changes, Considering Aging," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 49, pp. 297-304. 

Cho., U. W., and Findley, W. N., 1983a, "Creep and Plastic Strains Under 
Side Steps of Tension and Torsion for 304 Stainless Steel at 593°C," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 50, pp. 580-586. 

Cho., U. W., and Findley, W. N., 1983b, "Creep and Plastic Strains Under 
Stress Reversal in Torsion With and Without Simultaneous Tension for 304 
Stainless Steel at 593°C," ASME JOURNAL OF APPLIED MECHANICS, Vol. 50, pp. 
587-592. 

Cho, U. W., and Findley, W. N., 1984, "Creep and Creep Recovery of 
2618-T61 Aluminum Under Variable Temperature," ASME JOURNAL OF A P ­
PLIED MECHANICS, Vol. 51, pp. 816-820. 

Ding, J. L., and Findley, W. N., 1984a, "48 Hour Multiaxial Creep and 
Creep Recovery of 2618 Aluminum Alloy at 200°C," ASME JOURNAL OF AP­
PLIED MECHANICS, Vol. 51, pp. 125-132. 

Ding, J. L., and Findley, W. N., 1984b, "Multiaxial Creep of 2618 
Aluminum Under Proportional Loading Steps," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 51, pp. 133-140. 

Ding, J. L., and Findley, W. N., 1985, "Nonproportional Loading Steps in 
Multiaxial Creep of 2618 Aluminum," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 52, pp. 621-628. 

Faruque, M. O., 1985, "On the Description of Cyclic Creep and Rate Depen­
dent Plastic Deformation," Acta Mechanica, Vol. 55, pp. 123-136. 

Faruque, M. O., and Zaman, M. M., 1988, "On Modelling Steady State and 
Transient Creep of Polycrystalline Solids," Acta Mechanica, Vol. 71, pp. 
115-136. 

Findley, W. N., Cho, U. W., and Ding, J. L., 1979, "Creep of Metals and 
Plastics Under Combined Stresses, A Review," J. Engng. Mat. Tech., Vol. 101, 
pp. 365-368. 

Findley, W. N., and Lai, J. S., 1978, "Creep and Recovery of 2618 
Aluminum Alloy Under Combined Stress With a Representation by a Viscous-
Viscoelastic Model," ASME JOURNAL OF APPLIED MECHANICS, Vol. 45, pp. 
507-514. 

Findley, W. N., and Lai, J. S., 1981, "Creep of 2618 Aluminum Under Side­
steps of Tension, Torsion and Stress Reversal Predicted by a Viscous-
Viscoelastic Model," ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 
47-54. 

Garaflo, F., 1965, Fundamentals of Creep and Creep-Rupture in Metals, 
Macmillan, New York. 

Gilman, J. J., 1966, "Progress in the Microdynamical Theory of Plasticity," 
Proc. of the Fifth U. S. Congress of Applied Mech., ASME, New York, pp. 
385-403. 

Gittus, J. H., 1978, "Dislocation Creep Under Cyclic Stressing: Physical 
Model and Theoretical Equations," Acta Met., Vol. 26, pp. 305-317. 

Hart, E. W., 1976, "Constitutive Relations for the Nonelastic Deformation 
of Metals," ASME Journal of Engineering Materials and Technology, Vol. 98, 
pp. 193-202. 

Henderson, J., 1979, "An Investigation of Multi-Axial Creep Characteristics 
of Metals," ASME Journal of Engineering Materials and Technology, Vol. 101, 
pp. 356-364. 

Kocks, U. F., 1976, "Laws for Work-Hardening and Low-Temperature 
Creep," Trans. ASME Journal of Engineering Materials and Technology, Vol. 
98, pp. 76-85. 

Krans, H., 1980, Creep Analysis, John Wiley and Sons, Inc., New York. 
Krempl, E., 1974, "Cyclic Creep—An Interpretive Literature Survey," WRC 

Bull, No. 195, Welding Research Council, p. 63. 
Krieg, R. D., 1977, "Numerical Integration of Some New Unified Plasticity-

Creep Formulations," Proc. 4th International Conference on Structural 
Mechanics in Reactor Technology, Comm. of the European Communities, 
Luxembourg. 

Krieg, R. D., Swearengen, J. C , and Rhode, R. W., 1978, "A Physically-
Based Internal Variable Model for Rate-Dependent Plasticity," Inelastic 
Behavior of Pressure Vessel and Piping Components, T. Y. Chang, E. Kremple, 
eds., pp. 15-28. 

Kujawski, D., and Mroz, Z., 1980, "A Viscoplastic Material Model and its 
Application to Cyclic Loading," Acta Mechanica, Vol. 36, pp. 213-230. 

Laften, J. H., and Stouffer, D. C , 1978, "An Analysis of High Temperature 
Metal Creep: Part II-A—Constitutive Formulation and Verification," ASME 
Journal of Engineering Materials and Technology, Vol. 100, pp. 363-380. 

Lagneborg, R., 1971, "A Theoretical Approach to Creep Deformation Dur­
ing Intermittent Load," ASME J. Basic Enging., Vol. 93, p. 205. 

Lagneborg, R., 1972, "A Modified Recovery-Creep Model and its Evalua­
tion," Met. Sci. J., Vol. 6, pp. 127-133. 

Lagneborg, R., 1981, "Creep: Mechanisms and Theories," Creep and 
Fatigue in High Temperatures Alloys, J. Bressers, ed., Applied Science 
Publishers. 

Lai, J. S., and Findley, W. N., 1980, "Creep of 2618 Aluminum Under Step 
Stress Changes Predicted by a Viscous-Viscoelastic Model," ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 47, pp. 21-26. 

Lai, J. S., and Findley, W. N., 1982, "Simultaneous Stress Relaxation in Ten­
sion, and in Creep Torsion of 2618 Aluminum at Elevated Temperature," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 49, pp. 19-25. 

Larsson, B., Storakes, B., 1978, "A State Variable Interpretation of Some 
Rate-Dependent Inelastic Properties of Steel," ASME Journal of Engineering 
Materials and Technology, Vol. 100, pp. 395-401. 

Leckie, F. A., Ponter, A. R. S., 1974, "On the State Variable Description of 
Creeping Materials," Ing. Archiv., Vol. 43, pp. 158-167. 

Malinin, N. N., and Khadjinsky, G. M., 1972, "Theory of Creep With 
Anisotropic Hardening," Int. J. Mech. Sci., Vol. 14, pp. 235-246. 

Miller, A., 1976, "An Inelastic Constitutive Model for Monotonic, Cyclic 
and Creep Deformation," ASME Journal of Engineering Materials and 
Technology, Vol. 98, pp. 97-113. 

Mroz, Z,, 1981, "On Generalized Kinematic Hardening Rule With Memory 
of Maximal Prestress," ASME JOURNAL OF APPLIED MECHANICS, Vol. 5, pp. 
241-260. 

Mroz, Z., and Trampczynski, W. A., 1984, "On the Creep-Hardening Rule 
for Metals with a Memory of Maximal Prestress," Int. J. Solids and Structures, 
Vol. 20, pp. 467-486. 

Murakami, S., and Ohno, N., 1982, "A Constitutive Equation of Creep 
Based on the Concept of a Creep-Hardening Surface," Int. J. Solids and Struc­
tures, Vol. 18, pp. 597-609. 

Odqvist, F. K. G., 1974, Mathematical Theory of Creep and Creep Rupture, 
Oxford University Press. 

Ohashi, Y., Ohno, N., and Kawai, M., 1982, "Evaluation of Creep Con­
stitutive Equations for Type 304 Stainless Steel Under Repeated Multiaxial 
Loading," ASME Journal of Engineering Materials and Technology, Vol. 104, 
pp. 159-164. 

Ohnami, M., Motoie, K., and Yoshida, N., 1969, "Study on the Influence of 
Strain History on Creep of Polycrystalline Metallic Materials at Elevated 
Temperature," Zairyo, Vol. 18, p. 226. 

Ohno, N., Murakami, S., and Ueno, T., 1985, "A Constitutive Model of 
Creep Describing Creep Recovery and Material Softening Caused by Stress 
Reversals," ASME Journal of Engineering Materials and Technology, Vol. 107, 
pp. 1-6. 

Ostrom, P., and Lagneborg, R., 1976, "A Recovery-Thermal Glide Creep 
Model," ASME Journal of Engineering Materials and Technology, Vol. 98, pp. 
114-124. 

Paslay, P. R., and Wells, C. H., 1976, "Uniaxial Creep Behavior of Metals 
Under Cyclic Temperature and Stress or Strain Variation," ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 98, pp. 445-449. 

Ponter, A. R. S., and Leckie, F. A., 1976, "Constitutive Relationships for the 
Time-Dependent Deformation of Metals," ASME Journal of Engineering 
Materials and Technology, Vol. 98, pp. 47-51. 

Rabotonov, Y. N., 1969, Creep Problems of Structural Members, North-
Holland, Amsterdam. 

Robinson, D. N., Pugh, C. E., and Corum, J. M., 1976, "Constitutive Equa­
tions for Describing High-Temperature Inelastic Behavior of Structural 
Alloys," IAEA Int. Working Croup on Fast Reactors Specialists—Meeting on 
High Temperature Structural Design Technology, IAEA. 

Robinson, D. N., 1978, "A Unified Creep-Plasticity Model for Structural 
Metals at High Temperature," ORNL/TM-5969., Oak Ridge National 
Laboratory, Oak Ridge, Tenn. 

Swearengen, P. C , Rhode, R. W., and Hicks, D. L., 1976, "Mechanical 
State Relations for Inelastic Deformation on Iron: The Choice of Variables," 
Acta Met., Vol. 24, pp. 969-975. 

Swearengen, J. C , and Rhode, R. W., 1977, "Application of Mechanical 
State Relations at Low and High Homologous Temperatures," Met. Trans., 
Vol. 8A, pp. 577-582. 

518/Vol. 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



N. Aravas 
Department of Mechanical Engineering 

and Applied Mechanics, 
University of Pennsylvania, 
Philadelphia, Penn. 19104 

Assoc. Mem. ASME 

R. M. McMeeking 
Department of Materials and 

Department of Mechanical Engineering, 
University of California, 

Santa Barbara, Calif. 93106 
Mem. ASME 

An Asymptotic Analysis of Three-
Dimensional Extrusion 
A new method of analysis of three-dimensional metal extrusion using asymptotic 
perturbation methods is presented in this paper. The plasticity model used depends 
on the first and second invariants of the stress tensor and covers a wide range of con­
stitutive models commonly used for the analysis of metal-forming operations. It is 
shown that the three-dimensional extrusion problem can be approximated, to 
leading order, by a problem of generalized plane-strain. The results of the asymp­
totic analysis together with the finite element method are used to obtain approx­
imate solutions for extrusions of elliptic or square cross-sections from round billets. 

1 Introduction 

Several solutions for extrusions of complicated shapes from 
cylindrical billets have been presented in the literature. These 
solutions involve three-dimensional finite element calculations 
(Boer and Webster, 1985) or are upper-bound solutions based 
on kinematically-admissible velocity fields (Juneja and 
Prakash, 1975; Nagpal and Altan, 1975; Basily and Sansome, 
1976; Nagpal, 1977; Yang et al., 1978, 1979, 1984, 1986; Boer 
et al., 1979; Prakash and Khan, 1979; Hoshino and 
Gunasekera, 1980; Gunasekera and Hoshino, 1982, 1985; Cho 
and Yang, 1983; Kiuchi et al. 1983, 1984; Kiuchi, 1984; Han et 
al., 1986). 

A new method of analysis of three-dimensional extrusions 
using asymptotic perturbation method is presented in this 
paper. We consider the extrusion of metal rods through 
lubricated dies to form a final shape with a different cross-
section from the initial shape. A restriction placed on the 
analysis is that the cross-section of the die varies slowly down 
the extrusion axis. In practical situations the slope of the die is 
small when either the area reduction is small or the length of 
the die is large compared to the radius of the original cross-
section. The asymptotic expansions are based on a small 
parameter e which can be defined as the ratio of the total 
reduction of a characteristic dimension of the original cross-
section to the length of the reduction region. 

Similar asymptotic techniques have been used by Onat 
(1954) and recently by Johnson (1987) and Smet and Johnson 
(1988) for the analysis of two-dimensional problems. Onat 
(1954) considers a rigid perfectly-plastic material that obeys 
Tresca's yield condition with the associated flow rule and us­
ing a linearized version of the governing equations constructs 
axially-symmetric stress and velocity fields. Johnson (1987) 
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and Smet and Johnson (1988) consider a rigid plastic material 
that obeys the von Mises yield criterion with the associated 
flow rule and analyze axisymmetric extrusion and plane-strain 
rolling. In these treatments, the partial differential equations 
of two-dimensional problems are reduced to ordinary dif­
ferential equations by a regular perturbation scheme. Johnson 
(1987) and Smet and Johnson (1988) identify different regimes 
in the asymptotic analysis, controlled by the slope of the die 
and the coefficient of friction between the die and the 
workpiece, and show that, in some of those regimes, the 
leading order approximation involves "slab flow," as as­
sumed by von Karman (1925) in the analysis of plane-strain 
rolling. 

In this paper, we are concerned with the analysis of fric-
tionless three-dimensional extrusion problems. The plasticity 
model used depends on the first and second invariants of the 
stress tensor and covers a wide range of constitutive models 
commonly used for the analysis of metal-forming operations. 
The flow rule is described in terms of a plastic potential which 
is, in general, different from the yield function. Using a 
regular perturbation method, we show that the three-
dimensional problem can be approximated, to leading order, 
by a problem of generalized plane-strain. The leading order 
approximation involves slab flow, but in contrast to the com­
mon assumption of uniform stressing and deformation on 
each cross-section used by the so-called "slab methods," the 
leading order stress and deformation fields are, in general, 
functions of position on each cross-section. Using the results 
of the asymptotic analysis together with two-dimensional 
finite element analysis we obtain approximate solutions for ex­
trusions of elliptic or square cross-sections from round billets. 

Standard notation is used throughout. Boldface symbols 
denote tensors, the order of which is indicated by the context, 
and the summation convention is used for repeated Latin 
indices. 

2 Description of the Method 

2.1 Formulation of the Problem. We consider the extru­
sion of metal rods through lubricated dies to form a shape 
with a different cross-section. To simplify the discussion we 
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Fig. 1 (a) One quadrant of the doubly-symmetric cross-section show­
ing the unit vectors nand t; (b) projection BB showing the longitudinal 
profile of the die, the unit'vectors n, M, n\ and k, and the small angle 0 

consider shapes which retain the same two orthogonal sym­
metry axes during extrusion, al though the method is ap­
plicable to more general situations. Let z be the direction of 
extrusion and x and y be the axes of symmetry. The dies taper 
at a maximum angle which is of order e (e being a small 
positive number) but the taper may be nonuniform. A typical 
quarter cross-section is shown in Fig. 1 along with a projection 
of section BB illustrating the angle 4>, which is defined by 

. 3F \( 3 F \ 2 / dF\il-l/2
 n i N 

^ - - a r Lhr) + b r ) J =°(e)> a) 
where F(x, y, z) = 0 is the equation of the die surface. 

The equations for quasi-static equilibrium in the absence of 
body forces are 

dx 

daXy 

dx 

d°xz 

- + -

- + -

- + -

daxy 

dy 

d(7yy 

dy 

ddyz 

- + -

- + 

-+-

d°xz 

dz 

dOyz 

dz 

dozz 

£-=o, 

= 0, 

dx dy dz 
= 0, 

(2) 

(3) 

(4) 

where a is the stress tensor. 
The material is assumed to be rigid plastic with a yield sur­

face of the form 

*(-̂ 4,"„)= 
V a0 al

0 / 

0 with 

and 
3 * 

"d~77 

a* 

-2=0, 

->0 

(5) 

where $ is_ a dimensionless function of dimensionless 
arguments, Ix = akk, J2 = 5y Sy/2, s is the stress deviator, CT0 

is the yield stress, and Ha (a = 1,2, . . . , n) is a set of dimen­
sionless scalar state variables. 

The flow rule is given by 

dg j 11 J2 
D = XN, N = -

3ff V (T0 <4 / 
(6) 

where D is the deformation rate defined as the symmetric part 
of the spatial velocity gradient, X is a non-negative scalar flow 
parameter, and g is a dimensionless plastic potential. 

The constitutive model is completed by describing the evolu­
tion of state variables with continuing plastic straining: 

dl-f 
— ^ = hjt>,a,He), (7) 

at 
where t is time. For a rate-independent material, ha must be a 
homogeneous function of degree one in D, so that 

dH, 

dt 
^ = X / i a ( N , * ^ ) . (8) 

The boundary conditions are that the normal velocity and 
the shear traction are zero on the die-metal interface, i.e., 

M.v = 0, (9) 

and 
M.CT.t = M-aTn = 0, (10) 

where M is the unit vector normal to the die surface, t is the 
unit vector tangent to the die profile on the x—y plane, and m 
is the unit vector tangent to the die surface as shown in Fig. 1. 

When the geometry of the die is slowly varying in one direc­
tion, a simplification of the problem can be brought about by 
stretching one coordinate direction with respect to others (Van 
Dyke, 1975). For slowly tapering dies (e = small), the coor­
dinate stretching is carried out by making x and y dimen­
sionless by normalization of position in that plane by A.R0, the 
total reduction of a characteristic dimension of the original 
cross-section, i.e., 

y 
x = -

ARn 
and y = - (11) 

x0 AR0 

Distance down the extrusion axis is made dimensionless by L, 
the length of the reduction region, so that 

z 
z = — 

L ARn 

(12) 

where e is defined to be AR0/L. The following non-
dimensional parameters are also introduced 

v a un ~ ~ L ~ 
v = — , a = — , t = ~ t , D = — D , 

« 0 <r0 L u0 

N = ff0N, X = —X, 
6o"o 

(13) 

where u0 is the entrance velocity. 
In terms of the non-dimensional variables, the equilibrium 

equations become 

dx 

dor 

- + -
d"x. 

dy 

dff„ 

dx dy 

- + e-

- + e 

dffx 

dz 

da 

•=o , 

dz 

and 
3(T, 

- + -
dov 

- + e-
da7, 

dx dy 

The flow rule is written as 

dz 
= 0. 

(14) 

(15) 

(16) 

D = XN, N = -
dg_ 

da 

dg T , dg 
1 + s, 

dli dJ2 
g = g(h,J2,Ha), 

where I is the second-order identity tensor, or 

- = e\Nrr, 
dx 

dv 

3w 

"dz 
- = W V „ , 

du dv 
—- + -—- = 2e\NXy, 
dy dx 

dw du 
— + e — = 2eX7Vxz, 

dw dv 
— + £ — = 2 e ^ , 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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where v = (u, v, w) are the dimensionless velocities in the (x, 
y, z) directions. The evolution equations of the state variables 
become 

dH, 

~di 
— = ha (D.ff.i/p) where 

(24) 

(25) 

(26) 

(27) 

^H(D,a,//3) = /!a(D,a0,<r,//(,), 

and the yield condition is written as 

*( / 1 , J 2 , / / a ) = 0. 

Taking into account that 4> = O(e), we can write 

M = cos^n + sin$k = n + tan</>k + 0(e2), 

and 

m = cos^k - sin^n = k - tan^n + 0(e2), 

where n is the unit vector normal to the die profile on the x—y 
plane as shown in Fig. 1, and k is the unit vector along the z-
axis. Using equations (26) and (27) we can write the boundary 
conditions (9) and (10) as 

i>„+ewtan4> + O(e2) = 0, (28) 

anl + eazltm4> + O(e2) = 0, (29) 

and 

(Tz„ + 6(<jK-(r„„)tan</) + O(e2) = 0, (30) 

where tan <f> = tan 4>/e = 0{\) is the corresponding slope on 
the normalized (x, y, z) space. 

2.2 Perturbation Expansion. We now seek a perturba­
tion expansion in e for the solution to the problem, such that 

v = v<°> + ev(1> + . . 

ff=ff«»W> + . . 

H „ = M » + e//<» + . 

and 

\ = A<°>+eA<» + . . 

Using equations (31)-(34) we write 

/ 1 = / f + e7y>+ . . 
/2 = 4°> + e41>+ . . 
D = D<°> + eD<1>+ . 

$ = $(°> + e$d) + 

ha=hf> + eh^ + . 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

where 

/ j * )= f f f ) ,40)= . -sfsf,J<P=sfS«\ 

D (.*>=— (-11 2 V 
dv}k) dvjk) 

dXj dx, 

3* 

(41) 

* m H . ( * ) o , * o , = ( _ ) / . ) + ( _ ) o J i . , 

(42) 

T ( D . 

(43) 

(44) 

In equations (41)-(44) the scalar product of two second-order 
tensors is defined by A:B = AjjBJh and the notation (func-
tion)0 indicates the value of the function at (ff(0), Ha

{0), 
D<°>). 

Substituting the expansions into the governing equations 
and the boundary conditions, and collecting terms having like 
powers of e, we obtain the following hierarchy of problems. 

For the leading order problem we have 

3<> 
dx 

daf) 
dx 

M? 
dx 

dx 

* 
|„(0) 

do® 
dy 

daf) 
dy 

daf} 
dy 

- = o , 

= 0, 

= 0, 

= 0, 

= 0, 

dy 

dw° 

~dz 

a«(°) dvi0) 

-+ dy dx 

=x ( Q ) M?> 

= 0, 

dx 

rfHgP 
dt 

- = 0, 

= 0, 

and 

At O (e) the problem is given by 

do® Ml * daf) 
= 0, 

dx dy dz 

dam dom dCT(0) 

dx dy dz 

dai1) do® daf) 

dx dy dz 

du^ 

- = 0, 

dx 

dvW 

~~dT 

dz 
= A<0>M» + A<1>M0> 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) *<°>=0, 

with boundary conditions on the die-metal interface 

4 0 ) = 0 , (56) 

og> = 0, (57) 

and 

og? = 0. (58) 

dy dx 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56 / 521 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dx 

dy 

+ dz = 

au<°> 
+ dz : 

^ 

= 2X<°>M°>, 

= 2X<°>M°> 

dt 
— = /!<" 

and 
$ ( i ) = 0 , 

with boundary conditions on the die-metal interface 

„<i) = _ w(0) t an <t>, 

T O ) . jg* tan 0, 

and 

o<j)=-(<$-a<3>)tan*. 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

2.3 Solution of the Problem. We start with the leading 
order problem. Equations (48), (49), (52), and (53) imply that 

uVHx,y,z) = uM(0,y,z) = 0, (73) 

u<°> (x,y,z) = u<°> (*,0,z) = 0, (74) 

and 

wc°> = w<°>(z). (75) 

Equation (75) shows that the leading order approximation in­
volves slab flow as assumed by von Karman (1925) in the 
analysis of plane-strain rolling. The slab translates down the 
extrusion axis, experiences a reduction in area, a change in 
shape, and thickens uniformly. It should be noted, however, 
that in contrast to the common assumption of uniform stress­
ing and deformation on each cross-section used by the so-
called slab methods, the leading order stress and deformation 
fields are, in general, functions of x and y on each cross-
section. 

Using the aforementioned results and some equations aris­
ing at 0(e), we find that the leading order problem becomes 

dx 

flog? 
dx 

do® 

dy 

daf} 
dy 

B<® 

= 0, 

dx dy 

du^ 

-Q, 

dx 

ML 
dy 

= A<°>M°>, 

: \< 0 ) M 0 > 

dz 
=x(°»M°) 

dy dx 
= 2X<°W°\ 

dx 

dy 

dHf_ 
dt 

= 2X<°WX°>, 

= 2X<°>M°>, 

= ^0)> 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

*<°> = 0, (86) 

with boundary conditions on the die-metal interface 

VW = _ w(°>tan4>, (87) 

ff<°; = 0, (88) 

and 

*g? = 0. (89) 

The problem now separates into an antiplane problem at each 
position z: 

o<® 
dx dy 

= o, 

aw*1' 
dx 

= 2X<°>M(2=2X<(» 
\djJo "' 

aw<" 
~dy~ 

with 

T<°>: 

= 2X<°>M0> = 2 A < ° > ( ' — ) & 
' \ a J-, / o • 

0 on the perimeter, 

and a generalized plane-strain problem at each position z-

dx 

dx 

an") 
dx 

a«w 
dy 

dy ' 

do® 
o, 

dy 

= X<0>JV<°> 

ax 

I rfw<0> 

X<°) dz 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

with 

yU) = - w(0>tan</> and ag? = 0 on the perimeter. (100) 

The two problems are coupled by the common functions X<0) 

and H^, and the requirements that 

earn 
dt 

- = hf, and$<°' = 0. (101) 

and 

Using the principle of the virtual velocities for the antiplane 
problem, we find that 

L u > x < 0 , © o ^ 2 + ^ 2 ^ = 0 ' <io2> 
where A (z) is the cross-sectional area of the die on the nor­
malized x-y plane. In general, (dg/dJ2)0 ^ 0 , and since the 
whole cross-section is flowing, we infer that X(0) ^ 0, so 

4°>=<>=o 
and the generalized plane-strain problem remains. Equations 
(91) and (92) now imply that 

w(i) = w(D(z). (104) 

The previous analysis shows that the determination of the 
leading order stresses of the three-dimensional problem 
reduces now to a two-dimensional calculation. In the follow­
ing we discuss the solution of the remaining generalized plane-
strain problem for the cases of incompressible (dg/dly = 0) 
and compressible materials (dg/dlx ^0 ) . 

5 2 2 / V o l . 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///djJo


2.4 Incompressible Materials. For the case of an incom­
pressible material, w<0,(z) can be easily calculated by means of 
mass conservation. The original cross-section is distorted in a 
manner free of shear on the perimeter through the series of 
shapes along z involved in the extrusion die while the cross-
section thickens uniformly in such a way that A(z)h(z) = 
constant, where h is the thickness which is chosen arbitrarily at 
the outset. 

At each position, z, the solution of the generalized plane-
strain problem determines, to within a hydrostatic stress 
j9(0,(z), the leading order stress components' o<®, af}, o@> and 
4°>, as well as w<» and i/». Let Eg), E<,°>, Eg>, and E $ be a 
solution to the generalized plane-strain problem. Then, the ac­
tual leading order solution is 

<r<°> = E<°>+jp«»fe), 

<> = £(°>+^°>(z), 

a£> = Eg>+/7«»(z), 

and 

T<°>: 

(105) 

(106) 

(107) 

(108) 

The function pm(z) can be determined as described in the 
following. Using the 0(e) equilibrium equation (61), we find 
that 

JAW dz 
-dA-

JA(z) \ dx dv / 

Using Gauss' theorem and taking into account the boundary 
condition (72), we can write equation (109) as 

( -^S-dA = ( (Eg» - E<<») tanfcfo 
1AU) dz Jru) zz (110) 

where T(z) is the perimeter of the cross-section of the die and 
ds indicates infinitesimal arc length on T{z). Finally, 
substituting equation (107) into equation (110) we find that 

dpW 

dz 
-=/(«), (111) 

where 

^ )=^r[L (^-E»an^-L nm 
U) dz 

-dA 

(112) 

is known from the solution of the generalized plane-strain 
problem. Integration of equation (111) yields 

Pm(z)=\lf(z)dz + c, (113) 

where c is a constant. Since the net force at the exit of the die 
in extrusion is equal to zero, we have (z = 1 at the exit in nor­
malized coordinates) 

( a<°>cM=0 (114) 
J ,4(1) ZZ 

which implies that 

c=~ikLL*dA-\loAz)dz- (ll5) 

Finally, substituting the value of c into (113) we find 

^=-^L^dA-\lAz)dz' (U6) 

and this completes the solution. 

2.5 Compressible Materials. For the case of a compressi­
ble material, w(0)(z) cannot be determined from mass conser­
vation considerations alone, and its calculation becomes part 
of the solution of the generalized plane-strain problem. As 
discussed in the previous section, the original cross-section is 
distorted in a manner free of shear on the perimeter through a 
series of shapes along z involved in the extrusion die while the 
cross-section thickens uniformly. At each position z, an addi­
tional boundary condition is needed for completeness, and 
this is the specification of the axial force 

pW(z)= [ <®dA, (117) 

which is determined as described in the following. 
Using the definition of P<0)(z) and taking into account that 

do?) 
dA = ( (ag) - 4»>)tan0<ft, (118) 

Jr(^) 

we can easily show that 

dpi0) 

dz 
- = ?(«), (119) 

where 

r r a(0) 8J 
q(z)=\ (ag)-ff(,°„))tan0cfe+ -2-——dA. (120) 

Jr(z) JA( ' 
i {s) J dz 

In equation (120) / i s the Jacobian of the transformation that 
carries a material point from position (X, Y) at z = 0 to (x, y) 
at each z-

Integration of equation (119) yields 

JP
(0)(z) = JP{,0)+ \]q(z)dz, (121) 

where Pf1 is the leading-order extrusion force. 
With P^(z) defined by equation (121) the sequence of 

generalized plane-strain problems is solved, and the solution is 
determined in terms of the as yet unknown Pf*. Finally, the 
extrusion force Pj,0) is determined by enforcing the condition 
of zero axial force at the die exit, i.e., 

J-4(1) 
of?dA = 0, (122) 

and this completes the solution. 
The results of the asymptotic analysis can be used together 

with two-dimensional finite element calculations to obtain the 
leading order solution of three-dimensional extrusion 
problems. The proposed new approach for the analysis of 
three-dimensional extrusions is particularly attractive because 
the lengthy three-dimensional calculations are now avoided 
and the accuracy of the obtained approximate solution can be 
easily estimated. 

Several applications of the proposed method are presented 
in the following. 

3 Applications 

In the examples presented in this section we consider a rigid 
perfectly-plastic incompressible material which yields ac­
cording to the von Mises criterion and obeys the Levy-Mises 
equations, i.e., 

* = * = 3 / 2 - l . 

3.1 Axisymmetrlc Extrusion. A simple special case of 
the three-dimensional problem discussed in the previous sec­
tion is the extrusion of circular rods through slowly converg­
ing axisymmetric curved dies. This problem has been solved by 
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slab methods, but here we show that such solutions are correct 
to leading order. As mentioned in Section 2, the slope of the 
die is small when either the area reduction is small or the 
length of the reduction region is large compared to the radius 
of the original cross-section. In such cases an appropriate 
definition of the parameter e is e = AR/L, where AR is the total 
radius reduction. 

As discussed in Section 2, the leading order stresses can be 
determined from the solution of a generalized plane-strain 
problem over the cross-section of the billet at each position z 
with boundary conditions 

u(i> = - w<o)tan0 and <$> =0 on r = R 

where (r,d) are normalized polar coordinates, R{z) is the nor­
malized radius of the die, 

tan$ = -
dR(z) 

dz ' 

and 

„,("> = R2(0) 

R\z) " 

The solution of the generalized plane-strain problem is dis­
cussed in the following. 

Because of axial symmetry, there is no ^-dependence and the 
only nonzero velocity and stress components are yj.", w(0), and 
L$, Ej$, Eg'. Using the incompressibility condition 

we find that 

dr 

./.') = 

y<» dw<® 

r dz 

R2(0) dR(z) 

R\z) dz~' 

The flow rule, together with the yield condition, imply that the 
solution of the generalized strain problem to within a constant 
pressure is given by 

E j m = E g ) = — L a n d E g » = — 1 . 

The function/(z) defined by equation (112) is now found to 
be 

f(z) = 
dR(z) 

R(z) dz 

and the additional pressure p (0 ) (z) is given by 

p<®(z)=—-—21n 
R(z) 

3 — R(l) 

Finally, the leading order stresses are 

R(z) 
og> = fffi?=-l-21n-

*(1) 
and 

<r<°>=-21n-

It is interesting to note that leading order stresses are constant 
over each cross-section and coincide with the results of the so-
called slab method. The analysis shows that such results are 
first-order accurate and that calculations based on slab 
methods are suitable for slowly varying axisymmetric dies with 
zero friction between the die and the workpiece. 

3.2 Round-to-Ellipse Extrusion. An approximate solu­
tion for extrusion of elliptic shapes from round billets through 
gradually tapering dies is presented in this section. The 
parameter e can now be defined as e = (R0 ~~ b)/L, where R0 is 
the radius of the original cross-section, and b is the length of 
the minor semiaxis of the final elliptic cross-section. 

Fig. 2 Deformed finite element mesh superposed on the undeformed 
mesh (dashed lines) 

The shape of the die on the normalized (x, y, z) space is 
given by 

F(x,y,z) = bid2 4 y - i = o, 
-fl(z)J Lb(z). 

a(z)=R0-zAa, 

b(z)=R0-zAb, 

where R0 - Aa and R0 - Ab are the lengths of the semiaxes of 
the elliptic cross-section at the end of the die. 

The leading order stresses for this problem are obtained by 
solving a sequence of generalized plane-strain problems over 
the cross-section of the die with boundary conditions 

tM: • w<o)tan0 and o$ = 0, (123) 

where 

/ x2 y \ / x2 y2 \ 

and 

v < ° ) = -
R2 

a{z)b(z) 

The solution of the generalized plane-strain problem is ob­
tained by using the finite element method.The ABAQUS 
(Hibbit, 1984) general purpose finite element program is used 
for the computations. Because of symmetry we need to 
analyze only one quarter of the cross-section. Eight-node 
generalized plane-strain isoparametric elements with 2 x 2 
Gauss integration are used. An elastic-perfectly-plastic model 
is used in the calculations; the effects of elasticity are not im­
portant in this case and the obtained solution is a very close 
approximation to the solution of the rigid-perfectly-plastic 
problem. The analysis is done incrementally using an updated-
Lagrangian formulation and Newton's method is used to solve 
the overall discretized equilibrium equations. 

The results presented in this section are for Aa/R0 = 0.1 
and Ab/R0 = 0.4. Figure 2 shows the deformed finite element 
mesh at the end of the calculation superposed on the 
undeformed one. The analysis was completed in 80 equal in­
crements. ABAQUS provides a general interface so that the 
user may introduce his own "multi-point-constraints" in a 
"user subroutine." The displacements of nodes A and B in 
Fig. 2 are prescribed and the user subroutine is used to con­
strain the degrees-of-freedom of the boundary nodes in such a 
way that they always remain on the ellipse defined by the posi­
tion of points A and B. One constraint equation per boundary 
node is used and this is equivalent to imposing the boundary 
conditions (123) in a discretized manner. The finite element 
solution provides the stress field £(0); the function/(z) and the 
additional hydrostatic stress pm(z) are obtained numerically 
using equations (112) and (116). Finally, the complete leading 
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Fig. 3 Contours of the equivalent plastic strain ip at the end of the 
calculations 

Fig. 4 Contours of the normalized hydrostatic stress component Jj$l3 
at the end of the calculation 

Fig. 5 Contours of the normalized axial stress component of] at the 
end of the calculation 

order stress field <r(0) is obtained by adding p<0'(z) to the finite 
element solution 2(0). 

Figure 3 shows contours of the equivalent plastic strain (P at 
the end of the calculations; the equivalent plastic strain is 
defined as 

Ho'c-f^r*' 
where Dp is the plastic part of the deformation rate. Figure 4 
shows contours of the hydrostatic stress component o$/3 at 
the exit of the die. It is clear from Fig. 4 that the hydrostatic 
stress component is compressive everywhere on the end cross-
section; an examination of the complete solution reveals that it 
always remains so in the process of deformation. Contours of 
the axial stress component of} at the exit of the die are shown 
in Fig. 5; of} is compressive over most of the cross-section and 
it changes to tensile near the end of the longer semiaxis so that 
the net axial force over the cross-section at the exit of the die 
vanishes. The extrusion pressure is found to be 1.20 times the 
yield stress. 

3.3 Round-to-Square Extrusion. An approximate solu­
tion for extrusion of square shapes from round billets through 
slowly varying dies is presented in this section. The cylindrical 
billet deforms to the final square section rod through the die 
defined by an envelop of a number of straight lines. The 

Fig. 6 Deformed finite element mesh superposed on the underformed 
mesh (dashed lines) 

parameter e can be defined as e = (R0 - a)/L, where R0 is the 
radius of the original cross-section, and 2d is the length of the 
sides of the final square cross-section. 

The shape of the die on the normalized (x, y, z) space is 
given in this case by 

F(x,y,z)=y- . ( l _ ^ _ a ? = 0> 

where r = (x2 +y2)U2, R0 is the normalized radius of the 
original cross-section, and 2a is the length of the sides of the 
final square cross-section on the normalized x—y plane. 

The leading order stresses for this problem are obtained by 
solving a sequence of generalized plane-strain problems over 
the cross-section of the die with boundary conditions 

t;<?) = - w<°>tan</> and ag? = 0, 

where 

„„^(4L_„)[[(1_2)JW]' 

and 

«(0): 
A(z) 

The solution of the generalized plane-strain problem is ob­
tained in a way similar to that described in Section 3.2 by using 
the finite element method. Because of symmetry we need to 
analyze only one-eighth of the cross-section. The results 
presented in this section are for a/R0 = 0.6. 

Figure 6 shows the deformed finite element mesh at the end 
of the calculations superposed on the undeformed one. The 
analysis was completed in 80 equal increments. Contours of 
the equivalent plastic strain P are shown in Fig. 7. A strain 
concentration near the corners of the final square cross-
section is evident. Figure 8 shows contours of the hydrostatic 
stress component o$j/3 at the exit of the die. The extrusion 
pressure is found to be 0.82 times the yield stress. 

Near the corners of the square, tensile tractions are induced 
across the metal-die interface, and this is the reason for the ap­
pearance of tensile hydrostatic stresses in that region (see Fig. 
8). This indicates that separation would occur and that the 
traction would vanish. In our calculations the boundary nodes 
were forced to stay on the die surface, but since tensile trac-
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Fig. 7 Contours of the equivalent plastic strain ip at the end of the 
calculations 

tions appear only in a very small region near the corner, this is 
not expected to affect the rest of the solution significantly. 
The effects of such separation and any subsequent contact will 
be addressed in a future publication. 

4 Closure 

A new method of analysis of three-dimensional extrusion 
has been presented in this paper. Using asymptotic techniques 
we have shown that the determination of the leading order 
stresses of the three-dimensional problem reduces to a two-
dimensional calculation. The constitutive model considered 
covers a wide range of plasticity models and the proposed 
method of analysis can be used to study the development of in­
ternal damage in the billet as it moves through the die. The 
asymptotic solution shows that the leading order approxima­
tion involves slab flow, and this is consequence of the plastic 
potential being a function only of the first and second in­
variants of the stress tensor and the frictionless conditions at 
the die-metal interface. 

It should be noted that the proposed asymptotic method can 
be used for the analysis of three-dimensional metal-forming 
operations other than extrusion and that anisotropic plasticity 
models as well as friction at the die surface can be allowed for, 
but at the expense of a more complicated two-dimensional 
leading order problem requiring a different method of solu­
tion (Johnson, 1988). Frictional effects are certainly impor­
tant and will be addressed in a future publication. However, in 
many cold-forming operations lubrication is used and the ef­
fective coefficient of friction is small (say, of order e) and, 
therefore, a nonzero friction on the metal-die interface affects 
the problems of order e or higher but leaves the leading order 
problem unchanged. 

Acknowledgments 

NA acknowledges the support of the National Science 
Foundation through a Presidential Young Investigator Award 
(NSF Grant No. MSM-8657860) and the support of ALCOA 
Foundation through a Science Support Grant. RMM 
acknowledges the support of the Defense Advanced Research 
Projects Agency through University Research Initiative Con­
tract No. N00014-86-K-0753 at UCSB. The authors are also 
grateful to Hibbitt, Karlsson and Sorensen, Inc. for provision 
of the ABAQUS general purpose finite element program. 

References 

Basily, B. B., and Sansome, D. H., 1976, "Some Theoretical Considerations 
for the Direct Drawing of Section Rod From Round Bar," Int. J. Mech. Sci., 
Vol. 18, pp. 201-208. 

Boer, C. R., Schneider, W. R., Eliasson, B., and Avitzur, B., 1979, "An 
Upper-Bound Approach for the Direct Drawing of Square Section Rod from 

Fig. 8 Contours of the normalized hydrostatic stress component <4Jj)/3 
at the end of the calculation 

Round Bar," 20th In. Mech. Tool Des Res. Conf., London, England, pp. 
149-156. 

Boer, C. R., and Webster, Jr., W. D., 1985, "Direct Upper-Bound Solution 
and Finite Element Approach to Round-to-Square Drawing," ASME Journal 
of Engineering for Industry, Vol. 107, pp. 254-260. 

Cho, N. S., and Yang, D. Y., 1983, "Analysis of Hydrofilm Extrusion of 
Elliptic Shapes Using Perturbation Method," Int. J. Mech. Sci., Vol. 25, pp. 
293-292. 

Gunasekera, J. S., and Hoshino, S., 1982, "Analysis of Extrusion of Draw­
ing of Polygonal Sections Through Straightly Converging Dies," ASME Jour­
nal of Engineering for Industry, Vol. 104, pp. 38-45. 

Gunasekera, J. S., and Hoshino, 1985, "Analysis of Extrusion of Polygonal 
Sections Through Streamlined Dies," ASME Journal of Engineering for In­
dustry, Vol. 107, pp. 229-233. 

Han, C. H., Yang, D. Y., and Kiuchi, M., 1986, "A New Formulation for 
Three-Dimensional Extrusion and Its Application to Extrusion of Clover Sec­
tions," Int. J. Mech. Sci., Vol. 28, pp. 201-218. 

Hibbitt, H. D., 1984, "ABAQUS/EPGEN-A General Purpose Finite Ele­
ment Coded With Emphasis on Nonlinear Applications,'' Nucl. Eng. Des., Vol. 
77, pp. 271-297. 

Hoshino, S., and Gunasekera, J. S., 1980, "An Upper-Bound Solution for 
the Extrusion of Square Section From Round Bar Through Converging Dies," 
Proc. 21st Mach. Tool Des. Res., pp. 97-105. 

Johnson, R. E., 1987, "Conical Extrusion of a Work-Hardening Material: 
An Asymptotic Analysis," / . Engng. Math., Vol. 21, pp. 295-329. 

Juneja, B. L., and Prakash, R., 1975, "An Analysis for Drawing and Extru­
sion of Polygonal Sections," Int. J. Mach. Tool Des. Res., Vol. 15, pp. 1-30. 

von, Karman, T., 1925, "Beitrag zur Theorie des Walzvorganges," Z. angew. 
Math. Mech., Vol. 5, pp. 139-141. , 

Kiuchi, M., 1984, "Overall Analysis of Nonaxisymmetric Extrusion and 
Drawing," Proc. 12th N. Am. Met. Res. Conf, Houghton, Mifflin, Mich. pp. 
111-119. 

Kiuchi, M., and Ishikawa, M., 1983, "Upper-Bound Analysis of Extrusion 
and/or Drawing of L-, T-, and H-Sections - Study on Nonsymmetric Extrusion 
and Drawing I I ," Plast. Forming JSTP, Vol. 24, pp. 721-729. 

Kiuchi, M., Kishi, H., and Ishikawa, 1983, "Upper-Bound Analysis of Extru­
sion and/or Drawing of Square, Rectangular, Hexagonal, and Other Axisym-
metric Bars and Wires-Study on Nonsymmetric Extrusion and Drawing I ," 
Plast. Forming JSTP, Vol. 24, pp. 290-296. 

Nagpal, V., 1977, "On the Solution of Three-Dimensional Metal-Forming 
Processes," ASME Journal of Engineering for Industry, Vol. 99, pp. 624-629. 

Nagpal, V., and Altan, T., 1975, "Analysis of the Three-Dimensional Metal 
Flow in Extrusion of Shapes With the Use of Dual Stream Functions," Proc. 
ThirdN. Am. Met. Res. Conf., Pittsburgh, Penn., pp. 26-40. 

Onat, E. T., 1954, "On the Construction of Linearized Axially-Symmetric 
Plastic Stress and Velocity Fields," Brown University Report DA 2598/14, 
August 1954. 

Prakash, R., and Khan, O. H., 1979, "An Analysis of Plastic Flow Through 
Polygonal Converging Dies With Generalized Boundaries of Zone of Plastic 
Deformation," Int. J. Mach. Tool Des., Vol. 19, pp. 1-19. 

Smet, R. P., and Johnson, R. E., 1989, "An Asymptotic Analysis of Cold 
Sheet Rolling," ASME JOURNAL OF APPLIED MECHANICS, Vol. 56, pp. 33-39. 

Van Dyke, M., 1975, Perturbation Methods in Fluid Mechanics, The 
Parabolic Press, Stanford. 

Yang, D. Y„ Han, C. H., and Kim, M. U., 1986, "A Generalized Method for 
Analysis of Three-Dimensional Extrusion of Arbitrarily-Shaped Sections," Int. 
J. Mech. Sci., Vol. 28, pp. 517-534. 

Yang, D. Y„ Kim, M. U., and Lee, C. H., 1979, "A New Approach for 
Generalized Three-Dimensional Extrusion of Sections From Round Billets by 
Conformal Transformation," IUTAM Symposium Metal Forming Plasticity, 
Tutzig, W. Germany, pp. 204-221. 

Yang, D. Y., and Lange, K., 1984, "Analysis of Hydrofilm Extrusion of 
Three-Dimensional Shapes from Round Billets," Int. J. Mech. Sci., Vol. 26, pp. 
1-19. 

Yang, D. Y., and Lee, C. H., 1978, "Analysis of Three-Dimensional Extru­
sion of Section Through Curved Dies by Conformal Transformation," Int. J. 
Mech. Sci., Vol. 20, pp. 541-552. 

526/Vol. 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



R. C. Batra 
Mem. ASME 

De-Shin Liu 

Department of Mechanical and Aerospace 
Engineering and Engineering Mechanics, 

University of Missouri-Rolla, 
Rolla, Mo. 65401-0249 

Adiabatic Shear Banding in Plane 
Strain Problems 
Plane strain thermomechanical deformations of a viscoplastic body are studied with 
the objective of analyzing the localization of deformation into narrow bands of in­
tense straining. Two different loadings, namely, the top and bottom surfaces sub­
jected to a prescribed tangential velocity, and these two surfaces subjected to a 
preassigned normal velocity, are considered. In each case a material defect, flaw, or 
inhomogeneity is modeled by introducing a temperature bump at the center of the 
specimen. The solution of the initial boundary value problem by the Galerkin-
Adams method reveals that the deformation eventually localizes into a narrow band 
aligned along the direction of the maximum shearing strain. For both 
problems, bands of intense shearing appear to diffuse out from the center of the 
specimen. 

1 Introduction 
Adiabatic shear banding is the name given to a localization 

phenomenon that occurs during high-rate plastic deformation 
such as machining, explosive forming, shock-impact loading, 
ballistic penetration, fragmentation, ore crushing, impact 
tooling failure, and metal shaping and forming processes. The 
localization of the deformation has been observed in steels, 
nonferrous metals, and polymers. Practical interest in the 
phenomenon derives from the fact that progressive shearing 
on an intense shear band provides an undesirable mode of 
material resistance to imposed deformations, and the bands 
are often precursors to shear fractures. Of the many processes 
just stated in which adiabatic shear bands have been found to 
occur, flat sheet rolling and certain forging operations can be 
modeled as plane strain operations. 

Since the time Zener and Hollomon (1944) recognized the 
destabilizing effect of thermal softening in reducing the slope 
of the stress-strain curve in nearly adiabatic deformations, 
there have been numerous studies aimed at delineating 
material parameters that enhance or retard the initiation and 
growth of adiabatic shear bands. Most of the effort has been 
concentrated in analyzing the simple shearing problem. Clif­
ton (1980) and Bai (1981) studied the growth of infinitesimal 
periodic perturbations superimposed on a body deformed by a 
finite amount in simple shear. Burns (1985) used a dual 
asymptotic expansion to account for the time dependence of 
the homogeneous solution in the analysis of the growth of 
superimposed periodic perturbations. Merzer (1982) used the 
constitutive relation proposed by Bodner and Partom (1975) 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for presentation at the Winter Annual Meeting, San 
Francisco, Calif., December 10-15, 1989. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OP APPLIED MECHANICS. Manuscript received by the ASME 
Applied Mechanics Division, July 29, 1988; Final revision, November 18, 1988. 

Paper No. 89-WA/APM-16. 

to study the problem of twisting of a thin tubular specimen 
having a notch in its periphery. He concluded that the band 
width depends upon the thermal conductivity. Wu and Freund 
(1984) used a different material model and studied wave pro­
pagation in an infinite medium. They concluded that the ther­
mal conductivity has essentially no effect on the width of a' 
shear band. Other works analyzing the initiation and growth 
of adiabatic shear bands include those due to Clifton et al. 
(1984), Wright and Batra (1985), Wright and Walter (1987), 
Batra (1987), and Batra and Kim, (1989). Rogers (1979, 1983) 
and Timothy (1987) have reviewed various aspects of adiabatic 
shear banding, especially from a materials point of view. 

Experimental studies dealing with adiabatic shear banding 
include those of Zener and Hollomon (1944), Moss (1981), 
Costin et al. (1979), Lindholm and Johnson (1983), and Mar-
chand and Duffy (1988). Marchand and Duffy have given a 
detailed history of the temperature and strain fields within a 
band. 

Needleman (1989) has recently studied the initiation and 
growth of shear bands in plane strain deformations of 
viscoplastic materials. He studied a purely mechanical 
problem and approximated the effect of thermal softening by 
assuming that the stress-strain curve has a peak in it. He 
modeled a material inhomogeneity by assuming that the flow 
stress for a small amount of material near the center of the 
block was less than that of the surrounding material. We study 
herein the thermomechanical plane strain deformations of a 
thermally softening viscoplastic solid and model the material 
inhomogeneity by introducing a temperature bump at the 
center of the block. The block boundaries are assumed to be 
perfectly insulated. Two different deformation states, namely, 
that of a simple shearing of the block, and the block deformed 
in simple compression are analyzed. In each case a shear band 
develops along the direction of maximum shearing strain. 
Whereas the deformation localizes at an average compressive 
strain of 0.059 when the block is deformed in compression, the 
average shear strain equals 0.227 when the block is de­
formed in simple shear. 
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2 Formulation of the Problem 

We use a fixed set of rectangular Cartesian coordinate axes 
to describe the thermomechanical deformations of the body. 
In terms of the referential description the governing equations 
are 

(PJ)'=0, (1) 

Poi>i = Tiu,a> (2) 

Poe=-Qa,a + Tiavita, (3) 

and a suitable set of initial and boundary conditions. Equation 
(1) expresses the balance of mass, (2) the balance of linear 
momentum, and (3) the balance of internal energy. In these 
equations, p is the current mass density, p0 the mass density in 
the reference configuration, J is the determinant of the defor­
mation gradient, vt the velocity of a material particle in the x: 

direction, Qa the heat flux, e the specific internal energy, Tia 

the first Piola-Kirchoff stress tensor, a superimposed dot 
stands for the material time derivative, and a comma followed 
by an index a (J) implies partial differentiation with respect to 
Xa (Xj). Also x denotes the present position of a material parti­
cle that occupied the place X in the reference configuration, 
and a repeated index implies summation over the range of the 
index. For plane strain deformations, x3 = X3 and the indices i 
and a take on values 1 and 2. 

For the constitutive relations we take 

<r= -p(P)1 + 2MD, T^mflx^jay, 

2,x-
V37 

(\-v6)(\ + bI)m, 2D„ 

(4) 

(5) 

f= trD2 , D = D — 
2 

p(p) = B(^—l) 

-(trD)l, 

Qa — " ^ w i 

e = cd + pp(j>)/(pp0). 

(6) 

(7) 

(8) 

(9) 

Here, CT0 is the yield stress in simple tension or compression, v 
is the coefficient of thermal softening, parameters b and m 
represent the strain rate sensitivity of the material, B may be 
thought of as the bulk modulus, k is the thermal conductivity, 
and c the specific heat. Equation (7) is a part of the Tillotson 
(1962) equation wherein the dependence of the pressure upon 
the changes in temperature has not been considered, and equa­
tion (8) is the Fourier law of heat conduction. 

Defining s as 

s = a+\p-

= 2^D, 

equations (4) and (5) give 

(4<*)"-3 

2„ 
3 t r D ) 1 > 

{1 - v8)(l + bl)" 

(10) 

(11) 

(12) 

which can be viewed as a generalized von Mises yield surface 
when the flow stress (given by the right-hand side of (12)) at a 
material particle depends upon its strain rate and temperature. 
The linear dependence of the flow stress upon the temperature 
change has been observed by Bell (1968), Lindholm and 
Johnson (1983), and Lin and Wagoner (1986). A constitutive 
relation similar to equation (4) has been used by Zienkiewicz et 

al. (1981) in analyzing the extrusion problem, by Batra (1988) 
in studying the steady-state penetration of a viscoplastic target 
by a rigid cylindrical penetrator, and by Batra and Lin (1989) 
in studying the steady-state axisymmetric deformations of a 
cylindrical viscoplastic rod upset at the bottom of a 
hemispherical rigid cavity. Equation (4) may be interpreted as 
a constitutive relation for a non-Newtonian fluid whose 
viscosity /* depends upon the strain rate and temperature. 

We introduce nondimensional variables as follows: 

\ = \/H, 0 = 0/0O) b = b-

a = a/a0, p=p/o0,s = s/o0,v = \/v0, t=tv0/H, T = T/ff0, 

'—, v=vB, p = p/p0, X = X/H, 
jti 

5 = p0y0
2/ff0, P = k/(p0cv0H), d0 = a0/(p0c),B = B/a0. (13) 

Here, 2H is the height of the block, v0 is the imposed velocity 
on the top and bottom surfaces, and p0 is the mass density in 
the unstressed reference configuration. Substituting from 
equations (4) through (9) into the balance laws (1) through (3), 
rewriting these in terms of nondimensional variables, denoting 
the partial differentiation with respect to Xj{Xa) by a comma 
followed by an index i(a), material differentiation with respect 
to / by a superimposed dot, and dropping the superimposed 
bars, we arrive at the following set of equations: 

p + pvu=0, 

5t)/ = 7fa,«> 

(14) 

(15) 

0 = i36,aa + [l/(V3/p)](l - K0)(1 + bWDyD,,, (16) 

o=-B{p- 1 ) 1 +73T ( 1 + W)" ( l -x0)D. (17) 

It is simpler to state boundary conditions for the specific 
problem studied. We analyze plane strain thermomechanical 
deformations of an initially-square block of dimension 
2Hx2H. The Xx -X2 plane, with the origin of the coordinate 
system located at the center of the block, is taken as the plane, 
of deformation. For the simple shearing problem the boun­
dary conditions are taken to be 

±f(t), v2 = 0, QaNa = 0 at X2 = ±H, (18) 

n,T,J1a = Q,elTbNa = h{t), g„Af„ = 0 a t X , = ±H, (19) 

where n is a unit outward normal and e is a unit vector tangent 
to the surface in the present configuration and N is a unit out­
ward normal in the reference configuration. Equations (18) 
and (19) imply that the boundaries of the block are perfectly 
insulated, the top and bottom faces are placed in a hard 
loading device and are subjected to a known velocity field. On 
the other two faces of the block, zero normal tractions are 
assigned and the tangential tractions are such as to equilibrate 
the ones acting on the top and bottom faces. For a known 
function / , the values of h depend upon the constitutive rela­
tion for the material of the block, and hence, are not known a 
priori. As discussed in Section 3, we solve the resulting system 
of equations iteratively and find h as a part of the solution of 
the problem. 

For the simple compression problem, we restrict ourselves 
to the deformations that remain symmetric about both Xx = 0 
and X2 = 0. The boundary conditions for the quadrant ana­
lyzed numerically are 

Vi - 0 , T21 =0 , Qi(Ku\=Q, at*! =X{ =0, (20) 

y2 = 0, r , 2 = 0 , g 2 = 0 , a t x 2 = * 2 = 0 , (21) 

TiaNa = 0, QaNa = 0, at Xx =H, (22) 

v2 = U(t), e,TiaNa = 0, QaNa = 0, atX2 = H. (23) 
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That is boundary conditions resulting from the assumed sym­
metry of deformations are applied to the left and bottom 
faces, the right face of the block is taken to be traction free, 
and a prescribed normal velocity field and zero tangential trac­
tions are applied on the top face. All four sides of the block 
are assumed to be perfectly insulated. 

In each of the two problems, a material inhomogeneity or 
flaw is modeled by adding a temperature bump at the center of 
the block to the temperature field that corresponds to a 
homogeneous deformation of the block. 

3 Finite Element Formulation of the Problem 

In order to avoid having to deal with a severely distorted 
finite element mesh within the region of localization of the 
deformation, we employ an updated Lagrangian formulation. 
Thus to find the deformed shape of the body at time t + Ar, we 
take the configuration at time t as the reference configuration, 
and denote the region occupied by the body at time / by Q. At 
subsequent times the current locations of the nodes are com­
puted and 0 equals the union of the 9-noded quadrilateral 
elements obtained by joining these nodes. No attempt was 
made to ensure that when the deformation localizes, the ele­
ment sides will be aligned along the direction of the maximum 
shearing strain (cf., Needleman, 1989). However, for the sim­
ple shearing problem, the element sides are so aligned at the 
initiation of the localization of the deformation. 

We first rewrite equations (14)-(16) so that terms involving 
the partial derivative with respect to time t only are on the left-
hand side and then use the Galerkin method and the lumped 
mass matrix (e.g., see Hughes (1987)) to derive the following 
semi-discrete formulation of the problem. 

d = F(d,5,j3, b, m,v). (24) 

Here, d is the vector of nodal values of the mass density, two 
components of the velocity, and the temperature. Thus the 
total number of unknowns or the number of components of d 
equals four times the number of nodes. The vector-valued 
function F on the right-hand side of equation (24) is a 
nonlinear function of d and of the material parameters 5, ji, b, 
m, and v. For a given set of initial values of p, v and 8, one can 
deduce the initial conditions on d. The nonlinear coupled set 
of ordinary differential equations (24) are solved by using the 
backward-difference Adams method included in the IMSL 
subroutine LSODE. During the solution of these equations, 
the tangential traction on the current position of the faces 
X, = ±H as determined from the immediately preceding solu­
tion, is applied. The subroutine LSODE has the option to use 
the modified Gear method appropriate for stiff equations. 
This could not be used because of the limited core storage 
available on the local FPS164 processor attached to IBM 4381 
computer. For the Adams method, the subroutine LSODE ad­
justs the size of the time increment adaptively until it can com­
pute a solution of the nonlinear equations (24) to the prescrib­
ed accuracy. 

4 Computation and Discussion of Results 

We took the following values of various material and 
geometric parameters to compute numerical results. 

5=10,000 sec, v = 0.0222°C-',(70 = 333MPa, m = 0.025, 

Ar = 49.22Wm-1°C-1, c = 473Jkg-1°C-1,p0 = 7,800 kgm-3, 

5=128GPa,#=5mm, u0 = 25 msec ~'. (25) 

For these choices, 0o = 89.6°C, the nondimensional melting 
temperature equals 0.5027, and the overall applied strain rate 
is 5000 sec - ' . We assigned a rather large value to the thermal 

(a) 

Fig. 1 (a) The shape of the block in the reference configuration and 
after it has been deformed uniformly in simple shear, (b) Stress-strain 
curve in simpler shear, and (c) Stress-strain curve in simple 
compression 

softening coefficient v to reduce the CPU time required to 
solve the problem. 

Figure 1 depicts the block in the undef ormed reference -con­
figuration and its shape after it has been deformed uniformly 
in simple shear. Also plotted are the stress strain curves for the 
material defined by parameters (25) when the block is de­
formed in simple shear and simple compression. It is obvious 
that the softening caused by the heating of the material ex­
ceeds the hardening due to strain rate effects right from the 
beginning. This is due to the rather high value of the thermal 
softening coefficient assumed for the material of the block. 
Once the deformation begins to localize, equations (24) 
become stiff and the maximum size of the time step one can 
use and still integrate these equations to the desired degree of 
accuracy becomes extremely small. Ideally, one should then 
use the Gear method. But, as stated previously, we could not 
do so because of the limited core storage available. The results 
presented and discussed next are up to the moment when the 
deformation has localized into a narrow band. Results com­
puted earlier for the one-dimensional problem (Batra (1987), 
Batra and Kim (1989), and Wright and Walter (1987)) suggest 
that the presently computed results represent essentially all of 
the salient features of the localization of the deformation. We 
first discuss results for the simple shearing problem, and then 
the compression problem. 

(a) Results for the Simple Shearing Problem. The square 
region in the configuration at time t = 0 is divided into 16x16 
uniform 9-noded square elements. The velocity field 

vi=x2,v2=0 (26) 

that corresponds to steady shearing of the block, and the 
temperature field 

0 = 0 (27) 

are taken as the initial conditions at time t = 0, and for the 
boundary conditions we take 

/ ( 0 = 1-0,/>0. 

Thus, the effect of initial transients is assumed to have died 
out. This reduces the computational effort required without 
altering noticeably the computed results. Subsequent calcula­
tions with zero-initial conditions for vlt v2, and 8 have given 
essentially similar results. 
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At time t = 0, a temperature bump given by 

A0 = 0.2(1 -r2)9exp(- 5r2), r2 = X2 +X$ (28) 

was introduced and the resulting initial boundary value 
problem solved. The temperature bump (28) simulates a 
material inhomogeneity or defect; the height of the bump 
represents, in some sense, the strength of the singularity. 
Without the temperature bump or some other mechanism to 
make the deformation nonhomogeneous, the block will 
undergo unlimited simple shearing deformations and no 
localization of the deformation will occur. We note that other 
ways to model an initial imperfection in the body include hav­
ing a notch (Clifton et al., 1984) and a small region with a 

0.0 0.5 

(c) 

0. 

0.25 

0 .00 -

-0 .25 

- 1 . 0 

X 
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-0 

1 0 - 1 . 0 

I^USiS^sSi 

5 0.0 0.5 
COORDINATE 

- 0 . 5 

( 
1.0 

0.0 

M 

e) 

Fig. 2 Isotherms plotted in the reference configuration at different 
values of the average strain for simple shearing deformations of the 
block; (a) 7 a v g =0 , 0max = 0.2, — 0.15, • • • • 0.10, 0.15, 0.05, 

W "ravg=°-13> 9 max= 0 - 3 4 ^ — °-15> • ' • • °-2 0 ' °-25-
0.30, (c) T a v g = 0.208, 9m a x = 0.441, - 0.25, 

0.35, 0.40, 0.45,(d)yavg =0.215,0L 

for values of 0 corresponding to different curves), and (e) ya v g = 0.227, 
"max = 0.463 (see part (c) tor values of 0 corresponding to different 
curves) 

• -0.30, —. — . — . 

max =0.449 (see part (c) 

slightly lower value of the yield stress (Needleman, 1989). For 
strain hardening materials the introduction of a temperature 
bump, a notch or a softer region does not, in general, lead to 
the localization of the deformation. The average strain at 
which a shear band forms depends upon, among other factors, 
the amplitude and shape of the temperature bump. 

Figure 2 shows isotherms in the reference configuration of 
the block at four different values of the average strain 7avg. In­
itially, these isotherms look elliptical because of the different 
choice of scales along the horizontal and vertical axes. The 
temperature bump is symmetrical in xx and x2. A reason for 
selecting different scales along the two axes is that the 
isotherms eventually flaten out and spread to the vertical 
boundaries of the block. Thus, larger scale is chosen along the 
vertical axis to decipher these isotherms. The initial 
temperature equals 0.20 only at the origin. At an average 
strain of 13 percent, the isotherms have changed shape; those 
for a lower temperature look like a rhombus and the ones for 
the higher temperature resemble closed polygons. Because of 
the plastic working and zero heat flux boundary conditions the 
temperature rises everywhere. The heat is continuously being 
conducted outwards from the central hotter region. Near the 
corners of the block deformation is nonhomogeneous (e.g., 
see Fig. 5) and the temperature rise there is more than that at 
other points except possibly near the center of the block. The 
nonhomogeneity of the deformation near the corners is a 
numerical artifact rather than due to the physics of the 
problem. The use of a very fine mesh should reduce the effect 
considerably, but a mesh finer than the one employed here 
could not be used because of the limited core storage 
available. Once the deformation begins to localize, the 
temperature rise within the band is significantly more than 
what it is elsewhere. The temperature contours at average 
strains of 20.8 percent, 21.5 percent, and 22.7 percent bear 
this out. At an average strain of 22.7 percent the maximum 
temperature at the center equals 92 percent of the presumed 
melting temperature of the material. The isotherms are quite 
narrow in the vertical direction and progressively become nar­
rower as the deformation localizes. 

Figure 3 depicts the vx -velocity field in the reference con­
figuration of the block at average strains of 0 percent, 18.5 
percent, 20.8 percent, and 22.7 percent. Because of the initial 
temperature bump, the deformation becomes nonhomo-

Fig. 3 Velocity field in the direction of shearing at several values of the 
average strain; (a) 7avg=0. (B) 7a v g =0.185, (c) -yavg= 0.208, and (d) 
7avg= 0 - 2 2 7 

530/Vol. 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



geneous. This nonuniformity becomes perceptible at an 
average strain of 18.5 percent and is quite noticeable when the 
average strain equals 20.8 percent and 22.7 percent. The 
nonhomogeneity in the deformation at the corners is not 
noticeable in these plots probably because of the scale chosen 
to plot the data. The v{-velocity field appears to stay anti­
symmetric in x2 even through the localization of the deforma­
tion. At an average strain of 20.8 percent the shearing strain 
rate at the center is noticeably higher than what it is within the 
region \x21 a 0.1. During the ensuing deformations of the 
block, the region near the center undergoes intense straining 
and that outside of the domain \x21 < 0.1 deforms at a strain 
rate much smaller than the imposed strain rate of 5000 sec~'. 
With a finer mesh one could sharpen a bit more the boun­
daries of the two domains. 

-0.99 -0.50 0.00 0.50 0.99 

(c) 

0.24 

-0.99 -0.50 0.00 

w 

-0.50 0.00 0.50 

Fig. 4 Contours of the second invariant I of the deviatoric strain rate 
ensor at different values of the average strain; (a) va v g =0.185, 

max 
max 
max 
max 
max 

= 3.47; 
= 4.45 
= 5.51 
= 6.23: 
= 8.45: 

- 1.5, 
- 1.5, 
- 2.5, 

— 2.5, • 
- 2.5, • 

2.0, 3.5, (b) 7 a v g =0.198, 
. . 2.5, 3.5, (c) 7 a v g = 0.208, 
• 3.75, — . — . — . 5.0, (d) -v^g =0.215, 
3.75, —. — . — . 5.0, and (e) ya„„ =0.227, 

5.0, 7.5 

(a) 

In Fig. 4 we have plotted the contours of the second in­
variant I of the deviatoric strain rate tensor D at different 
stages of the localization process. At an average strain of 18.5 
percent the peak value of/equals 3.47 and it equals 4.45 when 
the average strain is 19.8 percent. We note that these are plot­
ted in the reference configuration. It is clear that during the 
deformation of the block from 18.5 percent average strain to 
19.8 percent average strain, the contour of 7=2.5 has spread 
out horizontally and become narrower in the vertical direc­
tion. The various plots in Fig. 4 give the impression that there 
is a kind of source term for 7 at the center. Once the deforma­
tion has started to localize, contours of successively higher 
values of 7 seem to originate at the center and fan out. They 
spread out in the direction of shearing. As noted earlier, severe 
deformations of the block occur now in this narrow region. 

Figure 5 depicts the distribution of the effective stress se, 
defined as being equal to the right-hand side of equation (12) 
within the block at average strains of 0 percent, 18.5 percent, 
20.8 percent, and 22.7 percent. Initially it looks like an in­
verted hat because every material point is assumed to lie on its 
yield surface. We note that for the simple shearing problem 
being studied, a12 is the only component of stress having 
significant values. Because of the higher temperature at points 
near the center, the flow stress there is reduced. As the body 
continues to be deformed, the stress distribution within the 
block, and especially in the region surrounding the center of 
the block, alters. The nonhomogeneity of the deformation 
near the corners is now evident. The temperature rise within 
the block reduces the flow stress needed to deforrn the 
material. Consequently, the value of se drops at all points. 
Even though the strain rate invariant 7 assumes very high 
values at points within the region of localization, the softening 
caused by the temperature rise exceeds the hardening due to 
strain rate effects and the stress drop in the severely deforming 
region is enormous. For very high rate of drop of se, an 
unloading elastic wave emanates outwards from the shear 
band (Batra and Kim, 1989). No such unloading wave was 
observed in this case. It could be due to the coarseness of the 
mesh, the integration scheme used, or the rate of the drop of 
se was not too high. 

The deformed mesh at average strain of 22.7 percent is 
shown in Fig. 6. The relatively severe deformations within the 
region of localization, and nonuniformity of deformations 
near the corners, is evident. 

(b) 

Fig. 5 Distribution of the effective stress within the block at different 
values of the average strain; (a) yam = 0, (b) yav„ = 0.185, (c) Yava = 0.208, 
and (d )7avg= 0-227 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56 / 531 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.0 0.5 

, = COORDINATE 

Fig. 6 Deformed mesh at an average strain of 0.227 (simple shearing 
deformations of the block) 
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Fig. 7 Isotherms plotted in the reference configuration at different 
values of the average compressive strain; (a) 7aVg=0.0, # m a x =0.2 , 
- 0.05, • • • • 0.10, 0.15, (b) 7 a v g =0.035, 0m a x =0.286, 
- 0.10, • • • • 0.15, 0.20, 0.25, (c) 7a v g =0.040, 9m. 
ax = 0.313, see part (b) for values of 6 corresponding to different curves, 
(d) 7a v g =0.045, 0max =0.353, — 0.10, 0.15, 0.20, 

0.25, 0.30, (e) 7 a v g = 0.055, 0m a x = 0.426, — 0.15, 
0.20, 0.25, 0.30, 0.35, and (f) 

Yavg =0.059, 0max =0.449, (see part (e) for values of 0 corresponding to 
different curves) 

(b) Results for the Compression Problem. Because of 
the assumed symmetry of the deformation field, the deforma­
tions of the block within the first quadrant are analyzed. 
Several trial runs without introducing any temperature pertur­
bation yielded the following values of the steady-state 
solution: 

i>, = 0.37*1, v? = (29) 

for an average applied strain rate of 5000 sec "' . Subsequently 
this velocity field, and the temperature field given by equation 
(28), were taken as the initial conditions and the initial boun­
dary value problem solved. A closer look at the results com­
puted by Batra (1987a, 1987b) for the one-dimensional simple 
shearing problem reveals that the initial state where the pertur­
bation is introduced has very little effect, if any, on the 
qualitative nature of the results. Figure 7 depicts the 

Fig. 8 Velocity field within the block at different values of the average 
compressive strain; (a) 7aw„ = 0, (b) 7a v g = 0.045, (c) yavg = 0.059 

temperature distribution at several values of the average com­
pressive strain. At an average strain of 3.5 percent the 
isotherms have changed in shape from elliptic to rhombus and 
the peak temperature at the center has risen from 0.20 to 
0.286. Because of the nonhomogeneous deformations near the 
top right corner, the temperature rise there is more than that at 
other points within the block except, of course, those near the 
center which are undergoing severe deformations. As the 
temperature plots at average compressive strains of 4 percent, 
4.5 percent, 5.5 percent, and 5.9 percent show vividly, the 
isotherms spread out diagonally indicating that the material 
around the main diagonal is deforming severely. At these 
average strains the peak temperature occurs at the center and 
equals 0.313, 0.353, 0.426, and 0.449, respectively. Thus, the 
rate of temperature rise at the center is small initially, in­
creases as the deformation begins to localize, and tapers off 
during the late stages of the localization. Even though heat is 
being conducted out of this central region the heat produced 
due to the plastic dissipation exceeds that lost due to conduc­
tion. Once the localization process is initiated, the heat 
generated due to plastic working becomes quite high and the 
rate of temperature rise within the central region picks up. 
However, the stress required to deform the material drops and 
thus reduces the energy dissipated due to plastic working. This 
and the heat conducted out of the central hotter region ex­
plains the slow rate of temperature rise during the late stages 
of the localization of the deformation. 

In Fig. 8 we have plotted the vr and i>2-velocity fields at 
average strains of 0, 4.5 percent, and 5.9 percent. Except at 
points around the diagonal passing through the top right cor­
ner, both u, and v2 vary slowly and nearly linearly, thereby 
implying that the material region within a narrow zone on 
both sizes of the diagonal line is undergoing severe deforma­
tions. Figure 9 shows the contours of the second invariant I of 
the deviatoric strain rate tensor at average compressive strains 
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Fig. 9 Contours of the second invariant f of the deviatoric strain rate 
tensor at different values of the average compressive strain; (a) 
7 a v g =0.012, /m a x = 2.0. - 1.0, 1.25, 1.50, 
1.75, (b) 7avg =0.018, / m a x = 2.53, — 1.0, 1.25, 1.50, 

1.75, (c) 7 a v g= 0.025,/max =2.95. — 1.0, 1.5, 
2.0, 2.5, (d) 7 a v g = 0.03, /m a x = 3.70, see part (c) for values of I cor­
responding to different curves, (e) 7 a v g = 0.035, /m a x = 5.53, — 1.5, 

2.0, 2.5, 3.0, (/) 7 a v g =0.040, /m a x =8.73, -
2.5, 5.0, 7.5, (g) 7 a v g = 0.053, /m a x = 16.92, — 2.5, 

7.5, 12.5, and (h) 7 a v g =0.059, /m a x =20.7, - 7.5, 
12.5, 17.5 

of 0.012, 0.018, 0.025, 0.03, 0.035, 0.04, 0.055, and 0.059. As 
for the simple shearing problem, the maximum value of / oc­
curs at points near the center of the block and these contours 
seem to originate at the center and spread out along and 
perpendicular to the direction of maximum shearing strain; 
their speed probably depends upon the mesh size. Also, the 
width of the severely deforming region depends upon the mesh 
size, too. 

Figure 10 depicts the distribution of the effective stress se at 
average strains of 0, 0.027, 0.045, and 0.059. Initially the 
stress is uniform everywhere except in a narrow region near 
the center where the flow stress has been reduced due to the 
higher value of the temperature at these points. The plot at 
7avg= 0.027 reveals that the flow stress has dropped every­
where due to the rise in the temperature of material particles. 
Still, the effective stress is uniformly distributed except at 
points near the center of the block. It seems that the localiza­
tion of the deformation begins in earnest at 7avg = 0.045. At 
7avg = 0.059 the material region around the main diagonal has 
severely deformed. The deformed mesh for 7avg = 0.059 is 
shown in Fig. 11. That the band has formed is difficult to 
visualize from the deformed mesh shown. Also, the mesh is in­
capable of resolving sharp deformation gradients within the 
localized region. 

5 Discussion and Conclusions 

The 9-noded quadrilateral element used herein seems to 
have performed satisfactorily as far as the initiation and.some 
growth of the adiabatic shear band is concerned. As for com­
putations with one-dimensional problems (Batra, 1987a; Batra 
and Kim, 1989), it is probably due to the coarseness of the 
mesh that sharp gradients of the deformation within the 
region of localization could not be completely resolved. This is 
also supported by the recent work of Shuttle and Smith (1988) 
on the numerical simulation of shear band formation in soils. 
Both for plane strain, simple shearing deformations of the 
block and plane strain compression of the block, the shear 
band is formed along the direction of maximum shearing. For 
the compression problem the shear band formed at an average 
strain of 0.059, and for the simple shearing problem it formed 
when the average strain equaled 0.229. The results computed 

Fig. 10 Distribution of the effective stress within the block at different 
values of the average strain; (a) 7a v g = 0, (b) 7 a v g = 0.027, (c) 7 a v g = 0.045, 
and (d) 7 a v g = 0.059 
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Fig. 11 Deformed mesh at an average compressive strain of 0.059 

herein are in qualitative agreement with those of Needleman 
(1989). Because of the different constitutive assumptions 
made and the difference in modeling a material inhomogenei-
ty, it is hard to make any quantitative comparisons. 
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Dynamic Modulus of Poroelastic 
Materials 
A simple mathematical formula is proposed to predict the fluid damping effects in 
poroelastic materials. Biot's poroelastlcity equations are solved to obtain the 
response of poroelastic materials undergoing harmonic tension-compression and 
bending deformation. Complex moduli of poroelastic material are explored from 
the response functions on basis of mathematical models. It is shown that the effects 
of material parameters, geometrical parameters, and flow boundary conditions on 
the fluid damping are predicted by simple mathematical formulas. Numerical results 
are presented and compared with those of other researchers. 

Introduction 
A mathematical treatment to predict the fluid damping of 

open-cell foams was proposed by Rush (1965) and by Gent 
and Rusch (1966). In their analysis, a rectangular block of 
fluid-filled foam is considered (Fig. 1(a)). The specimen is har­
monically compressed in the z direction, and the foam matrix 
deforms uniformly in the z direction. The fluid inside the 
foam specimen is forced to flow through the matrix in the x 
direction. The pressure distribution was determined and the 
average compressive stress in the cross-section of the specimen 
was calculated. This stress was added to the compressive stress 
of the foam matrix. Then an equivalent complex modulus of 
open-cell foam was derived. They predicted the frequency 
dependence of the complex modulus to be qualitatively as 
shown in Fig. 1(b). 

As the frequency is increased, the fluid flow resistance in­
creases, resulting in increased material stiffness and loss fac­
tor, -q. At high frequencies, the iteraction force between the 
fluid and the solid matrix becomes so large that the solid and 
fluid move together and there is no fluid flow. At these fre­
quencies the loss modulus, due to the fluid flow, becomes zero 
and the storage modulus becomes its maximum. Thus as the 
frequency increases, the loss factor r\ starts to increase from 
the matrix loss factor rj0, and reaches its maximum at a 
"critical" frequency wc, and then reduces to the matrix loss 
factor again. Similarly, the storage modulus E' starts to in­
crease from the matrix storage modulus and approaches its 
maximum value as the frequency goes to infinity. 

The Gent and Rusch model explains the effects of the 
material constants and the specimen geometry on the fluid 
damping. The validity of their analysis has been well proven 
by extensive experiments. However, the method cannot be ap­
plied to different deformation modes and/or flow boundary 
conditions. The purpose of the present work is to develop a 
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mathematical method which can account for more general 
flow conditions and also to get simpler expressions for the 
maximum loss modulus (damping) and the critical frequency 
coc, which are important for practical design of fluid damping. 

To analyze the fluid damping in more general deformation 
modes and fluid flow conditions, it is essential to have con­
stitutive equations for the fluid-solid system. Wijesinghe and 
Kingsbury (1979) developed an analytical expression for the 
fluid damping in poroelastic material using Biot's poroelastic-
ity theory to derive a theoretical complex modulus for 
poroelastic material. In their analysis, the dynamic response 
of a slab, column, or disk or porous material subjected to 
sinusoidally-varying displacement on its surface was con­
sidered as shown in Fig. 2. The fluid flows in and out of the 
specimen through the rigid porous plug. The resulting 
theoretical complex modulus shows a frequency response 
similar to the one shown in Fig. 1(b). 

In this work, a similar approach is used to develop 
mathematical expressions for complex modulus of poroelastic 
materials undergoing tension compression and bending defor­
mation with various different flow conditions. 

Poroelastic materials are a two-phase, solid-fluid system as 
defined by Biot (1956, 1957). The solid material forms the 
skeleton which has small pores filled with fluid. The skeleton 
is linearly elastic, and the fluid is Newtonian viscous and may 
be compressible or incompressible. It is assumed that bulk 
material is homogeneous on a macroscopic scale, and pores 
are all interconnected. Biot's dynamic theory of poroelasticity 
accounts for the effects of both fluid inertia and dissipation. 
In the present work, the quasi-static theory is used, which 
neglects the inertia effects of the fluid. Therefore the result is 
valid when either the density of the fluid or the flow velocity is 
low. 

The Governing Equations 

The equations governing the deformation of a poroelastic 
system may be phrased in terms of the average skeleton 
displacement components, «,-, and the pore fluid pressure, p. 
In the absence of body forces these equations become 
(Kingsbury, 1984): 

where 

M*";,A± + (X* + n*)uktki -p„ = 0 

a 
p,kk=~dt ( / 3 i M ' . '~^ 2 / ' ) 

Pi=ba/n*2, P2 = b/Mn* 

(1) 

(2) 

(3) 

In equations (1) through (3), /x* and X* are the Lame con­
stants of the skeleton, n* and b are the skeleton porosity and 
resistivity, respectively, M is a modified fluid bulk modulus, 
and a is a solid-phase compressibility coefficient. 

The later two coefficients can be expressed in terms of more 
intrinsic material properties as: 

M= 

a= 1 — 5/K 

1 
(4) 

(5) 
n*{c-5)+a& 

where 8 is the compressibility of the solid comprising the 
skeleton, K is the compressibility of the skeleton, and c is the 
fluid compressibility. 

Solution I: Tension-Compression Mode 

A solution is first obtained for the simple geometric con­
figuration shown in Fig. 1(a). Assuming that the solid strain 
and the pressure are constant in the z direction, the governing 
equations reduce to (6) and (7). Since the strain of the x direc-

Fig. 2 Column of poroelastic material undergoing harmonic 
compression 

tion is restricted to zero at the boundaries between the sup­
porting plate and the specimen, and the ratio of the specimen 
height, h, to the specimen width, /, is very small, the strains exx 

and eyy are neglected. Consequently, the coupling between the 
solid displacement and the fluid pressure in (1) vanishes. 

The pressure boundary conditions are given by (8) and (9). 
The solution forms for the solid displacement and the fluid 
pressure are given by (10) and (11), respectively. Equation (12) 
is obtained from (11) and the boundary conditions (8) and (9). 
Substituting (10) and (11) into the governing equation (7), one 
obtains (13), and the pressure solution becomes (14). Now the 
force term, F, acting on the upper surface of the specimen is 
given by (15), where A is the area of the upper surface. Since 
the normal stress is given by (16), the force F is obtained as 
(17) from (15), (16), (10), and (11). Now one can define an 
equivalent complex modulus E by (18). The first term in (18) 
represents an apparent modulus of the solid skeleton and the 
second term represents the effect of the fluid. It is seen that E 
is a complex value and dependent on the frequency to, the 
poroelastic material parameters (a, M, b, «*), and the 
geometrical parameter /. The term (tan x)/x approaches zero 
as x goes to infinity and 1.0 as x goes to zero. Therefore, the 
quantity ot2Mrepresents the maximum storage modulus due to 
the fluid. The fluid damping is represented by the imaginary 
part of the complex modulus, E", which is the loss modulus. 

(6) 

d2p 

dx2 

d2W 

dx2 

-U( 

= 0 

' dw -• 

dz 
)+PzP\ 

dp 
= 0 at 2 = 0, h 

dz 

p = 0 a t x = ±1 /2 

W 
w=—- ze'"t 

h 

p=(Ci sin4>x+C2 cos(j)X+C3)e
ia' 

C , = 0 , C3 = C2cos(0//2) 

<t>=(-io>p2y
/2,c2 = 

V h ) ft, I cos(0//2)J 

/32 cos(</>//2) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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F=\ATzz\z=hdxdy 

Tzz=(2ii*+s*)ezz-ap 

E(o>) = (2ii* + \*) + a2MU-
tan(</>//2)-i 

<j>l/2 i ' 

(15) 

(16) 

(17) 

(18) 

The merit of this solution is that the critical frequency, coc, 
and the maximum fluid damping (loss modulus) can be easily 
found as will be next shown. 

Taking the derivative of (18) with respect to a> yields (19), 
where parameters (x, a) are given by (20). Equating (19) to 
zero, one obtains (21). The imaginary part of this equation 
leads to the condition shown by (22). From these results , the 
critical frequency oic and the maximum loss modulus E£,ax are 
obtained as (23) and (24), respectively. In equation (23), the 
distance /*, which is equal to half of the specimen width, /, is 
used since that is found to be convenient to generalize the flow 
path length. This distance /* represents a flow path length of 
the fluid, which correspond to the distance between the max­
imum pressure point and the minimum pressure point. 

dE(u) 

da 

d 

dw 

r tan (</>//2)\ 

I $1/2 / 

a2i d / tanxN 

x dx V x / 

x = 4>l/2, a = — (—^--) 
2 \2n2MJ 

sin (2x) — 2x 
= 0 

x3cos2(x) 

x=(-l + i)a',a' = 1.127 

n*2M 
coc = 2.54-

l*2b 

E" = 0.41a2M 

, I* =1/2 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(26). Then the dilatation term in equation (2) is expanded 
because of Fourier series as (27), where the coefficient Cm„ is 
given by (28). Since the dilatation term e is constant with 
respect to x and y, the pressure solution is obtained as (29). 
The force acting on the top surface of the specimen is obtained 
from (15), (16), and (30). An equivalent complex modulus is 
obtained as (31). The second term in equation (31) represents 
the effect of the fluid flow (Ej). Since the series is very quickly 
converging, the first term alone is a good approximation. The 
frequency function has a form shown by (32). General for­
mulas for the maximum loss modulus and the critical frequen­
cy coc are given by (32) and (33). For this particular case, the 
maximum loss modulus is approximated by (34). It is seen that 
the geometrical parameters do not change the maximum value 
of damping. The critical frequency is expressed as (35), where 
g* is an effective flow path length. Because of one term ap­
proximation of the series, the coefficients in (34) and (35) are 
different from those in (23) and (24). These are checked 
numerically later in this paper. 

p = 0 at y = 0,d and 

P= D Hp
mn sii 

m n 

e= Ld 1*4 Cm} 
m n 

4 ?l Prf 

Jo Jo 

dp 
dx 

= 0 a t x = 0, l /2 

miry 

cmn M 

sin sin 
/ a 

n-KX . miry 
sin sin e'" 

I d 

n-KX . miry 
dxdy 

(25) 

(26) 

(27) 

(28) 

»=EE- -Kd0lCra 

n /«7TV ( m-K\L . „ 

. n-KX , miry 
x sin sin e" (29) 

F=A^r W+**>+EE 
/ m n 
^ m - odd 

n = odd 

/af|8,C0 

It is seen from (24) that the maximum fluid damping is 
determined by only the two parameters a and M. Since the 
quantity a2Mis equal to the maximum storage modulus due to 
the fluid flow, the maximum fluid damping is primarily deter­
mined by the type of fluid and the pore density of the solid, 
while the critical frequency oic depends on the geometric 
parameter /* and the flow resistivity b. 

This solution is comparable with the Gent and Rusch model 
in that the geometry and the boundary conditions of the 
models are identical. The advantage of this solution is the 
simplicity of the formulas. It is seen that equations (23) and E(o>) =(2u* + X*)+ Y1 V* 
(24) give a direct measure for the fluid damping design. 

64 

nLmLr 

(n%\2 /mir\2 

(-) +h-) +'^-
(30) 

m n 
m = odd 
« = odd 

Solution II: Effect of Flow Boundary Condition 

In the Solution I, if either one of the specimen side faces is 
sealed, the problem becomes equivalent to that in which the 
specimen width L is equal to twice of the original length 
(L = 2l). Thus, from equations (23) and (24), the flow boun­
dary condition is expected to change the critical frequency oc , 
but not change the maximum loss modulus nor the shape of its 
frequency function. 

It is convenient to use a Fourier series solution for the fluid 
pressure to study the effect of the flow boundary conditions. 
For an example we consider a case for which the specimen has 
a finite width d in the y direction and the pressure boundary 
conditions given by (25). The pressure solution is assumed as 

iaPioi 
64 

1 T I A 

nLml-K* 
' mir\ 2 

~d~) 

(n-K\ 2 /!.... , 

!XiU> 

X-, +IX.U 

x3 ' n™~2Xi 

E"=0.33a2M 

(31) 

(32) 

(33) 

(34) 
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co, = 2.47 
n*2M 

d/2. (35) 

Solution III: Bending Deformation 

The dynamic modulus of a poroelastic material undergoing 
bending deformation is suggested by Biot (1964). Here we con­
sider a pure bending case shown in Fig. 3. 

The pressure boundary conditions are given by (36). Ne­
glecting strains ezz and eyy, the dilatation term is given by (37). 
The equation of motion for the classical simple beam becomes 
(38), where Mis bending moment. The moment term is given 
by (39), where E is the elastic modulus and / i s the moment of 
inertia of the beam cross-section. The pressure solution in the 
poroelastic material is assumed as (40), where the flow in the x 
direction is ignored. Expanding the dilatation term by use of a 
Fourier series as (41), the pressure solution is obtained as (42). 
Substituting (42) and (39) into (38), one finds an equivalent 
complex modulus shown by (43) and (44). Taking the first 
term of the series, the maximum loss modulus and the critical 
frequency are obtained as (45) and (46). It is seen that this 
result is equivalent with previous solutions if one use / = h/2. 
Thus the deformation mode does not change the maximum 
damping obtainable from fluid flow. 

dp h 

i r = 0 a t z = ± T-
e= -z-

d2w 

dx2 

d2M d2w 
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dx2 dt2 
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(36) 
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(43) 
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Fig. 3 Simple beam model 

= 2.47 
n*2M 

h*2b 

E" =0.49 a2M. 

(45) 

(46) 

Discussions 

The dynamic modulus due to fluid flow can be approx­
imated by the simple formula (47), where the maximum loss 
modulus £" and the critical frequency a>c are given by (48) and 
(49), respectively. The idea of an effective flow path length 
needs to be introduced to generalize the effect of flow boun­
dary condition. The effective flow path length is the distance 
between the maximum and minimum pressure points in the 
case of one-dimensional flow. In the case of multidimensional 
flow, it is approximated as (35). 

fit \ P , 2iuEmax 
E{o))=E0+ —— 

E^x = 0.4\a2M 

n*2M 
coc=2.54-

l*2b 

(47) 

(48) 

(49) 

3.0xlO3 Pa 
0.94 
1.0 x10 s Pa 
0.96 
1.0xlO5 Pa 

A numerical example is chosen to compare the results ob­
tained by equations (18), (31), and (44) with the approximate 
formula shown by (47). Material properties used for the sam­
ple calculation are as follows. (A polyurethane-air system was 
chosen as an example). 

Storage modulus of skeleton E: 
Porosity n; 
Air bulk modulus M: 
Parameter a: 
Resistivity b: 

The results of the sample calculation are shown in Fig. 4. 
The effective flow path length is the same for all models. It is 
seen that the four curves are fairly close to each other, 
although there are some differences in the maximum storage 
and loss moduli as expected from the analytical results. 

The dynamic modulus obtained as (18) was compared with 
the result of Gent and Rusch in an Okuno (1986). It was 
shown that although there were some differences observed in 
the storage modulus, on the whole, the equation (18) agreed 
well with the Gent and Rusch model. Equation (18) results 
from the assumptions in equation (6) that there is no interac­
tion between the solid and the fluid strain; i.e., the coupling 
term in the first governing equation was neglected. The same 
assumption was made by Gent and Rusch. 

However, in the case shown in Fig. 2, the major solid strain 
occurs in the same direction as the fluid flow. Therefore, 
neglecting the coupling term is considered to cause significant 
error. It is useful to check the amount of discrepancy due to 
the assumption of no coupling. In Fig. 5 the result by equation 
(47) is compared with the result of Wijesinghe and Kingsbury 
(1979), which is a solution of the coupled equation. 

It is seen that neglecting the coupling term results in only 
slight overestimation of the maximum loss modulus and 
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Fig. 4(a) Dynamic storage modulus in different deformation modes 

(b)LOSS MODULUS 

.PLATE 1-D FLOW 
(EQN.18) 

I01 102 
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Fig. 4(b) Dynamic loss modulus in different deformation modes 

storage modulus, while it does not change the critical frequen­
cy significantly. 

Dynamic responses of two-layer and three-layer beams with 
a foam layer was studied by Okuno (1986), and it was shown 
that the maximum loss modulus of the foam layer is about the 
same value as that of (48) regardless of the deformation mode. 
The critical frequency of the foam layer was also analyzed and 
it was found that the results were close to (49). 

From all the analyses presented so far, it is concluded that 
the approximation of fluid damping, which is obtained as 
(47), (48), and (49), gives sufficient accuracy for practical use. 

Summary 
The effect of fluid flow on the dynamic modulus of a 

o 
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w 
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Fig. 5(a) Dynamic storage modulus by coupled and uncoupled 
equations 

(b)LOSS MODULUS 

1.UNCOUPLED EQN. (EQN.18) 

2.COUPLED EQN. 

10° 10' 10* 105 

FREQUENCYI1HZ3 
Fig. 5(b) Dynamic loss modulus by coupled and uncoupled equations 

poroelastic material can be approximated by a simple complex 
modulus as: 

£(0})=Eo+-
CO.. + lb) 

The loss modulus (fluid damping) shows a bell-shaped fre­
quency dependence and its maximum value and the critical 
frequency are approximated as follows: 

n*2M 
co =2.54-

l*2b 
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These formulas show that the maximum fluid damping is 
determined by the type of fluid, while the critical frequency 
can be controlled by choosing the flow resistivity of the 
skeleton and the flow path length. This information is quite 
useful for practical fluid damping design. 
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Squeeze Film Behavior for 
Anisotropic Porous Rectangular 
Plates 
The squeeze film between two rectangular plates when one has a porous facing is 
analyzed taking into account the anisotropic permeability and slip velocity at the 
fluid and porous material interface. Modified equations for calculating the pressure, 
the load carrying capacity, and the film thickness and time relations are presented. 
The effect of the anisotropic permeability and slip velocity at the fluid and porous 
material interface on the squeeze film behavior is discussed and found to be 
important. 

Introduction 

Porous materials have been used in lubrication applications 
such as bearings (Booser, 1970) and squeeze films (Wu, 1970). 
They have the advantage of being self-lubricating, which over­
comes the need for oil pipes, pumps, etc., and simplifies the 
problem of machine design. In most analyses (Wu, 1970, 
1971a, 1971b; Berman, 1953; Morgan and Cameron, 1957) of 
flow with porous boundaries it has been customarily assumed 
that the conventional no-slip velocity condition remains valid 
at porous surfaces. Recently, however, Beavers et al. (1967, 
1970) demonstrated the existence of slip velocity at the surface 
of a porous material in their experiments involving laminar 
flow of water and of oil in rectangular ducts having one 
porous wall. Experiments were later performed by Taylor 
(1971) to calculate the slip constant. Later, Sparrow et ah 
(1971) used the slip velocity assumption in generalizing the 
analysis of the squeeze films between porous annular disks 
(Wu, 1970) and found the effect of the slip velocity was to 
reduce the load-carrying capacity and the response time of the 
porous squeeze film. Wu (1972) extended the previous analysis 
of squeeze films between porous rectangular plates to include 
the effect of velocity slip at the porous surface and came to 
similar conclusions as mentioned by Sparrow et al. (1971). 

The purpose of this paper is to expand the previous analysis 
of squeeze films between porous rectangular plates (Wu, 1972) 
to include the effect of anisotropic permeability and velocity 
slip at the porous surface and to provide the modified equa­
tions for calculating pressure, load-carrying capacity, and in­
stantaneous film thickness of this kind of squeeze film as func­
tions of time. 
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The following assumptions are made in the 
Analysis 

Assumptions. 
analysis: 

1 The flow in the film region is laminar, 
2 The fluid is incompressible and has constant properties. 
3 In the film region the inertial effects can be neglected, the 

pressure is independent of the z-coordinate, and the z-
derivatives of the velocity components dominate. 

4 The flow in the porous medium follows Darcy's law for 
anisotropic materials 

v * = - — 
V 

where P* is the pressure in the porous 

• grad P*, (1) 

isotropic viscosity of the fluid, v* = (v* 
medium, r\ is the 
v*) is the velocity 

vector with components referred to the Cartesian axes, shown 
in Fig. 1, and K is the anisotropic permeability tensor. It is 
assumed that the anisotropic properties of the porous material 
are such that the principal directions of K remain constant and 
parallel to the coordinate directions shown in Fig. 1. We can 
then write 

K = 

~KX 

0 

0 

0 

Ky 

0 

0 " 

0 

Kz_ 

(2) 

Fig. 1 
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where Kx, Ky, Kz are the constant permeability coefficients. 
(Throughout, starred variables refer to the porous medium 
and unstarred variables to the film.) 

On the previous assumptions for squeeze film flows for the 
quasi-static case, the Navier-Stokes equations reduce to 

It is assumed that the mean velocities in the porous medium 
satisfy the equation of continuity, 

= 0, (9) 

dz2 

1 

V 

1 

dp 

dx 

dP 

du* dv* dvl 
— - + — - + —-
dx dy dz 

and using Darcy's law, we obtain the elliptic equation for the 
pressure in the porous medium 

(3) KY 
d2P* 

dx2 + K„ 
d2P* 

dy2 + K, 
d2P* 

= 0. (10) 

dz2 dy 

In order to solve the equations it is necessary to specify a 
boundary condition on the velocity between the film and 
medium. In this paper, we adopt the empirical model sug­
gested by Beavers and Joseph (1967) and, subsequently, given 
theoretical justification by Saffman (1971). For an anisotropic 
medium this takes the form 

Since the velocity component in the z-direction must be con­
tinuous at the interface, 

K, dP* 

equation (8) becomes 

dz 

dVy 

~dz 

z = 0 

z = 0 

( V0x ~V0xh 

( Vty ~ v0y ) > 

- I 
dx\ 

h3 dP 

Yh) dx + u 
dz lz = o 

d [h3 dP 

(11) 

(4) = h + 

dy L12 dy 

K, dP* 
(12) 

where v0x, v0y denote the slip velocities (v0x = vx(0), v0y = vy(fl)) 
along the x and y directions, respectively, i ^ , yov t n e mean 
velocity components in the porous medium which are given by 

Kr dP* 

VQy=-

V dx 

dP* 
(5) 

respectively, ax, oty are dimensionless constants which depend 
on the characteristics of the porous medium. 

It can be seen that when 

- 0 , 

equations (4) reduce to the no-slip boundary conditions ap­
propriate to a solid wall. Integrating equations (3) twice with 
respect to z, and applying the slip boundary conditions at the 
interface and the no-slip boundary condition at z = h, yields 

r] dz 

Equation (12) represents the modified Reynolds equation for 
the fluid pressure in the film region for the quasi-static case 
and equations (10) and (12) are to be solved subject to the 
usual boundary conditions of zero pressure at the edges of the 
plates and at the lateral surfaces of the porous medium, zero-
flow through the bottom plate and continuity of pressure 
across the interface. 

P(0,y)=0, 

P(Luy)=0, 

P(x,0) = 0, 

P(x,L2) = 0, 

P*(0,y,z)=0, 

P*(.Luy,z)=Q, 

P*(x,0,z)=0, 

P*(x,L2,z)=0, 

dP* 

(13) 

dz 
= 0. 

v = 
1 dP f Z2{sfKx + hoix) -zax(h

2-2KX) -hy/K~x(h + 2axy/Kx) 

n dx L 2(y/Kx + hax) 

1 dP ( z2(s/Kr
y + hay) -zoiyjh1 -2Ky) -h^K'),(h +2a y4Ky) : - ^ [ V dy 

The equation of continuity is 

2(4K~y + hay) 

(6) 

dvx dvv dv, 
— - + —y- + — - =0. 
dx dy dz 

,7^ Since the pressure must be continuous at the fluid and porous 
material interface, 

On substituting (6) into (7) and integrating across the film 
thickness h, we obtain 

P(x,y)=P*(x,y,0). (14) 

d r /!3 dP 

dx L 12?) dx 

d r h3 dP 

'dylJlq dy 
Solutions 

= [vx\o = vhz-voz = h-v0 
/g-. Equation (10) can be solved by separation of variables sub 

j ect to the boundary conditions (13). The solution is 
where vhz = his the velocity of the top plate, and ax and ay are 
given by \~^ x~i 

, _ , _ P*{x,y,z)= 2^ ljamncash[ymn(z + H)]sm(amx)sin@ny), 

(l + 2-^p.) ( 1 + 2 ^ ^ ) '"""" 
ar = 1 + 3 

1 + 
har 

, • ay = 1 + 3 
(15) 

1+ A a ' - where mir rn 
« m = —j— ; Pn = - ; — 
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. - ( • 

alKx + pnKy 

and the coefficients amn are to be determined. 
To solve equation (12), P(x,y) is expressed as an infinite 

series consisting of a complete set of orthogonal functions 
each of which satisfies the respective boundary conditions 
given in (13), i.e., 

P(x,y) = Yi E b,„„sm(amx)sm(Pmy). (16) 

The coefficients bm„ are determined from the matching condi­
tion (14), i.e., 

bmn=am„cosh(ymnH). (17) 
On substituting equations (15), (16), (17) into (12), the or­

thogonality of the eigenfunctions gives 

Af = 
384VL]L2 

6hlW 
1 

~w 2n2(m2-\ j - n2) 

(23) 

can be obtained from (22) by putting Kx=Ky=Kz=0. 
Similarly, Wu's (1972) solution can be obtained by letting 
KY=KV 

Results 

--Kz, ax --dy and v, ox- 0,v*0y = 0. 

By comparing equations (15), (20), and (22) with the cor­
responding equations given by Wu (1972) for the velocity slip 
case, it is found that the effect of anisotropy and velocity slip 
comes through the introduction of the parameters ax, dy, and 

" m n 
- \92i\h 

LiL2k
iamP„ (a2„ax + P2„o )cosh(ym„H) + 12^7„ sinh(7m„i/)J 

(18) 
where m and n are odd. 

The load-carrying capacity of the squeeze film is found by 
integrating the pressure over the top plate 

Hi 
Jo Jo 

P(x,y)dxdy, 

giving in dimensionless form 
hl W 768 

T\Lx
2L2

2h ir«L,L -EE-

(19) 

(20) 
1-̂ 2 m,n odd 

where 

V hhn / V hhn / 
s,= l + 3 

\+h 

hh0 

h0ax 

• 1+3, 

1+h^-

h0 is the prescribed initial thickness and h given by 
h 

h = 
hn 

The film thickness, at any time, can now be obtained by in­
tegrating equation (20) for the given load as a function of 
time, 

<-At 768T)Z,,Z,2 
W(T)dT = 

7T4/!„ m,n odd 
(21) 

where 

•-I'M-f2(«m2*,(« + /35»v(» 

12Kzy„ 
tanh(7mBJ7) ] ) " ' * 

At is the time interval. For constant load one has in dimen­
sionless form 

h2W 
T2r2n

 A t J r r hi Ul 

^ 1 ^ 2 1 T M ^ 2 m,n odd 

The Hays (1963) result 

(22) 

7,„„. Little is known about the slip constants ax and ay, except 
that they seem to be independent of the fluid viscosity, but de­
pend on the porous surface characteristics. The smallest value 
of the slip constant (which yields largest slip velocity) that has 
ever been found (Beavers and Joseph, 1967) is 0.1. In order to 
show how significant the effect of velocity slip can be in cer­
tain lubrication applications the values of <xx, ay = 0.5 and ax, 
â , = 0.1 are chosen. 

The effect of L}/L2, keeping the area of the surface con­
stant, and Ky/Kx on the load-carrying capacity for different 
values of ax and ay, are shown in Figs. 2, 3, and 4. It is seen 
when Kx=Ky=Kz and ax = ay (isotropic case, Fig. 2) the 
curve is symmetric with greatest load-carrying capacity occur­
ring when the surface is square (as expected), whereas for the 
anisotropic case the greatest load can be carried by a surface 
which is off-square. The curve of maximum load-carrying 
capacity is also plotted showing the extent to which the ratio 
of Ky/Kx affects the amount off-square the surface has to be 
to give maximum load-carrying capacity. 

Fig. 2 
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-I -0.75 -0.5 -0.25 0 0.25 0.5 0.75 
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Fig. 4 

Figure 5 shows that the effect of the porosity and slip con­
stants is to alter the response time. By increasing either the 
ratio of Ky/Kx or the amount of slip, the response time is 
decreased. 

The half-time of the material, tVl, is defined as the time re­
quired for the plates to move from a distance apart h0 to h0/2. 
Figure 6 shows the effect of Lx/L2 and Ky/Kx on the half-
times of the material and one observes that the maximum half-
time is experienced when the maximum load is carried (as 
expected). 

Figures 3 and 4 show the significant effect of changing the 
slip constants <xx and ay (which are considered as part of the 
anisotropy of the material) on the load-carrying capacity. 
Similar behavior is experienced in the case of the half-times. 

Having different slip constants can either increase or 
decrease the amount off-square the surface must be to give 

maximum load-carrying capacity and corresponding max­
imum half-times, as well as increasing or decreasing these 
maximums. 

In a practical situation the required shape of the bearing 
may be rectangular, in which case a specific choice of Ky/Kz 
will give maximum load-carrying capacity (remembering that 
in an anisotropic case the slip constants may not be identical). 
It must, however, also be remembered that the absolute values 
of the Darcy constants affect the performance of the bearing. 
A balance between load-carrying capacity and ability of the 
bearing to be self-lubricating must be reached. 
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Environmentally-Induced 
Expansion of Heterogeneous 
Media 
Relationships between effective expansion behavior and effective elastic constants 
for composite materials have been known for many years. In the present work com­
posites are considered for which more than one environmental variable (e.g., 
temperature and relative humidity) cause expansions. A simple direct method to 
relate effective expansions due to different causes is developed. It is shown that most 
of the previous elasticity-expansion behavior results are gotten as corollaries, and 
the applicability of these relationships is broadened. 

1 Introduction 

Since the seminal work of Levin (1967) in which he con­
sidered the relationship between the effective elastic and ex-
pansional behavior of composite materials, other relationships 
of the type suggested by him have been found for a number of 
interesting cases (Rosen and Hashin, 1970; Laws, 1973; 
Hashin, 1984; Schulgasser, 1987). In obtaining such relation­
ships, complex manipulations have often been involved which 
may mask the physical understanding of the problem, and 
which make it difficult a priori to know for which cases solu­
tions can be found. It is our purpose here to consider the ex-
pansional behavior of heterogeneous media from a new point 
of view which leads with exceeding simplicity to new types of 
relationships and as a corollary to most of the results previous­
ly obtained, and makes clear under what circumstances such 
relationships can and cannot be found. Additionally, in Sec­
tion 4, we will reestablish a result found previously by Rosen 
and Hashin (1970) and by Laws (1973) from an alternate point 
of view, which somewhat loosens the restrictions imposed in 
the previous developments. 

Consider a homogeneous material subjected to a change in 
some environmental variable which results in homogeneous 
strains in a sample of the material. The strain resulting is 

where Tis the environmental variable. 0^(7) is a characteristic 
function of the material. We take a,-,(0) = 0. T might be 
temperature or humidity change, irradiation dosage, or even 
simply time for an aging material. We do not require a linear 
relationship between a{j and T. The second-rank tensor func-
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tion ay can always be diagonalized and we will generally 
henceforth describe homogeneous materials with respect to 
the principal expansional axes, so that the expansional 
behavior can be described by three functions ctx(T), a2{T), and 
a3(7), and we will consider only cases where the directions of 
the principal axes are not dependent on T. If there are two dif­
ferent environmental variables T and T', each of which causes 
expansions in a homogeneous sample of the material, we have 

eij=aiJ{T) 

e„=a£(7"). 
Denote by aJ-(T) and <xl*(T') the effective expansion of a com­
posite constituted from m phases, each with expansion func­
tions a,y and a[j(n = \ to m). We seek relationships of the 
form 

(1) 

Having accomplished this (in those instances when such rela­
tions can indeed by found) we will see that in many cases direc­
tional compliance under pressure (SiJkk in the usual notation) 
can replace a- in expressions of the type (1). These are the 
relationships found in Levin (1967), Rosen and Hashin (1970), 
Laws (1973), Hashin (1984), and Schulgasser (1987). 

2 Polycrystals 

The utter simplicity of the proposed scheme is best il­
lustrated for the case of the polycrystal constituted of a single 
species of constituent crystal. We consider crystals for which 
a2 = a3, i.e., there is expansional isotropy in the plane perpen­
dicular to the " 1 " direction. Let us "disassemble" the 
polycrystal when T= 0 and T' — 0. Now let T take on some 
value other than 0. Then, in each crystal there will be expan­
sional strain a{ in the " 1 " direction and a2 in the "2" and 
" 3 " directions. We now reassemble the polycrystal. If the 
constituting crystalline material is linearly elastic and the 
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elastic constants are not dependent on T, then it is clear that 
the change of distance between any two points located in the 
polycrystal as a result of the change in environmental variable 
will be 

AL = aal+ba2 (2) 

where a and b are constants for the system depending on the 
geometry of the polycrystal and on the elastic constants of the 
constituting crystalline material. This is due simply to the 
linearity of the elastic boundary value problem involved in the 
reassembly and is true irrelevant of the crystal class of the in­
dividual crystals (as long as a2 = a3), and irrelevant of the 
nature of the macroscopic symmetry of the polycrystal. Now 
we perform the same experiment, this time letting T' take on 
some nonzero value. By the same arguments as just stated, we 
can write 

AL' =aa[ + ba{. (3) 

As long as the elastic properties of the material are not depen­
dent on T or T', a and b are the same as in (2). We can 
calibrate the constants a and b if we note that when a, = a 2 , 
AL = axL where L is the distance between the two points. 
Hence, 

a + b = L. (4) 

We now simply eliminate a and b from equations (2)-(4), and 
find 

AL AL' 
— - « , — - « , ' 

= . (5) 
"2 - «1 «2 ~ «1 

Note that (5) is valid no matter what is the elastic single crystal 
symmetry class, as long as «2 = Q!3 ar*d ai-ai- Further note 
that it is valid no matter what is the structure of the 
"polycrystal." In the limit the "polycrystal" could even con­
sist of just a few crystals with any outer boundary shape (e.g., 
Fig. 1). If the microstructure of the polycrystal is small com­
pared to the sample of the polycrystal available so that 
statistical homogeneity can be assumed, then AL/L and 
AL' /L can be identified as the effective expansion functions 
ad and a j *, and (5) becomes 

ag-ot i = « d * - « i ( 6 ) 

0(2 -0 ! ! O^'-O!,' 

If there is a linear relationship between expansion and the en­
vironmental variable, then clearly the a's in this relationship 
can be identified as the appropriate coefficients, e.g., thermal 
expansion coefficients, moisture content expansion coeffi­
cients, etc. 

To identify ct{, a{, and ad* with compressional compliance, 
we simply apply a pressure p in the second experiment in place 
of T' after "disassembly" of the polycrystal. Then the strains 
in the " 1 " , " 2 " , and " 3 " directions of the individual crystals 
are —Snkkp, — S22kkp, ~S33kkp. Now reassembling while 
maintaining the pressure, if the principal axes of Sljkk coincide 
with those of ay and if S22kk = Siikk (this is true for hexagonal, 
tetragonal, and trigonal crystals), it is clear that equation (3) is 
valid with Sukk and S22kk replacing a[ and a2, respectively. 
Hence, equation (6) becomes 

a 2 - a , S22kk—Snkk 

where we have identified AL'/L as the effectivep-multiplied 
directional pressure compliance Sddkk (no summation on d). 
This result for macroscopically isotropic polycrystals was 
found by Hashin (1984) and was generalized to the 
macroscopically anisotropic case by Schulgasser (1987). Both 

Fig. 1 A "polycrystal" composed of just a few crystals 

of these works include delicate tensorial arguments and are 
phrased throughout in terms of the statistically homogeneous 
situation. The present derivation shows that (7) is simply a 
special case of the more general result (6), derived without 
recourse to any tensorial apparatus, and based simply on the 
linearity of the elastic boundary value problem. Indeed, hark­
ing back to the form in equation (5) and identifying a[ and a2 

with 5, ikk and S22kk we see that change in distance between any 
two points in any body made up of a single constituent 
material with varying orientation (cf., Fig. 1) due to change of 
an environmental variable can be determined if the behavior 
of the constituent material is known, and if the distance 
change due to pressure applied to the outer boundary is 
known. 

If the three principal expansions of the constituent crystal 
are distinct we could consider an additional environmental 
variable T" resulting in the system of equations 

AL = act, + ba2 + cct3 

AL' = aa [ + bu{ + ca.{ (8) 

AL" = aa"+ ba2 + caz" 

a+b+c=L 
analogous to the system (2)-(4). Then, in terms of effective ex­
pansion constants we find the relationship 

a-d-ctj 1" a3'-Q!i' a 3 " -« r " 

aj-of, L oij'-Q!,' a 2 " - o ; r -

| «rf'*-«i [" otj-ai « 3 - " i 1 
Q!2 — Ol[ L a2 — a" Q!2—al -• 

a2-a'{ L c ^ - a , Q!2'-«i -I 
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Again, a,", a£, a3" and a / * could be replaced by Sukk, S22w 
Si2kk> a n d sddkk> respectively. 

Considering the process used to arrive at (6) and (9), it is 
clear that they are valid for porous polycrystals. This is not 
true for (7), since the process would imply that the pressure 
permeates the voids. 

3 Two Isotropic Phases 

We consider now two-phase materials, each phase being 
isotropic, but the mixture may be macroscopically 
anisotropic. Phase expansional behavior is described for the 
two materials by a , a and a', a' under change of the two 
environmental variables, T and T', respectively. Repeating 
the procedure of the previous section we obtain equations for­
mally identical to (2)-(4) with a , a ' , replacing a„, a'„ in 
every instance. We then obtain results analogous to those in 
(5) and (6) with the aforementioned replacement. And 
analogous to equation (7) we obtain 

1 
* (1) 

(2) (1) 

a —a 

Sddkk 0) 
K 

1 1 
12) W 
K K 

(10) 

(1) (2) 

where K and K are the bulk moduli of the two phases. This 
result was explicity given by Rosen and Hashin (1970). The im­
plications of equation (10) for the case of aligned isotropic 
fibers in an isotropic matrix, using the unique relationship 
found by Hill (1964) which exists between the various effective 
composite moduli, has been discussed by Hashin and Rosen 
(1970) and Dvorak and Bahei-El-Din (1981). For the 
macroscopically isotropic case, Sddkk is replaced by l/K*. This 
result was found by several investigators using various 
methods (Levin, 1967; Schapery, 1968; Steel, 1968; Cribb, 
1968). 

For a three-phase material the procedure leads to a result 
analogous to that in equation (9), again with the replacements 
as previously indicated. We can even consider a "two-phase" 
material, one phase being crystalline of random orientations 
with a2= a3 , a2 = a3 , a2 = ai a n d the other phase 
being isotropic with expansion behaviors a, a', a" . Then, 
considering the equations of the form (8) which we would 
write, it is clear that a relationship analogous to (9) can be 
found with the superscript (1) added to variables subscripted 

(2) (2) (2) 

with 2 or 3, and a {, a [, a {'replaced by a, a ' , a n d a". 
As pointed out for polycrystals, also the two isotropic-phase 

result analogous to equation (6) and the three-phase result 
analogous to equation (9), are valid for porous composites; 
however, equation (10) is not valid. 

4 Two Anisotropic Phases 

We consider the case of two anisotropic phases; their com-
(I) (2) 

pliances are described by the Cartesian tensors S,yW and SiJkl, 

and their expansions by the functions a^CT) and a,y(7). We 
emphasize that the orientation of each phase is fixed in space. 
For this case it is apparently not possible to find a relationship 
of the form (1). However, a% has been found as a function of 
Sf/ki and the phase elastic and expansional properties. This was 
accomplished first by Rosen and Hashin (1970) and later by 
Laws (1973). We will rederive here this result using a 
generalization of a method applied by Cribb (1968) to 
isotropic phases and later by Dvorak (1986) to anisotropic 
phases, which will show that certain of the restrictions im­
posed in Rosen and Hashin (1970) and Laws (1973) can be 
relaxed. 

Again, we begin by disassembling the composite. Then we 
impose on the boundary of each phase the traction 

T, = -$nj, (11) 

where «, is the outward unit vector normal to the phase sur­
face, while changing the environmental constant to some 
nonzero value. T°- is a constant tensor. These tractions result in 
uniform stress T°- throughout, and the strain field in the first 
phase is 

(i) 
en '• ̂ ,S, 

0) 
"ijkl + an (12) 

(2) (2) 

and in the second phase 

e y = • » * ; % , + «'</. (13) 

If the strains in the two phases were identical, one could 
reassemble the composite, the interface condition would be 
satisfied, and no further stress is caused in the body. Equating 
the right-hand sides of (12) and (13) we find the condition for 
identical strain fields 

(i) (2) (2) (1) 

or 

Tkl(Sijkl ~~ S<jkl) - aij ~ aij 

0 / 2 ) ( 1 )
 ID 

where Pm is the reciprocal of (Sm - Sukl) given by 

(i) (2) 

"ijkl(SkImn ~S/dmn) ~^iii 

where I, 
ijklK^klmn 

ljmn is the identity tensor 

1 
/,, ljmn •($iml>in+Sm&jm)-

(14) 

(15) 

(16) 

(17) 

We now have a composite body with strains throughout given 
by (12) or (13), with tractions T°«7- on the outer envelope. If we 
now apply the traction system - r^n,- to the outer envelope, 
and if we can solve the relevant boundary value problem, we 
have a solution for the deformation throughout the composite 
body when the environmental variable changes to T, i.e., en 

or e,y as given by equation (12) or (13) plus the strains gotten 
when the traction - i^rij is applied, T° being taken from (15). 
Now if the body is statistically homogeneous, then the average 
strain in the body due to traction applied to the outer envelope 
is - T°klS*jki where S,*w is the effective compliance of the com­
posite (see Hashin (1983)). Adding this to the uniform strain 
throughout (equation (12) or (13)), we have 

( i ) (i) (18) Average strain = T°k/(Sokl-Sf}kl) + ay. 

This is the effective expansion a,*, and using equation (15) 

(2) (1) '2> (1) 
a*j = (amm ~amm)Pklmn(Sijk/~StJkl) + a^. (19) 

It is clear that this equation can be written with superscripts (1) 
and (2) interchanged. Then, adding the two forms we get the 
form given in Rosen and Hashin (1970) and Laws (1973). 

It should be emphasized that atj{T) need not be a linear 
function of T, and that the present technique permits calcula­
tion of any deformation in the composite body, even when 
statistical homogeneity cannot be assumed if that deformation 
due to the traction system - Tyrij can be found. 

It is clear from the context of the current development that 
equation (19) can reasonably be applied to the case of aligned 
carbon fibers in isotropic matrix composites even though it is 
well known that the fiber itself has a decidedly nonuniform 
structure. However, generally the structure of such fibers is 
more or less radially symmetric (Hughes, 1987). Hence, the 
procedure implied by the equating of equations (12) and (13) 
will still be valid if Snkl of the fiber is interpreted as a measure 
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of overall radial axial compliance when we execute the 
disassembly-reassembly procedure. In fact, the result could 
have been achieved by the method of Sections 2 and 3 if the 
disassembly-reassembly procedure was carried out with first 
axial and then transverse suppression of deformation. The 
aforementioned comment is true also for boron and aramid 
fibers which, while not homogeneous, nevertheless exhibit 
radial symmetry. 

Closure 

The present approach makes it clear that in a heterogeneous 
material for which the description of the constituent materials 
requires r distinct expansion functions, a relation can be found 
between r effective linear expansion functions of the 
heterogeneous material, regardless of the macroscopic sym­
metry and under the condition that the constituents are linear­
ly elastic with the elastic behavior not dependent on the en­
vironmental variable. The present approach also makes clear 
that the relationships which have been found are essentially in­
dependent of arguments based on statistical homogenity. The 
result given in equation (6) was previously reported by this 
author (Schulgasser, 1986) for the case of the statistically 
isotropic polycrystal and for the case of two isotropic phases, 
but was derived there as a corollary to the compliance-
expansion relationships of the type (7) found previously by 
other researchers. Note that the validity of equation (6) for 
polycrystals and its analogous form for two isotropic phases 
implies that for a composite with constitutent material expan­
sions not linearly dependent on an environmental variable, 
knowledge of the effective expansion behavior at one value of 
the environmental variable T immediately implies knowledge 
of the effective expansion for all other values of T if the con­
stituent expansions are known as functions of T. 

In the case of two anisotropic phases it is possible to derive 
the relationship (19), only because tractions of the form (11) 
applied to the outer boundary can be found which, for any 

given value of T, results in uniform strain throughout. 
However, in this case it is not possible to find a relationship 
between the expansions resulting from different environmen­
tal variables without explicitly involving the elastic behavior of 
the constitutents and of the composite. 
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A Green's Function Formulation of 
Antioracks and Their interaction 
With Load-Induced Singularities 
This paper provides a Green's function formulation ofanticracks (rigid lamellar in­
clusions of negligible thickness that are bonded to the surrounding elastic material). 
Apart from systematizing several previously known solutions, the article gives the 
pertinent fields for concentrated forces, dislocations, and a concentrated couple ap­
plied on the line of the anticrack. There is a reason for working out these results: In 
contrast to concentrated forces, a concentrated couple approaching the tip of an an­
ticrack makes the elastic fields explode. Finite limits can be achieved, however, by 
appropriately diminishing the magnitude of the couple, which then leads to fields 
that are intimately connected with the weight functions for the anticrack. An edge 
dislocation going to the tip of an anticrack puts a net force on the lamellar inclusion, 
which is shown to be related to a previously known feature of dislocations near a 
bimaterial interface. 

1 Introduction 

The opposite of a crack, in a certain sense, is a cut in the 
material that is filled with a rigid lamella: A crack is a cut that 
transmits no tractions, but allows a displacement discontinu­
ity. The rigid lamella transmits tractions, but prevents a 
displacement discontinuity. There is no uniform terminology 
for the latter, and we shall call them anticracks for brevity. In 
spite of the fact that anticracks do not have applications that 
are as far ranging as those of cracks, there is a considerable 
amount of literature on the topic. A fairly complete list of 
references can be compiled from the papers by Atkinson 
(1973), Brussat and Westmann (1975), Hasebe, Keer, and 
Nemat-Nasser (1984), Hasebe, Nemat-Nasser, and Keer 
(1984), Wang, Zhang, and Chou (1985), and Mura (1988). 

The objective of this paper is to provide a direct Green's 
function forumulation of anticracks. Such a formulation 
allows one to write the governing integral equations practically 
at sight, and it is suitable for solution by current numerical 
methods. The paper also gives some new solutions. The results 
for edge dislocations show some unexpected features. Similar­
ly, an anomalous behavior is discovered in considering the in­
teraction of a concentrated couple and the anticrack. 

2 Singular Nature of the Fields Induced by Concen­
trated Forces and Line Loads 

The appropriate Green's functions for the anticrack simply 
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are concentrated forces. However, the singular nature of their 
fields must be explored in some detail before they can be ap­
plied directly to the formulation. In doing this, repeated use 
may be made of the following theorem on the Dirac delta 
function in Stakgold's book (1968). 

Let f(x) be a non-negative, locally integrable function for 
which 

f(x)dx=l. 

With a > 0 , define 

/«(*)=- A-r)-
Then 

limfa(x)=6(x). 

(1) 

(2) 

(3) 

The displacement and stress components for a concentrated 
force, Px, applied at the origin and acting in the x-direction 
are (Timoshenko and Goodier, 1970): 

P r x2 ~) 
2ixux(x,y) = x - K i o g r + — -

TT(K+ 1) C rl J 

2)xuy{x,y) = 

°xx(x,y) = 

oxy(x,y) = 

°yy(x,y) = 

T ( K + 1 ) 

Px xy 
7T(K+1) r2 

Pr r x 

^T7l- (*-V-4-

ferrH*-i> 
y 

2TT(/C+1) 

-1 
x2y\ 
r4 3 

2TT 

(4) 

(5) 

(6) 

(7) 

(8) 
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where pi is the shear modulus and, with v denoting Poisson's 
ratio, K = 3 - 4c for plane strain and K = (3 - c)/(l + v) for plane 
stress. Of interest in the present context are the limits for y~+0 
of the following quantities: 

Ip.-
dux(x,0) PXK 1 duy(xfi) 

, 2fi • 
dx 7r(/c+l) x dx 

PX(3 + K) 1 
axx(xfi)=-

27T(K+1) x 

1 
ff ( X , 0 ± ) = = F —-Px8(x) 

= 0 (9) 

(10) 

(11) 

ayy (xfi) = 
PX(K-1) 1 

2IT(K+1) x 

It follows immediately from these expressions that a line 
load with a local density px (x) acting on the x-axis in the x-
direction gives 

dux(x,0) K r+ c°px(g)<% 

TT(K+1) J 
2W 

dx a-x 
du (xfi) 

in—'- • dx 
•0 

axx(xfi) = -
3 + K + K f + 

K+ 1) J -
PAWZ 

2IT(K+ 1) J -<» £ - x 

Oxy(Xfi±)==F---px(x) 

Oyy(xfi)--
K - \ Pxtt)dS 

(13) 

(14) 

(15) 

(16) 
2TT(K+ 1) J -co £— x 

where the integrals are to be evaluated in the sense of Cauchy 
principal values. 

The field quantities for a concentrated force Py acting in the 
.y-direction can be obtained by a rotation of coordinates. The 
limits of interest for y-~0 are 

2M-
dux(xfi) du (xfi) 

= 0 , 2pi-
dx dx 

axx(x,0±)=TPy{2~K) 

(17) 

2(/c+l) 

PyK 1 

7T(/C+ 1) X 

5(x) (18) 

o„M=-P>«-» ' 

<Jyy(X,0±)=T—Py5{X) 

2TT(K+1) x 

1 

2 

(19) 

(20) 

Then, a line load of intensity/?,, (x) acting on the x-axis in the 
j>-direction gives 

2„-
dux(xfi) 

dx 
= 0, 2p.-

dUy (xfi) 

dx 

Py(Wt 
IT(K+ 1) J -CO £ - J C 

3 - K 
oxx(x,0±)= T Py(x) 

2 ( K + 1 ) 

K-I r - pAk)di 
a (xfi) = -

( K + 1 ) J 2 T T ( K + 1 ) J - C O %-X 

<7yy(xfi±)=T—-Py(x). 

(21) 

(22) 

(23) 

(24) 

3 Boundary Conditions and Formulation 

An anticrack, as any other rigid inclusion, restricts the 

displacements on the interval it occupies to be those of a rigid 
body, or to be of the form 

ux(x,y) = a-o>y, u (x,y) = P + wx. (25) 

Consider for simplicity a single anticrack on the interval 
\x\ <a, y = 0. In such a case, the rigid body displacements 

may be differentiated with respect to x without loss of 
generality, yielding the boundary conditions 

dux(xfi) 

dx 
= 0, 

duy (xfi) 

dx ' 
• oi, \x\<a. (26) 

Suppose that the applied loads induce in the body without the 
anticrack displacements that yield 

(12) 2 /*(K+1) dux(xfi) 

dx = - / , ( * ) . 

2 /* (K+1) dUy(xfi) 

K dx 
-L(x), \x\<a. (27) 

The boundary conditions (26) can be enforced by distributing 
line loads with densities px(x) and py(x) on the interval 
\x\ <a. Using (13) and (21), this yields the Cauchy integral 

equations 

i r PAWH 1 f 
ir J - o 

1 r0 

•w J -
Py(l)dl 

i \~X 

fx(x), \x\<a (28) 

= C+fy(x), \x\<a (29) 

where 

C=[2/X(K+1)/K]O) (30) 

and a is the rotation of the anticrack. 
As it could be anticipated from (25), this system still retains 

three unknown constants. In addition to Cin (29), they are the 
two free multipliers of the homogeneous solutions of the in­
tegral equations. The three constants can be determined, 
however, from the global equilibrium conditions of the 
anticrack: 

px(x)dx = Fx 

p (x)dx=F 

xpy(x)dx-M 

(31) 

(32) 

(33) 

where Fx and Fy are the forces, and M the couple that are ap­
plied at the center of the rigid lamella by an outside agent. 

4 Simple Solutions 

The simplest solutions correspond to the anticrack being 
subjected to forces and a couple that are applied directly to the 
rigid lamella, and the anticrack disturbing, uniform stress 
fields (the anticrack induces no disturbance in a field of 
uniform shear). Although some of these solutions have ap­
peared in the literature, they are compiled in Appendix A for 
the sake of completeness. 

However, the simple anticrack solutions have remarkable 
features that have not been noted before. 

(1) Setting K = - 1 (this corresponds to c = l for plane 
strain, and v= oo for plane stress) in (A 18-/120) yields 

axx(xfi)=T> 
f \x\H(\x\-a) -j 

\x\ <oo 

axv(xfi) = 0, \x\<<x 

(34) 

(35) 
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Fig. 1 Various concentrated actions near the tip of an anticrack 

\x\H(\x\ -a) , . ,.„ 
ayy(x,0)=Ty ( x 2 \ a 2 y n , \x\«». (36) 

where H denotes the Heaviside step function. It is seen that 
these are precisely the results for a Griffith crack. 

(2) Setting now K = - 1 in (^414-^416) gives 

axx(x,0)=Tx, oxy(x,0) = oyy(x,0) = 0, L d < o o (37) 

which again is true for a Griffith crack that is parallel to the 
direction of applied tension. 

(3) Replacing FX/(K+\) by - 2 / * A J , / ( K + 1 ) in (A2-A4) 

and setting K = - 1 elsewhere in the expressions gives 

i m i m 2^A-c s g n x r 7 ( l x l - a ) 
g - ( X ' 0 ) = ^ ( ^ Q ) = l r O m y (x2-a2)»2 ' 

oxy(x,0) = 0, b d < o ° . (38) 

These are precisely the results for a Zener-Stroh crack with the 
Burgers vector Ay (Weertman, 1986). 

(4) Replacing Fy / ( K + 1) by 2/tA,. / ( K + 1) in (A 6-A 8) and 
again setting K = - 1 elsewhere, results in 

CT^(X,0±)==F 
4^4, / / ( A - 1x1) 

axy(x,0) = 

TT(/C+1) ( a 2 - x 2 ) 1 / 2 ' 

2JXA.X sgnxrY( \x\ -a) 

7 T ( K + 1 ) ( X 2 - « 2 ) 1 / 2 

l x l < c o (39) 

l x l < o o (40) 

< J W ( X , 0 ) = 0 , UI <co (41) 

corresponding to a Bullough-Gilman crack with the Burgers 
vector Ax (Bullough, 1964; Tucker, 1973). 

The stress fields for anticracks depend on Poisson's ratio 
and, within the physical range 0 < c < l / 2 , they satisfy, of 
course, the boundary conditions appropriate to the anticracks. 
The curious result here is that these stress fields for a specific 
Poisson 's ratio outside the physical range satisfy the boundary 
conditions of a different problem that is back in the physical 
realm. Why this is so can be traced through the equations and 
boundary conditions of elasticity (Dundurs 1968; Dundurs , 
1970; Dundurs 1989). 

5 Concentrated Force and E d g e D i s l o c a t i o n — S y m ­

metric P r o b l e m 

The solutions for concentrated forces and edge dislocations 
are basic because they provide new Green's functions. 

Consider a concentrated force Fx in the direction of the an­
ticrack or an edge dislocation with the Burgers vector by (extra 
sheet of material on the x-axis in the negative direction) acting 
at the point x-s, y = 0 (see Fig. 1). On the basis of (27)-(29), 
both problems lead to the same integral equation 

PAiM \x\ <a (42) 
J - a i—X X — S 

where L = Fx for the concentrated force, and L = 
— byf>.(K— 1) /K for the edge dislocation. Imposing the side 
condition 

P px{x)dx = 0 (43) 
J -a 

for equilibrium of the lamella, the solution of (42) is 

P x M ir(a2-x2)i/2 

The integral 

;« px{h)dj .( l 

%-X U - J 

I s—x ) \x\ <a. (44) 

r» pAS)di_A 
i-a k~X lx 

( i S 2_ a 2 ) i / 2 - | sgnxH(\x\~a) 
[ • • . } (x2-a2)1 ] • 

l x l < o o (45) 

is needed for the computat ion of the stresses using (14)-(16). It 
should be noted that (14)-(16) give only the stresses induced by 
the line load, and that the stresses of the force or edge disloca­
tion in a homogeneous material must be added to get the total 
stresses. 

Introducing the contraction 

g(x)=-
1 

i x 2 - a 2 1 + 
(s2-a2)1 

'}• (46) 

the total stresses for the concentrated force are 

FX(3 + K) 
a „ ( x , 0 ) = 

2 T T ( K + 1 ) 
-g(x)sgnxH(\x\-a), \x\<<x (47) 

oxy(x,0±)=*-^--[Tr&(x-s) 

+ g(x)H(a-\x\)}, l x l < o o 

FX(K-1) 

(48) 

-g (x) sgnxH( \x I - a), \x I < oo. (49) <yyy(x,0)-- ,, . , , 
2 T T ( K + 1 ) 

Similarly, the total stresses for the dislocation are 

, „ byn ( 3-K 

ZltK 

r 3-K 

I x—s 

+ — + g(x)sgwcHOx\-a)}, U l < o o (50) 
K+ 1 J 

<7„(X,0±)==F 
6 „ / I ( K - 1 ) 

27TK 
g(x)H(a- \x\), l x l<oo (51) 

byfX C K + 1 
yy ' 2-KK v. x—s °^^{-x 

U - l ) 2 

K+l 
g(x)sgnxH{ \x\ -a), l x l < o o . (52) 

The Peach-Koehler force on the dislocation is (Weertman and 
Weer tman, 1964) 

Kx = byayy(s,0), a<s, (53) 

and it acts in the x-direction. However, in (53) only the con­
tribution to the stress by the line load must be used. The result 
is 

v b}n(K-l)2 s-(s2-a2)W2 

2 7 T K ( K + 1 ) s* — a*-
(54) 

S i n c e K x > 0 , the anticrack repells the dislocation. 
Finally, consider the limit s—0. For the concentrated force, 

(44) becomes the same as (Al), which is as expected. For the 
dislocation, however, (44) yields 

> , * - ! > 1 

and 

•KK (a2-x2)in 

px(x)dx= — 

•, \x\ <a 

by/x(K - 1) 

(55) 

(56) 
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This means that, in the limit s—a, the dislocation with a 
positive Burgers vector by exerts a net force on the lamella that 
is in the negative x-direction (positive px (x) acts on the elastic 
material, negative px (x) acts on the rigid lamella). The fact 
that a dislocation, which is a self-equilibrated singularity, ex­
erts a force (a real force in the sense of Newton, not a driving 
force in the sense of Peach and Koehler) on the rigid lamella 
may seem contradictory. It is explained in Appendix B why 
this is actually very reasonable. 

6 Concentrated Force and Edge Dislocation—An­
tisymmetric Problem 

Now the concentrated force Fy acts in a direction perpen­
dicular to the anticrack and the Burgers vector bx is in the x-
direction (extra sheet of material perpendicular to the x-axis 
and on the side of positive^). The governing integral equation 
from (27)-(29) is then 

axv(x,0) = 
bxll C K+ 1 (K— 1) 

2-7TK 
f K+l (fC-1) 
C X — S K+ 1 

[A-h(x)sgnxH( I x l - a ) ] ] , (67) 

ayv(x,0±) = T bxll{-K X)h(x)H{a- Ixl), Ixl <ex.. (68) 
27TK 

The Peach-Koehler force on the dislocation is 

b 2U(K— l)2 

Kx = bxoxy(s,0) = l , , s k(s) (69) 
2TTK(/<+1) 

where 

k(S): 
s — (s2 — a2)[ ( 2 

[sz -a2 -s(s2 - a2)"2}]. (70) 

It can be reasoned from (70) that the anticrack repels the 
dislocation in all positions. 

In the limit s—a, 

0 Py(j)dj L -N(c+-L-), 
V X — S' 

Ixl <a. (57) Py(x)=~ 
N 

-('•?)• x<a (71) 

For the force, N=Fy, and for the dislocation N= bx^(a- 1)/K. 
The solution of (58) under the side conditions 

is 

(58) py(x)dx = 0, \ xpy(x)dx = 0 

ir(a2-x2)W2 

which no longer satisfies (58). For the concentrated force, (71) 
can be reconciled with (,45) and 049). For the dislocation the 
result means that, in the limit s— a, the dislocation exerts a 
force bxfi(K- \)/K that acts on the tip of the anticrack in the y-
direction. Again, this result can be explained on the basis of 
the discussion in Appendix B and equation (B9). 

N 
Py(X) \(a2-x2y/2 

where 

I1+.4X-
(s2-a2)1 

'}• \x\<a (59) 7 Concentrated Couple 

A=-T[s-(s2-a2y/2]. (60) 

Moreover, 

It is also interesting to consider a concentrated couple with a 
moment Mtha t is acting at the point x=s, y = 0 (see Fig. 1). 
From the known solution for a concentrated couple acting at 
an interior point (Timoshenko and Goodier, 1970), it follows 
that the couple gives 

J-a £—X C X — S L 

1 sgnxH(\x\-a)^ , , 

J (x
2-a2y<2 J' w < < 

v 
duy(x,0) M 1 

( s 2 - a 2 ) 1 / 2 l sgaxH(\x\-ay 

x—s J ( x 2 - a 2 ) ' 
(61) 

dx 2TT (X-S)2 

which, then on the basis of (29), yields the integral equation 
" P ^ _ M ( K + l ) r 1 , 

C (x-s)2 J L 
Proceeding as in the previous case, the total stresses for the 

concentrated force are 

£ - x 2/c l~ (x-s)2 

The solution of (73) under the side conditions (58) is 

FJ3-K) 
(JXX(X,0±)= =F [TT8(X—S) 

Py{x) = 
M(/c+l) 

2TT(K+1) 

+ h(x)H(a- Ixl)), lxl<oo 

27TK(«2-X2)1 BX-(s2-a2y-(s-x)2l' IXI<° 

(62) 
B=-

2[s-(s2-a2)l/2] 

(74) 

(75) 
Fy(K-l) 

" ^ ' v ' - 2 T ( K + 1 ) 
<7 (X,0) = {A-h(x)sgwcH( Ixl -a)}, lxl<<» 

(63) 

ff„j,(x,0±)= T—2-{ir8(x-s) + h(x)H{a- Ixl)), lxl<oo 

where 

h(x) = 

2TT 

1 (. . (s2-a2)1/2 

\x2-a2\W2 -

For the dislocation, 

1+Ax + -
x—s 

(64) 

•], Ixl < oo. (65) 

Oxx(X,0±)=* 
bxix 

TT(K+1) 

( K - 1 ) ( 3 - K ) 

{4TT5(X-5') 

2/c 
h(x)H(a-\x\)}, lxl<oo (66) < T „ ( X , 0 ± ) = = F 

a2(s2-a2)W2 

Consequently, 

f0 pytt)dt_M(K+l)( 1 

J-« £ - x 2/< I ( x - s ) 2 

+ £ - / ( x ) s g n x t f ( l x l - o ) ] , lxl<oo (76) 

where 

1 C s x —• a ^) 
J M = \x2-a2V'2 1BX + (s2-a2y<2(x-s)2\' ( 7 7 ) 

Using (22)-(24) for the contributions by the line load and ad­
ding those of the couple acting alone, the total stresses in the 
plane of the anticrack are (terms with 5' (x—s) in the normal 
stresses have been omitted) 

M ( 3 - K ) . , 

47TK 
-j(x)H(a- Ixl), Ixl <oo (78) 
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axy (x,0) = 
M(K-1)( K + 1 

C K-4irn U - l (x—s)2 

-B+j(x)sgnxH(\x\-a)\, bel<< (79) 

M(K+ 1) 
oyy(x,0±)=^— -j(x)H(a-\x)), \x\<oa. (80) 

47TK 

It was recently noted by the present authors (Dundurs and 
Markenscoff, 1989) that the interaction of a concentrated cou­
ple with a crack involves some unexpected features. Equations 
(74) and (78)-(80) show that, except in one respect, the situa­
tion with the anticrack is quite similar. 

(1) In the limit s - « , as seen from (74) and (78)-(80), the 
density of the line load and the stress components become un­
bounded, and one does not recover (A9-A12); thus, there is a 
stark contrast with concentrated forces. Such an outcome is, 
in a way, more surprising than that for the crack: Whereas a 
crack can be viewed as a weakness in the material, an an­
ticrack is a reinforcement, and yet it makes the elastic fields 
explode when the couple approaches the tip of the anticrack. 

(2) To achieve a finite limit as s—a, the magnitude of the 
couple must be artificially diminished so that M(s — a)W2 

= Q = const. In such a case, an r~3/2 type singularity results at 
the tip of the anticrack. However, this result is not empty of 
meaning, as the r~V2 singularities are those of a weight func­
tion for the anticrack. 

(3) In the vicinity of x= + °°, (79) gives to the first order 

M 1 
a ( x , 0 ) ~ - - - , 

7 2ir xL 

(81) 

It is seen from (81) that the far-field stress of the concentrated 
couple is not distorted by the anticrack. This outcome is dif­
ferent from that for a crack involving a "magnification fac­
tor" (s-a -1/2 that can be arbitrarily large (Dundurs and 
Markenscoff, 1989). It should also be noted in this connection 
that the limits involved in (79) are discontinuous. Thus, the 
limit sequence x-~ oo, s—a gives a different result than the 
limit sequence s—a, x—oo. 
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A P P E N D I X A 

Listed are the basic solutions for the anticrack in the nota­
tion used in this article. In all cases the material is of infinite 
extent, and the anticrack occupies the interval \x\ <a, y = Q. 

1 Force Fx in the ^-Direction Applied Directly to the 
Rigid Lamella 

PXM 
IT (a2-x2y 

-, lxl<<7 M l ) 

axx (x,0) = 
FX(3 + K) sgnxH(\x\ -a) 

2TT(K+1) (x2-a2)W2 ' 
bel<oo (A2) 

axy(x,0±)=^-^~ H[a \X]J2 , LvKoo (A3) 
2ir ( a 2 - * 2 ) 1 ' 2 

, ^ FX(K-\) sgnxH{ \x\ — a) , , 
ayy(x,0) = X ' B , lxl<oo (,44) 

27r(K+l) (xL-aly'2 

2 Force Fy in the j'-Direction Applied Directly at the 
Center of the Rigid Lamella 

/M*) — IT (a2-x2) 2_v2V/2> I*' <« MS) 

axy(x,0)=-

2TT(K+1) (a2-x2)W2 

Fy(K~l) sgnxH(lxl-a) 
-2 _ „2\l /2 

UI<oo (A6) 

2TT(K+1) (x2-a2) 
, \x\«» (Al) 

Oyy(x,0±)= =F 
Fy H(a- \x\) 

2-K (a2-x2)1/2 , be I < oo (,48) 

3 Couple With Moment M Applied Directly to the 
Rigid Lamella 

i s 2M X i i 
Py(x)=-^r-7--,—-^77T> \x\<a 

axx(x,0±)=^ 

•wa2 (a2-x2)l/2 

M ( 3 - K ) xH{a-\x\) 

•w(K+\)a2 (a2-x2)m 

(A9) 

-, bcl<oo (,410) 

M ( K - 1 ) r \x\H(\x\-a) -\ . , ..... 
axy(x,0)= 1 — , 1*1 <oo (,411) 

TT(K+ l)a2 L ( x - a 2 ) 1 7 2 J 

Oyy(X,0±)= T 

M(k- l)_f \x\H{ \x\ -a) 

i2 I (x2-a2 

M xH(a- be I) 

•wa2 (a2-x2)1/2 \x\<<x (A\2) 
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4 Tension Field Tr Parallel to the Anticrack 

Px{x) = -
TX,(K+1)2 

<jxx(x,0)=T, 

4K (a2-x2)W2 

TX(K+1)(3 + K) 

•, \x\<a M l 3) 
1*2, K2 ($ Ml. «1 

-h-J 

(x2~a2)' '}• lxl<oo 

ff™(X,0±)=T 

l x l / / ( l x l - a ) -
1, IX l < c 

2 r xfl 
8K r (^2-x2)l/2 

Fig. 2 Edge dislocation near an interface between two materials 

0414) 

TX{K+\)2C xH(a-\x\) 
•1, lxl<oo(,415) 

C = 
2/x,(l+a) 2/*2( l-a) 

(K, + 1 K 1 - | 8 2 ) (K2 + 1 ) ( 1 - ) 3 2 ) 
(54) 

CTvv ( X , 0 ) = 
TX(K2-1)C \x\H(\x\~a) 

fa(«i + l ) - ^ i f e + l) fl_ -̂2(«i - 1)-Mi(«2~ 0 , „ 5 ) 

D X
(xi aiya ] • l x l < a > ^ 1 6 > a ^(K, + l) + fi,(K2+l) ' ^(K. + n + ̂ ^ ^ + l) 

5 Tension Field J Perpendicular to the Anticrack 

P* (*) = 
TJK+1)(3-K) 

4K ( a 2 - x 2 ) L Ixl <« (All) 

, ^ • / x(^ -K) r< x / / ( x -a)-) , , 

a ( x , 0 ± ) = T 
Ty(K+l)(3-ic) xH(a- Ixl) 

8K (a2-x2)U2 , lxl<< 

ff„v (Xfi) = 
T(K+1)(3 + K) T(K-1)(3-K) 

\x\H( I x l - a ) 

8K 

( x 2 - « 2 ) ' 
-, Ixl < oo 

M l 9) 

(.420) 

A P P E N D I X B 

When a dislocation is situated in a homogeneous material, 
the resultant of tractions on any straight line vanishes. 
However, this is not so in a bi-material with an infinitely ex­
tended interface. In such a case, the image terms give a net 
force that is transmitted by the interface. This unusual effect 
was discovered by Dundurs and Sendeckyj (1965). 

For a dislocation with the Burgers vector by in the y-
direction (see Fig. 2), the distribution of normal tractions 
0^(0, y) at the interface is bell-shaped, which becomes more 
peaked as the dislocation approaches the interface (the total 
force remains constant). The following distribution of stresses 
at the interface can be extracted from the results given by Dun­
durs and Sendeckyj (1965) in the limit as h~0: 

oxx(0,y)=-C&byb(y) (Bl) 

<yxy®,y)= by~ (Bl) 
•K " y 

oyy(0±,y)=-C(*2 + l3)by5(y) (53) 

where 

(see also the papers by Nakahara and Willis (1973), Barnett 
and Lothe (1974), and Comninou (1977)). It is seen now from 
(Bl) that a pair of concentrated forces 

Fx=-CI3br (B6) 

act on the solids. For positive 0 by the solids are pried apart, 
for negative /3 by they are pulled together. If the second phase 
is rigid (yu2~°°)> 

Fr = 
^ i ( K i - l ) (57) 

which is the same as (56). Suppose now that a dislocation with 
a positive by is placed at the right pointed end of a rigid ellip­
tical inclusion. It is clear that the dislocation then exerts the 
force given by (Bl) on the inclusion in the negative x-direction 
as long as the curvature at this point is finite. This force is, of 
course, balanced by the tractions acting on the inclusion 
elsewhere. The unexpected result obtained in Section 5 simply 
means, therefore, that nothing changes as the elliptical inclu­
sion degenerates into an anticrack. 

The counterparts of (Bl)-(B3) for a dislocation with the 
Burgers vector bx in the x-direction are 

axx(0,y) = — b x — 
ir v 

axy(0,y) = Cf3bx8(y) 

< V ( 0 ± J O = (l=F20)*y 
y 

(58) 

(B9) 

(BIO) 

The pair of concentrated forces with the magnitude 

Fy = C$bx (fill) 

in this case tend to make the interface slip. For a rigid second 
phase 

Fv = * * / * I ( K I - 1 ) (512) 

which is the same as the force exerted by a dislocation at the 
tip of the anticrack. 
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Line Inclusions in Anisotropic 
Elastic Solids 
A line inclusion located at x2 = 0, Ix, I < 1 in the anisotropic elastic medium of in­
finite extent under uniform loading at infinity is considered. Stroh's formalism is 
used to find the displacement and stress fields. The inclusion can be rigid or elastic. 
Conditions on the loading under which the line inclusion does not disturb the 
homogeneous field are derived. For the rigid inclusion, a real form solution is ob­
tained for the stress and displacement along x2 = 0. When the inclusion is elastic 
(and anisotropic), a pair of singular Fredholm integral equations of the second kind 
is derived for the difference in the stress on both surfaces of the inclusion. The pair 
can be decoupled and asymptotic solutions of the integral equation are obtained 
when X, which represents the relative rigidity of the matrix to the inclusion, is small. 
For the general cases, the integral equation is solved by a numerical discretization. 
Excellent agreements between the asymptotic and numerical solutions are observed 
for small X. 

1 Introduction 
It is known that most materials contain some defects in the 

form of cracks, voids, or inclusions which can affect the load-
carrying capacity of engineering structures. It is therefore im­
portant to know how the defects disturb the stress field and 
how the stress concentration arises due to the existence of the 
defects. Crack problems have received much attention and 
have been widely studied. Inclusions or inhomogeneity 
problems (sometimes called hard crack or inverse crack 
problems) have also aroused much interest in recent years. An 
extensive review on the subject has been given by Mura (1987, 
1988). 

Using the methods of Eshelby (1957, 1959), Muskhelishvili 
(1953), Chou and Wang (1983), and Wang et al. (1985, 1986) 
considered a rigid line inclusion in an isotropic plane elastic 
body. Analytical expressions of the stress fields due to 
uniform remote loading are derived. The same problem has 
been considered by Ballarini (1987) using the method of in­
tegral transform. Their results showed that the stresses near 
the tips of the rigid line inclusion have square root 
singularities. The problem of an elastic line inclusion was 
investigated by Sendeckyj (1970) and Selvadurai (1980). Using 
Muskhelishvili's method, Atkinson (1973) also considered the 
problem of elastic inclusions in isotropic solids. Under the 
assumption that the inclusion is much "harder" than the 
matrix, he obtained an asymptotic solution for the stress 
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fields. Erdogan and Gupta (1972) studied the more general 
problem of bonded materials containing a flat inclusion which 
may be rigid or elastic with negligible bending rigidity. They 
formulated the problem into a system of singular integral 
equations which was then solved by expanding the solutions in 
a Chebyshev polynomial. 

Although a great deal of work has been done for inclusions 
in isotropic matrices, the problem of an inclusion in 
anisotropic media, which is becoming more and more impor­
tant with the replacement of conventional materials by 
varieties of composite materials, seems to have not received 
much attention. There are several approaches in solving 
anisotropic elasticity problems, but in this paper we will 
employ the Stroh formalism (Stroh, 1958, 1962). We consider 
the problem of a very thin, flat inclusion in an infinite, 
generally anisotropic, elastic body which is subjected to a 
uniform loading at infinity. The inclusion is assumed to be 
located at x2 = 0, lx,l < 1, -oo < x3 < oo. The deforma­
tion is two-dimensional in the sense that the displacements de­
pend on xx and x2 only. In Section 2, the fundamental equa­
tions of anisotropic elasticity and a brief account of the Stroh 
formalism are given. The homogeneous solution, which is the 
solution of the infinite medium when the inclusion is absent, is 
given in Section 3. Conditions under which the homogeneous 
solution is not disturbed by the presence of the inclusion are 
derived here. The rigid inclusion problem is considered in Sec­
tion 4 where a real form solution is obtained for the stress and 
displacement at x2 = 0. Section 5 is devoted to the case when 
the inclusion is elastic and anisotropic. A pair of Fredholm in­
tegral equations is derived for the difference in the stresses on 
the surfaces of the inclusion. The pair can be decoupled and 
each of the uncoupled equations has the same Fredholm in­
tegral equation form involving the parameter X which 
represents the relative rigidity of the matrix material to the in­
clusion. The asymptotic and numerical solutions of the in-
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tegral equations are presented in Section 6 and results are plot­
ted for various values of X. Comparisons of the numerical 
solutions with the asymptotic solutions show that the asymp­
totic solutions provide good approximations for X up to 0.1. 

2 Basic Equations 

We present in this section a brief derivation of Stroh's for­
malism (Stroh, 1958, 1962; Barnett and Lothe, 1973; Chad-
wick and Smith, 1977; Ting, 1986). In a fixed rectangular 
coordinate systemxlt x2,xi, let uh o-y, e,y be, respectively, the 
displacement, stress, and strain of the material. The equations 
of equilibrium and the stress-strain laws for the material can 
be written as 

aUJ = 0> (1) 
aij — ̂ -'ijksiks~^-ijksuk,st (2) 

in which a comma stands for differentiation, repeated indices 
imply summation, and Cijks are the elastic stiffnesses which 
satisfy the symmetry conditions 

c =o — c 
^ijks ^jiks *^ksij' 

For two-dimensional deformations in which «,-, i = 1, 2, 3, de­
pend on x, and x2 only; the general solution can be written as 

uk=aj(z), (3) 
z=x{+px2, (4) 

where p and ak are constants and/is an arbitrary function of 
z. In matrix notation, p and ak are determined by 

{Q+p(R + RT)+p2T}a = 0, (5) 
in which the superscript T stands for the transpose and Qy = 
CIM > R<k = C/U2. Tik = cma- W e n o t e t h a t Q a n d T a r e sym­
metric and, subject to positiveness of strain energy, positive 
definite. Equation (5) is obtained by substituting (3) into (2) 
and (1). 

Introducing the new vector 

b = (Rr+/?T)a= -p-HQ+pRja, (6) 

in which the second equality comes from (5), the stress ob­
tained by substituting (3) into (2) can be written as 

°-/i = - * , \ 2 . <7a = * / , i . (7) 
* = b/(z). (8) 

Thus, $ is the stress function. 
Equation (5) provides six eigenvalues, pa, and six eigenvec­

tors, aa, a. = 1,2 6. From (6) we obtain six b„. Sincepa 
cannot be real if the strain energy is positive (Eshelby, 1953), 
pa come in three pairs of complex conjugates and so do a„ and 
ba . Without loss of generality we let 

ImfpJX) , pa+i=pa, (9) 
a
a+3=tfa> *>a+i=ba, a = l , 2 , 3 , 

where Im stands for the imaginary part and the overbar 
denotes the complex conjugate. It follows from (3) and (8) 
that the general solution for u and * can be written as 

3 
U = Yj Uc/aUc. )+«</« +3(4)1. (10tf) 

*= D {*>Ja(za)+hja+3(za)} (10b) 

in which / , , /2 , . . ., f6 are arbitrary functions of their 
arguments. In writing (10), we have assumed that the eigen­
values pa are all distinct or, if there is a repeated pa, the 
associated eigenvectors aa are independent of each other. A 
modified expression can be found in (Ting, 1982) if this is not 
the case. 

If we define the 3x3 matrices A and B by 
A = (a,,a2,a3), 
B = ( b , , b 2 , b 3 ) , 

it can be shown that the matrices H, L, S given by 

H = 2/AA r, L=-2iBBT, S = i (2AB r - I ) , (11) 

where i = V ^ T and I is the unit matrix, are real. Moreover, 
the matrices H and L are symmetric and positive definite, 
H " 'S is antisymmetric, and 

B A - 1 = ( S r + iI)H-1 = - H - ' ( S - / I ) . (12) 

Equations (11) are valid provided the eigenvalues pa are 
distinct or, if there is a repeated eigenvalue, the associated 
eigenvectors a0 are independent. A modified expression in 
place of (11) when this is not the case can be found in (Ting 
and Hwu, 1988). An alternate approach using an integral for­
malism without determining the eigenvalues and eigenvectors 
was proposed by Barnett and Lothe (1973). For isotropic 
materials, H and L are diagonal matrices given by 

H = ^ - 1 d iag{ ( l+s ) /2 , ( l + s ) /2 ,1) , (13) 

L = / id iag[2( l -s ) , 2(1-5), 1), (14) 

S = ( 1 - 2 X ) / 2 / 1 - J > ) , 

where /x and v are, respectively, shear modulus and Poisson's 
ratio, while S has only two nonzero elements 

0 - 5 0 

S = (15) 

Before we close this section, we list next the alternate con­
tracted notation for the stress-strain law given by (2). By let­
ting 

°\ ~0\\> 02=a22,
 (73=(r33» ff4 = ff23 > a5=aU> °6 = <T12> 

e l = € 11> e 2 = e 2 2 > e3 = e 3 3 > e4 = 2e23> €S = 2 e 1 3 , 66 = 2el2, 

(2)! can be written as 
<T, = Cyej, (16) 

and the inverse of the stress-strain laws as 
e,= Wuaj, (17) 

where W{i are the elastic compliances. For the two-
dimensional deformation considered here 

Solving for <r3 and substituting it into (17) leads to 
e^WyOj, (18) 

where 
w^wn-wawrs/wn. 

Since W3J = Wa = 0, the elements of the third column and 
the third row of the 6 X 6 matrix W vanish. Deleting the third 
column and the third row, it is shown in (Ting, 1988) that the 
reduced 5x5 matrix is positive definite. 

3 Homogeneous Solution 
For a line inclusion located at x2 = 0, - 1 < xt < 1, subject 

to a uniform stress a™ at infinity, the solution consists of two 
parts. The first part is the homogeneous solution without the 
presence of the inclusion. The second part is the disturbed 
solution due to the presence of the inclusion. In this section we 
consider the homogeneous solution which will be denoted by 
the superscript (o). 

For a uniform stress CT" at infinite, the solution for 
displacements can be written as 
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U/°> = (£ ,?+< ' ) * ; , (19) 

where e"and wy0) are constants, e," is, in contracted notations 
of (17), 

ef = Wyof. (20) 

The stresses of are prescribed in such way that ef = 0. Alter­
nately, one could prescribe ef with ef = 0. of are then deter­
mined from (16). Since displacements are assumed to depend 
on Xi and x2 only, we may choose wy0) such that the coeffi­
cients of x3 vanish. Also, if we let u2

0) = 0 along x2 = 0, (19) 
reduces to 

l ( O ) : 

0~ 

0 

O j 

^ * 1 " 

x2 

.Xi _ 

The displacement at x2 

then given by 

£5 

= 0 where the inclusion is located is 

u<°>(*„0) = 0 

ef 

X,. 

If the inclusion is rigid, and if ef = ef = 0, or 

J * V » = 0 , 

(21) 

(22) 

then u (0 ) (X[, 0) = 0 and the existence of a rigid inclusion at x2 

= 0, - 1 < X] < 1 does not disturb the homogeneous solu­
tion. For given material constants, Wy, (22) provide condi­
tions on of so that the homogeneous solution is the solution 
for the rigid inclusion. 

As an example, consider the case in which the body is sub­
jected to a uniform tension of magnitude o0 in the direction 

(cos/3cosa, cos/3sina:, sin/3), 

which makes an angle ft with the (*,, x2) plane and its projec­
tion on the (xu x2) plane makes an angle a with the Xj-axis, 
Fig. 1. To produce this stress state with ef = 0, it can be 
shown that of must be given by 

of = o0 cos2 /3 cos2 a, 

°i - °o c o s 2 P s m 2 «» 

of = o0 sin j3 cos /3 sin a, 

of = o0 sin /3 cos /3 cos a, 

sin a cos a, 

°T = -Lwvaf/w3i. 
y*3 

Equations (22) now reduce to 

W,51cos2a:+ H^52sin
2o! + ff^sinacosa 

(23) 

of = o0 cos2 , 

- tan/3 = - - . 
W54sma + W55cosa 

_ Wucos2a + W^sin2!*-!- i ^ s inacosa 

W^sina + JFuCOSa 

from which the second equality yields 

cot3 a + acot2a + bcota + c = 0, 

where 

a=(wuw54 + wi6 iv55 - ivi4 wX5 - wu ivS6)/A, 
b=(Wn iv55 + wl6 ivS4 - wu w56 - wls W25)/A, 

c=(ivl2ivS4-wHw52)/A, 
A=WnW55-W

2
5>0. 

(24) 

(25) 

^ 

/// 

uacosfi 

Fig. 1 Inclusion configuration 

Equation (25) provides at least one real root for a. Equation 
(24) then furnishes /3. 

For isotropic materials the only nonzero Wy appearing in 
(24) are Wn, Wn, W5S which are given by 

Wn = (1 - v)/2n, Wn = - v/2n, W55 = l//t. 

Equation (24) and (25) yield /3 = 0 and 

t&n2a=-Wn/Wl2, (26) 

or 

a = ±tan ^(l-v)/v, (27) 

which agrees with the result obtained by Wang et al. (1985). 
If the line inclusion is elastic with elastic compliances W\p 

and if 

eT = Wljof = Wtfof, 

ef = W5jof = Wyof, 
(28) 

assuming that o} (yV3) in the inclusion and in the matrix is 
identical, then the displacements at x2 = 0 produced by the 
homogeneous solution is compatible with the deformation of 
the line inclusion. This means that the elastic line inclusion 
does not disturb the homogeneous solution and the homo­
geneous solution is the solution for the inclusion problem. 
If we define 

(28) can be written as 

Wy]=Wy-w\p, 

[W{j]of=0, 

[Wsj]of=0, 

(29) 

(30) 

which provide conditions on of for the homogeneous solution 
to be the solution for the elastic inclusion. Equations (30) are 
identical to (22) if we replace Wy by [Wy] for / = 1, 5. 
Therefore, for the loading given by (23), equations (24) 
through (26) remain valid for the elastic inclusion if we replace 
Wy by [Wy]. If the inclusion is isotropic with shear modulus 
/t'' ' and Poisson's ratio v(,), (27) is replaced by 

r(l-(/)/x<" - n - M C U , , - , 1/2 
a = ±tan~ , . ( ' ) • 

- ( l - r ( f ) )M 

* 
We see that if v = c''* a is independent of fx and /x('> and is 
identical to (27). On the other hand, if n = nu), a = ±ir /4 
regardless of the value of v and e ( , ) . 

4 A Rigid Line Inclusion 

In this section we assume that the inclusion, which is at x2 

= 0, - 1 < x{ < 1 is rigid, and study the disturbed solution 
due to the presence of the inclusion. The disturbed solution 
will remove the displacements at x2 = 0, - 1 < x{ < 1, given 
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in (21) where is generated by the homogenous solution. The 
boundary conditions for the disturbed solution can be written 
as 

u(x r , 0 ) = - q x , , f o r l x 1 l < l , (31) 

J _ i [ff&Cx,, 0 + ) - a22(Xl, 0" )]x,dxi = 0, (32) 

oij{xl,x2)-0, as Ixl— oo, (33) 
where 

q = -co . (34) 

ef 

— CO 

e 5 _ 

In (34), co is an unknown constant which represents the rota­
tion of the rigid inclusion. It will be determined by the condi­
tion (32) that the total moment about xx = 0 due to the sur­
face traction on the rigid inclusion vanishes. To satisfy the 
boundary conditions, we employ the general solution (10) and 
choose the function fa such that 

u = ReJ^Sia{A-%[(zl-iyA'Za}cij, 

* = Re2>„(A-%{(z2-l)»-«J^, 

(35) 

(36) 

where Re stands for the real part and #• is given by (34). At x2 

= 0 *, we have 

f ±i(l-x])'A, l x 1 l < l , 

+ ix\-l)Y\ x , > l , 

- ( x ? - l ) ' / 2 , x , < - l . 

The displacement at x2 = 0* is therefore 

-qx1( for 1^! I < 1, 

(4-D l / ! = (37) 

u(x , ,0 ) = 
± ( x ? - l ) ' / 2 - x , jq, for ATi > 1 or #, < - 1 . 

(38) 

Equations (38), satisfies the boundary condition (31). It is in­
teresting to see from (38)2 that u(x, , 0) for \xx\ > 1 is in­
dependent of material property. 

The stress is obtained from (36) and (7) as 

an = - R e £ [Bia(A-%Pa[
 Z« -l]g,), 

'« = Re£[/UA-%[- M (4-D , / ! 

Since (z2
a- V)'A — Za as Ixl — oo, the boundary condition (33) 

is satisfied. Using (37) the stress atx2 = 0* has the expression 

a, = - R e l B P A - 1 q ( * ( x 1 ) - l ) } , 

ff2 = R e { B A - 1 q ( * ( * , ) - l ) } , 

in which 

(ffi)i = o r n» (<f2)i = ( r Q . 

and the diagonal matrix P and ^(xx) are given by 

P = diag(pi,p2,p}), 

(39) 

* ( * , ) = 
±ni-x\y 

(x]-iyA ' 

, for U , 1 < 1 , x2=0±, 

(40) 

for x{ > 1 or < - 1, x2 = 0. 

It is shown in (Ting, 1988) that 

B P A ~ 1 = N 3 + N j r ( S r + / I ) H - \ 
(41) 

N ^ - T - ' R 7 - , N 3 = R T - ' R r - Q . 
Using (12), (40), and (41), the stress at x2 = 0 has the real ex­
pressions 

ff1=(N3H + N f S r ) H - 1 q T „ " \ „ A NfH^ 'q , a-*?)* ' 
(42) 

ff2=-SrH-'q± 
v-x\yA 

for \xi I < l ,x 2 = 0* and 

H - ' q , 

(43) 

for X\ > 1 or xy < - 1, x2 = 0. The upper sign is for x, > 1 
and the lower sign for Xj < - 1 . We see from (42) that to 
satisfy the boundary condition (32) we must have 

(H- 'q ) 2 = 0. 

This leads to, letting h = H~ ' , 

h2ie?+h23e? 

h22 

which provides the angular rotation of the rigid inclusion. 
The fact that H is positive definite assures us that hn > 0. If 
h2X = h2i = 0, which is the case for isotropic materials, co = 0 
and there is no rotation of the line inclusion due to the 
uniform loading at infinity. 

Equations (42) and (43) show that there is a square root 
singularity in stress at Xj = ± l , x 2 = 0unless H~'q = 0. But 
H " ' q = 0 means q = 0 because H " 1 is positive definite. 
Therefore, the disturbed solution always generates a stress 
singularity at the tips of the inclusion. If r > 0, we see from 
(43) that 

lim (2r)'Aal(l+r, 0 ) = - ( N 3 H + N f S r ) H - ' q , 
r-'O 

lim (2rYAo2(\+r, 0) = S rH~»q. 
r— o 

This provides the stress singularity coefficients (Wang et al., 
1985) for the rigid line inclusion in anisotropic elastic 
materials. We also have, on the inclusion 

lim (2/-)'/j(r1(l-/-, 0 + ) = - N f H - ' q , 

lim (2r) l /!(72(l-/-, 0 + ) = H 1 q . 
r—o 

For isotropic materials 

N , = 

0 

1-

1 0 

0 0 N 3 = - / « 

0 0 
l-v 

0 0 0 

0 0 1 0 0 0 

and using (13) and (15), the only nonzero limits are 

lim (2/)l/!tT22(l+r, 0)= -/* 
2(1 -2v) 

7,-Av 

lim (2r)'Aau(l+r, 0) = /*ef, 

lim (2r)!/2CT11(l + r, 0) = 2/x 
3-2P 

3 - 4 e 
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lim (2r )*a 1 2 ( l - r , 0 + ) = ̂  
4(1 -v) 

lim (2r)Vlo2l(\-r, 0 + ) = /«f. 

In closing this section, we point out that Yang and Chou 
(1982) studied the elliptic inclusion in an anisotropic solid of 
cubic symmetry. They obtained explicit solutions for stresses 
around the inclusion which include the degenerate case of a 
rigid line inclusion. 

5 An Elastic Line Inclusion 

The problem becomes more complicated when the line in­
clusion is elastic and deformable. In this case the normal 
stresses on two surfaces of the inclusion are identical if we 
neglect the bending rigidity, but the shear stresses will have a 
discontinuity which acts as an external force on the elastic in­
clusion. We assume that the inclusion is also anisotropic with 
the elastic compliance W\p. 

For the state disturbed from the homogeneous deformation, 
we seek a solution which satisfies zero stress at infinity while 
onx2 = 0, IJCI I < 1, 

au^.oyax^-q^,) , (44) 
where q(x{) is an unknown function of x, to be determined. 
We see that if ek

l) is the average strains across the thickness of 
the inclusion, 

q](xl) = eT-e\')(xl), 

«r3(*1) = er-30(*,), 
(45) 

while -<?2(x,) represents the rotation of the line inclusion. If 
q2(xx) is independent of x{, the line inclusion remains a 
straight line after the deformation. Otherwise, it deforms into 
a curved line. Following Stroh (1958), the solution which 
satisfies zero stress at infinity and prescribed displacement 
gradient - q ( * i ) at x2 = 0, lx, I < 1 can be written as (Li, 
1988): 

«*=—(' dS qk(^)k(\-erVldi 
•K J o J - 1 

- ~ ^[DAkaA~/ jo' dv.(4"M2)" v' 

qM)(» + zam-¥YVldz\, (46) 

*} $k~Re[BkaA^\l
od^l_iqJ(rf)!i(l-e)-Vld 

~ — Re f E B k a A ^ \' dii (z2
a - /x2)" y' 

•K t a Jo 

J ' ^ ^ M M + ̂ M I - S 2 ) - ^ ) . (47) 

We will now proceed to determine q(xi) so that the 
displacements at x2 = 0, \x{ I < 1 are compatible with the 
deformation of the line inclusion. We first observe that the 
first terms on the right of (46) and (47) are constants. We next 
reduce the double integrals in the second terms to a single in­
tegral. This is accomplished by replacing the variable £ by rj = 
/i£ and changing the order of integration (Stroh, 1958). Final­
ly, we differentiate and employ (7) to obtain 

« * , , = — R e D {AkaA^(z2
a-ir

v'yj(za)}, (48) 

" ~ R e E (B k a A- /p a ( z l - l ) - ' A y j ( z a ) } , 
Of 

— Re E l^fa'V (4 - 1) " *1} Ua ) ) . 
a 

r1 (i-£2)'/! 

7 y ( « a ) = ) _ 1 ^ ( f ) - 5 - ^ - r f f . 

(49) 

(50) 

The integral in (50) has a singularity at £ = za = xt + pax2. 
At x2 = 0 and I*; I < 1, the singularity is on the path of in­
tegration. Thus, the stress aku ak2 at the surfaces of inclusion 
cannot be obtained by simply replacing za by xx in the in­
tegrand. There is an extra contribution due to the integration 
along the half-circle of very small radius around the singular 
point £ = Xj. This extra contribution is 

T / 7 r ? , - ( * ! ) ( ! - * i ) ' / 2 > 

where =F is forx2 = 0*. Therefore, if we let 

x q-i2)'7' M 
) ; — ^ £ > -i 

(51) 

we have 

7 , (* i ) = 

.wbvUi jT ia - *? ) *^ * , ) ) 

if lx, I > 1 

if \xi\<l. 

(52) 

Using (12), (41), and (52), the displacement gradient and stress 
along x2 = 0 has the following expressions: 

M.I = - Q . 

a^CNjH + N r S ^ H - ' q ^ O T d - ^ - ^ N r H - i y ^ , ) , 

< 7 2 = - S r H - 1 q ( x 1 ) ± ( l - x 2 ) - ' / ! H " 1 y ( x 1 ) , (53) 
for IJC, I < \,x2 = 0*, and 

u,l = ±(x2
1-l)-'

/'y(xl), (54) 

a1 = T ( x 2 - l ) - , / ! ( N 3 H + NrS r )H- 1 y(x 1 ) , 

<r2=±(x2
l~l)-»STH-iy(x1), (55) 

for X) > 1 or < - 1, x2 = 0. It should be pointed out that if qj 
is a constant, the integral in (51) can be integrated to give 

7T J - l X , *" -* 

Xu if l x , l < l 

( x ^ V x f ^ l ) , if x, > 1 , or < - 1 . 
(56) 

Equations (53), (54), and (55) then reduce to (42), (38)2, and 
(43), respectively. 

Let 

2T(x1) = ff2(*i.0 + ) - f f 2 (x 1 ,0- ) , lx, I < 1 , 

be the difference in the surface tractions on both surfaces of 
the inclusion. Substituting in the above equation from (53)2 

we have 

H T ( X , ) = 1 
1 ( l -£ 2 ) ' / 2 

l ( Z ) 1 =-£-#• (57) T T ( 1 - X 2 ) * J - i x , - ? 

Equation (57) provides the relation between - q ( x i ) , the 
disturbed displacement gradient on the inclusion, and 2T(X, ) , 
the difference in the surface tractions on the inclusion. From 
the assumption that the inclusion has no bending ridigity, a22 

must be continuous which means 

T2(X,) = 0 . 

From (57) we see that this can be satisfied if we let 
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l H - ' q ( * , ) ) 2 = 0 , 

or letting h = H ~ \ 

h2i(li(x{) + h2iqi{xx) 

With T2{XX) = 0, (57) can be written as 

1 I" . . . . (1~S2)' /2 

Hf(jf,) = -
*(!-*?)" L™ * i " « 

rff, 

H = 
^11 # 1 3 

# 3 1 # 3 3 

, T = 
" Ti " 

L r3 J 
. q = 

r?i i 

L<73 J 

(58) 

(59) 

(60) 

We will derive an integral equation for f (xx). We see that H is 
positive definite. We also see from (59) that if f(x,) is an odd 
function in X\, which is the case as we will show later, q(x,) 
and q2(x{) of (58) are even functions of #,. 

We consider next stresses and strains at x2 = 0 and, for 
simplicity, will drop the subscript 1 from xx. By considering 
the equilibrium of the segment (x, 1) of the inclusion and using 
(53) we have 

oP=af+-
1 5* T^t)dt' 

rtn 

al" 

W 

= 0? 

=fff 

= 0? 

-SJ2(H-lq)j, 

- S 7 , ( H ^ q ) y , 

-Sjtffl-^j, 

(61) 

where of/'' is the average stress over the thickness of the inclu­
sion and 2d is the nondimensionalized thickness of the inclu­
sion. Using (17) and the relation 

W = ivy ay\ 
(45) can be written as 

q ( x ) = g - 7 r M ( tWdt + m-'qix) (62) 

where 

g = 

M = -

qand T are defined in 

1 

irrf" W$ 

60) and 

J 

w\9 ' 

w® _ ) 

, y = l , 2 , 3 . 
'WWSji + WflSfl+WWSji 

w$Sn + w®sj2 + w®Sj, 

In the above equation, Ykj is a 2 X 3 constant matrix and M is 
positive definite. If we substitute (62) into (59), and making 
use of (56) and (57), we have 

Hf(x)= l/2 ( x g - M J ^WkixAdt^+ttW, (63) 

in which f is a 2 x 2 matrix which is obtained from T by 
deleting the second column of I \ The kernel k(x, t) is given by 

k(x,t)=\ —- d£, 
J - i x-% 

l - ^ + ( l - / 2 ) ' / 2 ( l - x 2 ) , / l 

= ( l -x 2 ) , / j ln 

+ x(ir-cos-it)-(\-t2)'A, \x\<l. 

(64) 

Equation (56)j is recovered by setting ?= 1 in (64). Noting that 
&( —x, —t) = k(x, t) — irx, it is not difficult to show from (63) 
that r(x) is an odd function of x. 

Equation (63) represents two coupled integral equations for 
r,(x), and T?,(X). Before we show that these two equations can 
be decoupled under certain conditions, we will look at two 
special cases. When g = 0, which is (30), f = 0 and, hence, T = 0 
is the solution which means q = 0 by (57). The disturbed solu­
tion then vanishes and the homogeneous solution is the solu­
tion for the elastic inclusion. This agrees with the result stated 
in Section 3. Next, consider the^ special case in which 
the inclusion is rigid. We then have W\p = 0 and (63) reduces 
to 

Hf(x)=-
(1-x 2 ) ' ' 

g, g = 
Wvaf 

W. ijuJ 

(65) 

We see from (56)[ that (59) can be reduced to (65), if q is a 
constant given by g of (65)2. With (58) we conclude that q2 is 
also a constant and we have recovered the results obtained in 
Section 4. 

Consider the eigenvalue problem 

Me = X ( H - f ) e . (66) 

Let Xi, X2 be the eigenvalues and e,, e2 be the associated 
eigenvectors v If the inclusion j s much "harder" than the 
matrix, H - T is dominated by H which is positive definite. If 
we delete f from (66), it can be shown (Hildebrand, 1952) that 
X,, X2 are real and positive and e,, e2 are independent vectors. 
Introducing the 2 x 2 matrices fi^e,, e2], A = diag(X,, X2), 
equation (66) for X = Xj, X2 can be written in one equation as 
Mil = (H - f )QA. Assuming that 12 and H - f are nonsingular, 
(63) reduces to 

**(*)= * / ; | * g * - A J ^ • ( O f c U . O * ) , (67) 

t* = Q-lf, g* = fi~1(H-f)-1g. 

Equation (67) is uncoupled into two equations. If we divide 
the first equation by g* and the second by g2, both equations 
have the form 

T ( * ) = '' [x-*\\ r(t)k(x,t)dt], (68) 

which is a Fredholm integral equation of the second kind. 
It should be pointed out that both M and T in (66) vanish 

for a rigid inclusion and X = 0. Hence, X is small when the in­
clusion is much harder than the matrix. 

6 Solutions of the Integral Equations 

Because of the complexity of the kernel there is no 
analytical solution available for (68). However, under the con­
dition that X is very small, i.e., the inclusion is much "harder" 
than the matrix material, (68) can be solved approximately by 
an asymptotic expansion. More general cases are solved by a 
numerical discretization. 

The solution to (68) is a function of both the space variable 
x and the eigenvalue X, i.e., T = T(X, X). It can be easily seen 
that for X = 0, the solution is simply given by 

T(jt,0) = T ( o ) ( * ) = 4 1 - x 2 r ' / 2 - (69) 
For small X, T(X, X) can be expanded into a power series of X 
as 

T ( X , X ) = £ X V > ( * ) . (70) 

It can be shown that (70) converges to the true solution for 
small X (Tricomi, 1985). By substituting (70) into (68), and 
equating the like powers of X, we have 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56 / 561 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.02 asymptotic solution 
numerical solution 

Fig. 2 Asymptotic solutions for T for various values of X Fig. 3 Asymptotic and numerical solutions for X = 0.1 

An) (*) = — 
1 

T^n-X\t)k(x,t)dt, 
(\-x2)Vl „ . 

n= 1,2,3. . , 
in which T<0) (X) is given in (69). For n = 1 we have 

T<»(X) = -2^°l(x)-(l-x2y/'ln\(l+x)/(l-x)\. (71) 

Equation (69) corresponds to the solution for an inextensible 
rigid inclusion (Erdogan and Gupta, 1972). The solution to 
(68) for nonzero but small X can be approximated by taking 
the first two terms in the expansion 

T(*'X) = n - W [x-2xX-A(l -x2)lnl(l +x)/(l-x)\]. 
\i X ) 

This is plotted in Fig. 2 for various values of X. 
For the numerical solution, we rewrite (68) as 

• I 

--x. y(x)+\\iiy(t)ki{x,t)dt--

where 

y(t) = (l-t2)y>TU), 

kl(x,t)=k(x,t)/(l-t2)'A. 
The results of numerical solutions for X = 0.1 and 0.2 are 
shown in Figs. 3 and 4. Comparisons with the asymptotic solu­
tions shown in the figures indicated that the agreement is ex­
cellent for X < 0.1. 

7 Concluding Remarks 

The Stroh formalism is employed to analyze the problem of 
a line inclusion in the general anisotropic elastic solid. For the 
rigid inclusion, a real and closed-form solution is obtained for 
the displacement and stress at the inclusion as well as along the 
extended line of the inclusion. The rotation of the rigid line in­
clusion is also obtained explicitly. For the elastic inclusion, a 
pair of Fredhold integral equations for the difference in the 
surface traction on both sides of the inclusion is derived. The 
pair can be decoupled and asymptotic and numerical solutions 
of the integral equations are presented. Regardless of whether 
the inclusion is rigid or elastic, there is a square root singular­
ity in stress at the tip of the inclusion for general loading at in­
finity. For certain special loadings, the presence of the inclu­
sion is irrelevant and the homogeneous solution is the 
solution. 

The problem considered here could also be formulated us­
ing Eshelby's framework for an ellipsoidal inhomogeneity and 
taking the limit when the ellipsoid degenerates into a line in­
clusion. One still obtains a Fredholm integral equation for the 
unknown strains inside the line inclusion. However, Eshelby's 
formulation is for three-dimensional problems. In specializing 

4.5 

1.5 

asymptotic solution 
numerical solution 

0.2 0.6 1.0 

- 4 .5 J 

Fig. 4 Asymptotic and numerical solutions for X = 0.2 

to two-dimensional deformations considered here, many iden­
tities in the Stroh formalism, which relate complex expressions 
to real expressions, cannot be used and the solution remains in 
a complex form. Another problem one encounters is that for 
the ellipsoid or elliptic cylinder inclusion, the stress and strain 
are uniform in the inclusion. In the degenerate case of an 
elastic line inclusion, the stress and strain are not uniform in 
the line inclusion. Therefore, while it is possible to obtain the 
solution for a crack or a rigid line inclusion from that for an 
elliptic hole or a rigid elliptic inclusion, it is not possible to do 
so for an elastic line inclusion (Hwu and Ting, 1989). 
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Surface Displacements and Stress 
Field Generated by a Semi-
Eliipsoidal Surface Inclusion 
This paper presents calculations of the displacement and stress fields generated by 
semi-ellipsoidal surface inclusions containing uniform transformation strains or 
eigenstrains. The inclusion is assumed to have the same elastic constants as the rest 
of the material. This is a reasonable assumption for modeling transformed zones in 
transformation toughened ceramics and localized plasticity in individual surface 
grains in alloys. Analytical results are obtained for special cases and numerical 
results for general cases. The approach is particularly useful for accurately 
calculating the anomalous fields at the intersection of the boundary of the inclusion 
and the free surface. It is shown that, in many physically important cases, all com­
ponents of the stress tensor are zero or constant on the free surface within the inclu­
sion. For shallow inclusions or inclusions of general geometry suffering volume con­
serving transformation strains, the stress fields are also approximately uniform 
throughout the inclusion. This result greatly simplifies modeling of localized defor­
mation in certain materials under complex external loads. 

1 Introduction 

Understanding the fundamental mechanisms of the 
degradation and failure of composite materials requires ex­
perimental and theoretical analysis of events occurring on the 
scale of the microstructure. For fiber-reinforced composites, 
transformation toughened ceramics, and polycrystalline 
alloys, the relevant scale falls between tenths and tens of 
microns. The only experimental techniques with sufficient 
spatial resolution to yield data over such gauge lengths are 
various methods of measuring surface displacements. 
Outstanding amongst these are stereoscopy (e.g., Williams et 
al., 1980; Cox et al., 1986) and digital image analysis (James et 
al., 1988), which can measure differential surface strains over 
submicron gauge lengths from pairs of SEM micrographs 
(e.g., Morris et al., 1988). Techniques of measuring surface 
displacements with inferior but still useful spatial resolution 
include moire interferometry and the tracking of very fine 
grids of holes cut in surface overlayers (Bradley, 1987). 
Techniques for measuring bulk or subsurface strains, such as 
X-ray diffraction, Raman spectroscopy, and optical bire­
fringence, are restricted in the materials to which they can be 
applied and fail to provide the required spatial resolution. 

The deduction of information concerning surface and sub­
surface deformation from measurements of surface 
displacements alone poses special problems. Given no other 
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information, the surface displacements are not necessarily suf­
ficient to determine a unique solution. Although solutions 
have been found in special cases (Mura et al., 1986), the 
problem is, in general, ill-posed. However, unique solutions 
may often be found if other restrictions can be placed on 
them. Gao and Mura (1988) have pursued a mathematical ap­
proach showing that the requirement that the L2 norm of the 
deformation be a minimum is sufficient to render the problem 
well posed. A physically-based approach can be equally suc­
cessful, since the cumulative insight of experiments and 
theoretical models usually specifies strict limits on the admissi­
ble forms of the deformation. In this case, one proceeds by 
postulating parametric models of the deformation and op­
timizing the parameters by comparison of calculated surface 
displacements with data. To construct manageable parametric 
models of the deformation and to perform optimization of the 
parameters, it is very helpful to carry out as much of the 
modeling as possible analytically and to have efficient 
numerical procedures in the absence of analytical results. 

This paper presents analytical and numerical results for one 
such model system, which has proven very useful in analyzing 
surface displacement data in individual grains of aluminum 
alloys (Morris et al., 1987; Cox et al., 1987) and transformed 
zones around cracks in magnesia partially stabilized zirconia 
(Cox et al., 1988). The case considered is that of a semi-
ellipsoidal inclusion that suffers a stress-free transformation 
strain (Robinson, 1951; Eshelby, 1957) or eigenstrain (Mura, 
1982), ay, defining the change in shape the inclusion would 
suffer in the absence of the constraining matrix. The inclusion 
has semi-axes a and b in the plane (x1, x2) of the free surface, 
and c in the normal direction x3 (Fig. 1). Both the inclusion 
and the matrix are assumed to be homogeneous and isotropic, 
and have the same elastic constants. The last assumption is 
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Fig. 1 The semi-ellipsoidal transformed zone, showing its relationship 
to the coordinate system 

reasonable for studying transformed zones in transformation 
toughened ceramics and plastic deformation in metal alloys. It 
also simplifies the calculation considerably, allowing more 
general choices of geometry and eigenstrain. Theories of 
elastically inhomogeneous inclusions have been restricted to 
semi-spheroidal inclusions undergoing axially symmetric 
eigenstrains (Kouris and Mura, 1988a and 1988b). 

The computational procedure comprises the following 
steps: 

(1) Evaluate Eshelby's analytic solutions for the stresses 
ojj' and strains efj> inside (Eshelby, 1957) and outside 
(Eshelby, 1959) an elliposidal inclusion in an infinite medium. 

(2) Introduce a free surface on the plane x3 = 0 by applying 
a continuum of normal and in-plane point forces, th to cancel 
exactly the normal stress er$ and shear stresses o$ and 
and o$ calculated to exist there from Step 1. Find the correc­
tions to the displacements, stresses, and strains calculated in 
Step 1 associated with the introduction of the free surface by 
integrating the products of /,• and Mindlin's (1936) Green's 
functions for a half space over the plane x3 = 0. 

These steps can be followed to calculate the displacements, 
strains, and stresses anywhere in the half space with equal 
facility. In the work described below, complete stress fields 
and surface displacements will be reported for several cases. 
The chosen approach is useful because it is very efficient com­
putationally and it allows certain results to be found 
analytically. A similar approach has been followed previously 
to calculate stresses around hemispherical indentations 
(Chiang et al., 1982). 

2 Numerical Methods 

The evaluation of Eshelby's analytic solutions for an ellip­
soidal inclusion (Step 1) requires lengthy but straightforward 
programming and follows the original papers. All stresses 
<jW and strains ejj> are found point by point by evaluating 
explicit expressions involving certain elliptic integrals. Pro­
grams have been written for which the input is (1) the semi-
axes a, b, and c; (2) the coordinates x of a given point of in­
terest; and (3) Poisson's ratio. The output is a matrix S of rank 
six defined so that 

4I,(x)=]C^s^W. a=l 6> 0) 

with the notation for the row vectors e£P and e^that their com­
ponents refer in order to the components eu , e22>

 e33> en> e23> 
and e31 of the corresponding strain tensors ejj> and e,-,-. Cor­
responding displacements HW can be found by integration of 
ejjj and stresses ajj'directly from the constitutive relations. 

When two or more of the semi-axes a, b, and c are equal, 
Eshelby's expressions become indeterminate. On a 32-bit 
machine with approximately seven-figure precision, one finds, 
in practice, that errors of less than one part in 104 are suffered 
if the semi-axes differ by at least 1 percent. For other cases, 
i.e., the near-spheroid or near-sphere, acceptably accurate 
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solutions may be found by interpolating between solutions for 
nonspheroidal cases. For example, the solution when 
a = (l + 8)b, I5I<0.01, may be found by interpolating be­
tween the solutions for a = 0.996 and a = 1.016. (Note that all 
aspects of the solutions are smooth functions of a/b at 
a/b=\.) 

Step 2 requires evaluation of the integrals 

«P(x) = j J G „ (x - x')tj (x')dx{dx2' (2a) 

and 

off(x) = J ̂ Hijk(x-x')tk(x')dx{dxi, (2b) 

where Gy(x-x ' ) and Hijk(x-x') are Mindlin's (1936) 
Green's functions for the displacements and stresses generated 
in a half space x3 > 0 by point forces acting at x' on x3 = 0. All 
such integrals are conveniently divided into two contributions, 
one, uf(x) or <r)"(x), arising from integration over the domain 
of the inclusion only, and the other, u°nt(x) or af^ix), arising 
from integration over the remainder of the plane x3 = 0. Note 
especially that the contributions uf and o-w are dominant 
when the inclusion is deep (large c) and either e'y = Sy 
(hydrostatic expansion) or ejy = 8^8a (expansion in the normal 
direction only). 

The total displacement and stress fields are given by 

H; (x) = «W(x) + «P>(x) = MW(X) + uf(x) + ufvt(x) (3a) 
and 

o- (x) = <7<j>(x) + af(x) = o#>(x) + af(x) + affix). (3b) 

From Eshelby (1957, 1959), it is known that the stress 
0$ or 0$ to be cancelled in Step 2 is nonzero on x3 - 0 if e'23 
or 4i is nonzero. Thus, for many important cases, including 
purely dilatational transformations and plastic deformation in 
surface grains in alloys, when the only nonzero shear strain is 
e,2, only normal point forces t3(x') need appear in equations 
(2). 

2.1 Surface Displacements. For surface displacements 
u,- (Xy, x2, 0), the Green's function in equation (2a) has one of 
the forms 1 /r, cosd/r, or sind/r, where r = Ix - x' I and 6 is the 
angle between x —x' and the xraxis. The contribution w}n(x) 
can therefore be reduced easily to a one-dimensional integral 
over a finite domain, which can be calculated accurately in 
negligible time. The contribution ufut(x) is found as follows. 
The domain outside the inclusion on (Xj, x2) is divided into a 
triangular mesh bounded on the outside by an ellipse whose 
semi-axes are a multiple R of a and b. In practice, it is always 
adequate to set R = 5. The tractions /, are evaluated in step 1 at 
each vertex of the grid and at the midpoint of each side of each 
triangular element. Each of the three components ts is then ap­
proximated in each element by a quadratic function of x^ and 
x2, with the coefficients found by interpolating over the values 
at the vertices and midpoints. The contribution to uf)(x) from 
each element then comprises integrals of functions of the form 
xx/r, Xycosd/r, x\/r, etc., which can be found analytically, so 
that the \/r singularity in Mindlin's Green's function presents 
no numerical difficulty. For small c/a or c/b, the traction t3 
becomes concentrated outside the inclusion to the 
neighborhood of the interface, and a modest increase becomes 
necessary in the density of the grid there. 

The method of solution just outlined is particularly efficient 
if surface displacements are the only information required, as 
is often the case in interpreting experimental measurements. 
The problem has been reduced to evaluating a numerically 
simple, two-dimensional integral for each displacement com­
ponent at each point. For example, a scan of the net 
displacements w,(x), i = 2 or 3, at 30 points along the Ar2-axis 
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takes approximately 20 seconds of CPU time on a VAX 
11/780 (a 32-bit minicomputer). To obtain the same informa­
tion from a three-dimensional finite element program would 
take much longer. Furthermore, the present approach has no 
difficulty in treating the anomalous displacement and stress 
fields found at the intersection of the free surface and the in­
terface of the inclusion and the matrix. 

2.2 Subsurface Stresses. While surface displacements 
often have special importance, being the only experimentally 
accessible quantity over microscopic gauge lengths, the same 
approach can of course be used to calculate subsurface 
displacements or stresses (equation (2b)). Concentrating on 
the stresses, from which the displacements can always be 
deduced, one again finds that the contributions <rjjn) can, in 
every case, be reduced to a numerically simple, one-
dimensional integral. This is particularly useful for evaluating 
the anomalous stresses near the surface on the boundary of the 
inclusion, where finite element methods are hard pressed. 

The contributions trj™'' are conveniently evaluated using a 
triangular mesh similar to that used for calculating the surface 
displacements. When x} ^0 in equations (2), the Green's func­
tions Hijk and Gjj are more complicated algebraically, but they 
are never singular. Therefore, the integrals in equation (2b) 
are evaluated in a slightly different way. The entire integrand, 
rather than just tt, is approximated by a quadratic function in 
x[ and x2. The resulting integrals of functions of the form x[, 
x{2, x[x2, etc., are evaluated analytically in each triangle. 
Stresses on the surface x3 = 0, where HiJk can be singular, are 

(a) 

easily found 
points. 

3 Results 

by extrapolating from values at subsurface 

For brevity in what follows, most of the results presented 
are for eigenstrains in which e23 = e31 = 0, so that only the nor­
mal tractions t3(x') are nonzero in equation (2.2). (In-plane 
tractions /] and t2 are required outside the inclusion when 
e23 = 63i =0 only if the free surface to be created in Step 2 is 
other than an equatorial plane of the whole ellipsoid.) Some 
analytical results are presented for surface displacements 
generated by tractions /, and t2 in the plane strain limit. In 
general cases, the numerical treatment of in-plane tractions 
would be completely analogous to that of normal tractions. 
Note that the condition e23 = e31 = 0 is consistent at a free sur­
face in the Levy-Mises description of plasticity (e.g., Hill, 
1950). 

3.1 Conditions for H°U1 and <T™'to be Negligible. A survey 
of the stresses 0$ calculated on the plane x3 = 0 in Step 1 
(Eshelby's problem) can be summarized as follows. When 
t'lj = djj (hydrostatic expansion) or e-,- = 8^8 j3 (expansion in the 
normal direction only), 0$ becomes small and diffuse outside 
the inclusion when c>>« and c»fe. In such cases, «°ut and 
a™' become negligible, and the net displacements and stresses 
are simply the sum of the solution to Eshelby's problem and 
uf or a'y. Since the problem is entirely linear, it follows that 
the same simplification applies for any combination e •,• = a5,y 

For other e^, <j$ retains comparable magnitudes 
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Fig. 2 The normal displacement u3(x) ((a), (c), and (e)) and the in-plane 
displacement u2(x) ((b), (d), and (r)) when ejy = j v for the cases a = 1 and 
b = 1 ((a) and (b)); a = 10 and b = 1 ((c) and (d)); and a = 1 and b = 10 ((e) and 
(0). The semi-axis c has the values marked, and Poisson's ratio was 
taken to be 0.3. The dots in (a) and (e) indicate the values of x2/b at which 
u3 was calculated, with values elsewhere found by Lagranglan 
interpolation. 

H3
n(0,x2,0) = /3(0). (a-x2)K 

2vax2 

a + x2 

+ (a + x2)E 2vax2 

a+x2 
(4) 

where v is Poisson's ratio, /x the shear modulus, and K and E 
are complete elliptic integrals of the first and second kinds; 
and 

"ifia 
inside and outside the inclusion for large c, and u°m and "2V">A2>",' 
a^ut must be taken into account. 

3.2 Surface Displacements. The surface displacements 
can sometimes be found analytically. Such cases illustrate 
qualitative characteristics of more general cases, which are 
useful in interpreting experimental surface displacement data. 
These analytical results are presented next, along with 
representative numerical calculations. The various possibilities 
are conveniently divided according to symmetry. 

Axially Symmetric Cases. For a spheroidal inclusion with 
a = b, the contribution «jn(0, x2,0) can be found analytically: 

-/3(0)— x2 
4-KjX, 

l - 2 i > a 
- f3 (0)-

4ir/t x2 

Ix, I < a 

\x21 > a. 

(5) 

Thus, the partial derivative du2/dx2 possesses a logarithmic 
singularity at the interface x2 = a on the free surface, since, as 
A'-l, A W - 1 / 2 ln[16/(l-A)] (Byrd and Friedman, 1971). 
Note, however, that the shear strain e23 vanishes on the free 
surface x3=0, so that du2/dx3= -du3/dx2. These displace­
ment gradients correspond to a rotation through 7r/2 of the 
element at the intersection of the interface and the free surface 
about an axis tangential to that intersection. The strain e22, on 
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the other hand, remains constant within the inclusion, since 
«5ut(0,x2,0) = 0 for x2 < a, a result which follows, as does equa­
tion (5), from the fact that for a surface point x 

2TT 

G 2 3 (x -x ' )<#= 
0 

\-2v 
4ir/x (Xl-*l')2 + (*2-*2'r 

\-2v 

2M 

0 

;+*,'2 

ifx[2+xi2<p2 

if x[2 + x{2 > p2 
(6) 

where the line integral is evaluated around a circle of radius p 
centered on the origin. This conclusion holds for any axially 
symmetric, uniform, stress-free transformation strain e'j. 
Since the x2-axis can be chosen arbitrarily when a = b and e'y is 
axially symmetric, it follows that all components of the stress 
tensor are uniform on x3 = 0 within the transformed zone. It 
will be seen below that numerical results show that this conclu­
sion holds far more generally. 

Numerical calculations of the net surface displacements 
Uj (x), including the contributions ufM, are shown in Figs. 2(a) 
and 2(b) for the case of hydrostatic expansion e,y =8,y. As the 
ratio of depth to surface radius (i.e., c/a) increases, the sur­
face displacements tend asympotically to limiting values. For 
c/a > 10, they exhibit no further significant change with in­
creasing depth. However, it should be remembered that one 
usually measures not absolute displacements but rather strains 
or relative displacements. For surface strains or the relative 
displacements H,(X) — «,(0) measured over gauge lengths 
comparable to a and b, the calculated results are already 
within ~ 1 percent of their asymptotic values in the limit c~ oo 
when c—2a. This is found to be the case for all transforma­
tions e'. 

Plane Strain Cases. In the limit a/b~<x>, the contribution 
uf is unbounded, but the partial derivative duf/dx2 remains 
finite. For normal surface tractions t3, it is given along the 
Ar2-axis by 

duf 1 - v 

dx-, 2-K\X, ^tX-.wX-^**™ 
\-v 

2~Kfl 
/3(0) In 

b—x0 

b+x2 
(7) 

which expression again exhibits a logarithmic singularity. 
Hence, 

uf(0,x2,0)-uf(0)--
•Kfl 

(-t3(0))[(x2-b)ln\l-x2/b\ 

~(x2 + b)ln\l+x2/b\]. (8) 

For the in-plane displacements, one finds uf = 0, and 

uf(0,x2,0) = 

-t3<P)' —~ *2 
2JX 

, _ \-2v , x2 -/3(0). — — >b 
2/x 1*2 I 

\Xn\<b 

\x7\>b. 

(9) 

For in-plane tractions t2, the results for uf and uf are 
reversed: 

duf(0,x2,0) t2(0) I b~x2 

= 'In dx-, TtjX b + x2 

(10) 

uf(0,x2,0) = 

1-v 

2/i 

l - 2 v 

2M 

't2(0)'X2 

•t2(0)>b> x2 

lx,l 

\x2\<b 

\x-,\>b. 

(11) 

For in-plane tractions, t{, one has uf = uf = 0 and 

duf(0,x2,0) f,(0) 

dx2 

•In 
TT/X 

b-x2 

b + x. 
(12) 

General Geometries. The in-plane components uf and uf 
can still be obtained analytically within the inclusion when 
a ̂  b and e23 = e 

u2(Xi,x2,0) = f3(0). 

= 0. For uf one finds 

l - 2 e 

A-wfi 

J J (Xi-xO2 2 dx[dx{ 

and 

)2 + (x2-x2 ') 

= - ^3(0) - ^ • ( - | T - X^) (* I / a > 2 + fe/*)2 < i > (13) 
2/x \ a + b / 

where e is the elliptical intersection of the inclusion and the 
free surface. This expression is independent of x t and linear in 
x2, showing that this contribution to the strain du2/dx2 inside 
the inclusion is always uniform. 

When c is not large or e[-^a5y + /35,y5,-3, the numerically 
evaluated contributions ufut become significant. The net sur­
face displacements u2 and u}, comprising the superposition of 
Steps 1 and 2, are presented for the case of hydrostatic expan­
sion (e'y = 8y) in Figs. 2(c)-2(f). The displacements are 
shown along the x2-axis, which is the minor semi-axis in Figs. 
2(c) and 2(d) and the major semi-axis in Figs. 2(e) and 2(f). 
Along the major semi-axis, the displacements are similar to 
those for the spheroidal inclusion (Figs. 2(a) and 2(b)), ex­
cept that w3 falls away much more rapidly at and beyond the 
interface. Along the minor semi-axis, u3 exhibits only a mild 
drop from the center of the inclusion to the interface, and falls 
away gradually far out into the matrix. 

A series of numerical calculations showed that, even when 
ufm was not negligible, the net in-plane surface displacements 
ux and u2 were always linear and the surface stresses an and 
a22 therefore uniform within the inclusion when e23 =e31 =0 . 
This was shown to be true within the four-figure accuracy of 
the calculations over many randomly chosen intervals of the 
surface inside the inclusion. The three transformation strains 
e'ij = bjj, e'j = 8ij8B, and e 2 =l , e3= — 1, all other components 
zero were considered. Since CT$ = 0 on x3 = 0 for the pure shear 
transformation e[2, all transformation strains for which 
e 23 = e3i = 0 c a n b e constructed from these cases. The in-plane 
surface displacements were found to be linear in the inclusion 
for all choices of a, b, and c. 

The importance of assuming that the inclusion has the same 
elastic constants as the matrix can be assessed by comparison 
with the work of Kouris and Mura (1987) for inhomogeneous 
semispheroidal inclusions. The case of a hemispherical inclu­
sion suffering the eigenstrain ey=8ydj3 (e.g., differential ther­
mal expansion in the normal direction x3) is presented in Fig. 
3. The calculation of Kouris and Mura (dashed curve) is for 
the case of equal Poisson's ratio in the inclusion and the 
matrix and for T = 2.0, where T is the ratio of the shear 
modulus or Young's modulus in the inclusion to that in the 
matrix. For the displacements u2 and u3, there is strikingly lit­
tle difference between the two calculations. For the interpreta­
tion of experimental measurements of either in-plane or nor­
mal surface displacements, it is clear that the assumption of 
equal elastic constants will be a very reasonable one in many 
cases. 
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3.3 Stress Fields. The stress fields at the intersection of an 
interface and a free surface are well known to be anomalous 
(Bogy, 1975). Once again it is very helpful in studying this 
region to separate the contributions of and ofjf and to ob­
tain analytical results in limiting cases. In the following, 
Young's modulus is denoted E. 

3.3.1 The Contribution a*. 
Plane Strain. When a—oo, oy can be evaluated analytically 

from equation (2b). One has 

<T22(X2,X3)- ^ [_ Rl R l \ 

+ ^ [ t a n - ( ^ ) - t e n - " ( ^ + 6 > 
'-)) (14a) 

In, W *3*3«» \X2'° _ Xl + b 

<733(X3,X3)- —^-[ R2 R2 

^X2,X,)- ^ [ R22 R2 J 

(146) 

(14c) 

u3'b 

o.a 

0.6 

0.4 

0.2 

n 

la) 

^ s . 

-

1 1 

-

-

-

" 2 / b * 2 / b 

Fig. 3 Comparison of calculations for a hemispherical inclusion 
undergoing the transformation ejy = i/yi/3. Solid curve: present calcula­
tions. Dashed curve: Kouris and Mura (1987), with r = 2.0, where r is 
the ratio of the Young's moduli in the inclusion and the matrix; for 
Poisson's ratio equal to 0.3. 

1 

x3/a 

The contribution 

where R] = (x2-b)1 + xj and Rj = (x2 + b)z+xj. Of course, 
these results may be found alternatively from Flamant's (1892) 
solution for normal line forces applied to a half space. Note 
that, on the free surface x3 = 0, af2 is uniform when \x2\<b 
and zero when \x2\>b, in concurrence with equation (9). 
When \x21 = b, the maximum magnitude of of3 occurs on the 
free surface x3 =0. When \x21 *b, af3=0 when x3 =0, and 
the maximum magnitude of o\% is found below the surface. 
These characteristics of a\% are also found when a^b, and 
persist in the net stress a2i. 

General Geometries. For cases of finite a and b, 
o'y(xux2,x3) is conveniently evaluated in polar coordinates 
(r,8) in the plane x3 = 0, with the origin at (x, ,x2). The integral 
over r can be performed analytically for all cases, and the en­
suring integral over 8 is easily calculated using cubic splines. 
All stresses off can thus be calculated quickly and accurately, 
even near the intersection of the interface and the free surface. 
Complete results are presented for the case a = b in Fig. 4. 
They are qualitatively representative of the general case a ̂  b 
and similar to the analytical expressions equations (14) for 
plane strain. Each curve shows a scan parallel to the x3-axis 
when x,=0 and x2/b has the value marked. Note that all 
stresses vary very rapidly near (0,6,0). The stress o\\ is discon­
tinuous at (0,6,0), but only at that point since, along the 
x2-axis, it is the component of stress normal to the interface. 
The stresses ofx and of2 are constant everywhere on the sur­
face of the inclusion, in accordance with the surface 
displacements of equation (13). 

As for surface displacements, the sum of errand the stresses 
calculated in Step 1 is asymptotically equal to the net stress 
when c is large and e'y = ady + fi&yoB. 

3.3.2 Total Stress Fields for Some Important Cases. For 
cases where c is not large or t'y?±aby + {Sby6i3, the contribu­
tions of"1 are significant. The numerical solutions presented 
next were obtained according to the procedures described in 
Section 2. 

Hydrostatic Dilation. The case of hydrostatic expansion, 
e'y = 8y, for a spheroidal inclusion (a = b) is shown is Figs. 5, 6, 
and 7. This case may arise, for example, from thermal 

0.2 
(b) 

2 0 

F S ^ ^ 

'- x2/b=0 
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0 - 1 . 2 5 
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^ ^ 0 . 7 5 
^ 0 . 5 
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-

Jd) 
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-x2/b=0 

as a function of x , for x2 

1 

X3/a 

=0 and the Fig. 4 The contribution ay as a lunciion or x3 ior x2 
marked values of x1 when only the normal tractions (3 are nonzero for 
the case a = b. Positive t3 corresponds to tractions directed into the half 
space x3>0. 
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Fig. 6 The net stress ay as a function of x3 when x1 = 0 and x2 has the 
values marked, for a = b = c and 4 = o/(-

mismatch between inclusion and matrix, inhomogeneous den-
sification during sintering, and phase transformations, e.g., in 
phase transformation toughened alloys and ceramics. The 
stresses are shown down the x3-axis in Fig. 5 for various ratios 
c/a. For shallow inclusions (Fig. 5(a)), the stresses are very 
nearly uniform throughout the depth of the inclusion. (This 
has been found to be generally the case for any transforma­
tions for which e'2i = e'3l = 0). The stress a33 is tensile beneath 
the inclusion. As c/a increases, the stresses all become 
nonuniform within the inclusion. For c/a^ 1.5, the stresses 
an and or22 switch from being compressive on the surface of 
the inclusion to being tensile. This result is significant in the 
study of processing inhomogeneities in sintered ceramics. 
Microcracking is sometimes found to occur at the apex of sur­
face breaking spheroids of unusually dense material (Lange 
and Metcalf, 1983; Lange, 1988). The same phenomenon is 
found for inclusions for which aj^b. As a/b increases, o-22 is 
tensile at the surface for lower and lower values of c/b, until, 
for a/b-*°°, the critical value of c/b is =0.75. 

The stresses throughout and around the inclusion are il­
lustrated in Fig. 6 for the hemispherical case a = b = c. Each 
curve in Fig. 6 shows a component of stress as a function of x3 
for X\ = 0 and the marked values of x2 • Near the interface 
(Figs. 6(b) and 6(c)), the stresses vary very rapidly within the 
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-0.8 

Fig. 7 Interface stress components a„ a0, and a,0 resolved into the 
coordinates of the interface (see inset) as functions of the angle 0, for 
the case a = b = c and <';- = 6^ 

"ij/E 0 

lal 0.45. . M 

o n 
022 
033 
023 

_i_ 

*2/b = 0-95 

011 
022 
033 
023 

1 
x3/c 

Fig. 8 The net stress 
values of x2 when a = c 

<xjj as a function of x3 for x1 

: = 2b, e' = 1 , 4 = - 1 > a n d a l 

1 2 
*3/c 

= 0 and the marked 
all other t\t are zero 

la) 

-

^ 

'̂._.— 

. i . I , 

X2 = 0 -

^ ^ ^ 

-

011 
022 " 

- - 0 3 3 -

x3/c 

Fig. 9 The net stress <ri 

values of x2 when a~b 

*3/c 
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inclusion. In Fig. 7, stress components resolved in the coor­
dinates of the interface (inset) are plotted around the interface 
in the plane xx = 0. The angle d in Fig. 7 is defined by x2 = b cos 
6 and x3=b sin 6, where (x2,xs) lies on the interface. The 
stresses shown are those within the inclusion at the interface. 
Note especially that the shear stress <rrt is nonzero on the free 
surface at the interface, but zero elsewhere on the free surface, 
as required by the boundary conditions. Since <rrt would drive 
interfacial failure when the normal stress or across the inter­
face is compressive, failure in such cases would initiate at the 
free surface. 

Shear Transformations. Plastic deformation in crystals is 
usually volume conserving, which is to say e'mm=0 (with the 
summation convention for repeated indices). From many 
numerical calculations, one induces the important result for 
such cases that the stress fields are approximately uniform 
throughout the inclusion for all a, b, and c. For e\ = \, 
e2= — 1, and all other components of e' equal to zero, typical 
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stress variations are shown in Fig. 8 for the case b/a = 2 and 
c/a= 1. Right out to the edges of the inclusion, all stress com­
ponents are approximately constant. As c/a decreases, the 
constancy is even more perfect. 

For the transformation strain t[ = 1, e2 = — 1/2, e'3 = — 1/2, 
all other components zero, typical stress variations are shown 
in Fig. 9. The variations are larger than in Fig. 8, because the 
tractions t-i are much larger for a transformation strain for 
which £3^0. But it is still a useful approximation to consider 
the stress field uniform in cases where it is already an approx­
imation to consider the inclusion ellipsoidal. 

4 Conclusions 

Various analytical and numerical calculations of the surface 
displacements and stress field generated by a semi-ellipsoidal 
surface inclusion have been presented. For transformation 
strains for which e'3l and e'23 are zero, general characteristics 
(for any a, b, and c) include the following: 

(1) All components of the stress tensor are zero or constant 
on the free surface within the inclusion. 

(2) For transformations that are also volume conserving 
(e'mm = 0), and for shallow inclusions, the stress fields are ap­
proximately uniform throughout the volume of the inclusion. 

(3) Surface strains or differential displacements are only 
weakly dependent on the depth of the inclusion over gauge 
lengths comparable to the width of the inclusion when the 
depth exceeds the lesser of 2a and 2b. 

(4) The shear strain along the interface, when resolved in 
the plane of the interface, has it maximum at the free surface. 

Analytical results and accurate numerical calculations have 
been presented to reveal the nature of the anomalous stress 
fields near the intersection of the interface and the free sur­
face. The numerical methods presented are especially efficient 
for calculating experimentally observable surface displace­
ments. 
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An Exact Transient Study of 
Dislocation Emission and its 
Effects on Dynamic Fracture 
Initiation 
Closed-form transient solutions for the micromechanical process of screw disloca­
tion emission from a stationary crack which is subjected to SH-wave diffraction are 
presented. The dislocations are allowed to leave the crack edge in arbitrary direc­
tions, either singly or in pairs. Imposition of an emission criterion that is both based 
on the dislocation force concept and is similar to criteria applied to quasi-static emis­
sion studies allows expressions for the instants of dislocation emission and arrest 
and the distance traveled by the dislocation to be obtained. These expressions are 
studied for their dependence on parameters such as emission direction and speed, 
and several distinctive dynamic effects are observed. A standard fracture criterion is 
then imposed, and conditions for determining whether fracture will precede or 
follow emission are established in terms of real time. Finally, some estimates for the 
orders of magnitudes of the parameters involved in this micromechanical process are 
given. 

Introduction 

Rice and Thomson (1974), Li (1981), Ohr (1985), and Lin 
and Thomson (1985) have discussed fracture and its brittleness 
or ductility in terms of the emission of dislocations from the 
crack edge. The discussions are generally nontransient, 
perhaps reflecting the view (Hirth and Lothe, 1982) that 
dislocation motion is sluggish enough to minimize or preclude 
dynamic effects. However, Achenbach and Brock (1973) have 
shown that important details of fracture under dynamic 
loading may not be discernable in nontransient analyses. More 
to the point, Brock (1989) has shown that fracture initiation 
can be sensitive to the timing of dislocation emission events. 

Brock's work, however, treated only a single dislocation 
emitted in the same plane as the crack. The present work, 
therefore, extends the transient study of dislocation emission 
and its role in fracture under dynamic loading by considering 
both dislocations which leave the crack edge in various direc­
tions, and dislocations which are emitted in pairs. This latter 
consideration will allow insight into multiple emission 
processes. 

As in Brock's (1989) work, screw dislocations and semi-
infinite stationary Mode III cracks in unbounded, linearly 
elastic, isotropic, homogeneous solids are treated. There is lit-
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tie inherent additional difficulty in treating edge dislocation 
emission from Mode I and Mode II cracks. However, the 
associated mathematical solutions for the screw disloca­
tion/Mode III case can be obtained in closed form, which is a 
distinct advantage if general physical insight is a major goal. 

In the next section, the solution for the basic problem of a 
screw dislocation leaving a crack which is subjected to 
dynamic loading is discussed. 

Basic Problem and its Formal Solution 

Consider the semi-infinite crack y = 0, x<0 in Fig. 1(a). 
The unbounded material containing the crack is at rest except 
for a step-stress pulse traveling as a horizontally polarized 
shear (SH) wave at right angles to the crack plane. The wave 

(a) (b) 
Fig. 1(a) Wave pattern generated by single dislocation emission and 
1(b) wave pattern generated by emission of dislocation pair 
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reaches the crack plane at s = 0, where s = (shear wave 
speed)x(time). At s = so>0, a single right-handed screw 
dislocation is emitted from the crack edge, and travels rec-
tilinearly away at an angle (3(0 </3 < TT) with respect to the 
crack plane, and with a constant, subcritical speed. The wave 
motion engendered by this process is also indicated in Fig. 
Ha). 

The process itself can be treated as one of antiplane strain, 
so that only the out-of-plane displacement w(x,y,s) exists. By 
linear superposition, this can be written as 

w=w0 + W0 + wb+Wb (1) 
where (w0, wb) are the displacements which would be 
generated by the SH-wave and emitted dislocation if no crack 
existed, and (W0, Wb) are the displacements generated in 
order to cancel the (w0, wb)-induced stresses from the crack 
surfaces. 

The problem involving (w0, W0) has been treated by 
Achenbach (1970), and expressions for w0 and the stress 
generated by W0 directly ahead of the crack derived. Brock 
(1989) has extended this work and obtained complete expres­
sions for W0 itself everywhere. Thus, we have 

ioxs>y, 

liw0 = T(y-s) 

V2 , , 
fxW0= •nJ(r—x)\l(s — r) 

(2) 

-H 
T < " ( 

1+ tan" 
7T V 2 V ( r - j t ) V ( s - r ) 

s—x—r 

TT) 

— t a n ' —7—-, T 

TT \l2y/(r + x)y/(s-r). 
(3) 

fors>r, and 

±nW0 = r(s-\y\)H(s-\y\) (4) 

for ±y>0,r>s, where 

r = V(x2+.y2) (5) 

and n is the shear modulus, while T > 0 is the magnitude of the 
step-stress. 

The expression for wb can be obtained either by generalizing 
results due to Nabarro (1951) or by specializing a general 
three-dimensional dislocation loop solution by Brock (1986): 

2TT 
wh = tan 

cy'-JcP-r2) 
T = s - s „ > r . 

x'(x'-cT)+(y')2 

In Fig. 1 (a) it can be seen that 

x' =*cosj3+j'sin|3, y' = ycosfil — xsinfi 

(6a, b) 

Oa,b) 

are coordinates aligned with the dislocation path. In (6a,b), c 
is the dislocation speed nondimensionalized with respect to the 
shear wave speed, i.e, 0 < c < 1, while b is the Burgers vector 
magnitude. 

Finally, by following Achenbach (1970), it is easily shown 
that for ±y < 0 the formal solution 

- - -HH? (p,0,q) 
dpdq 

J[(s-q)2-(x-p)2-y2\ 
(8) 

exists for Wb, where the variables (p,0,q) correspond to 
(x,y,s) and the region of integration is delineated by positive 
values of the radical argument, and by the location of nonzero 
values of the derivative along y = 0. These nonzero values are 

BWh 

dy dy 
(9) 

for.y = 0, -s<x<0a.nd 

dy 7rV(ij-£) 
[*°?L(lZl,0,lp.)«i-'»du, 
iv„ dy V V2 V2 / n-v 

l)o = V2 
(10a,b) 

for ^ = 0, 0<x<s, where -J2i]=s + x and ^Il%=s-x are 
characteristic variables which arise naturally in the solution 
process (Achenbach, 1970). The integrations associated with 
(8) and (10) are nontrivial but, as indicated by the work of 
Brock (1989) can, in fact, be carried out. This is done in the 
next section. 

Integrations for Wb 

From (6a) it is easily shown that 

2ir dwb 

cb dy 

•JCP-x2) xcos/3 — cT 

x (xcosP-cT)2 + (l-c2)x2sin2P 

for all y = 0, T> \x\. Substitution of this result into (10) 
yields, upon elimination of (£, 77) in terms of (x, s) and in­
troduction of the integration variable change -Jlv = 
J2£(l-u) + s0u, 

v2 dWb _ V2 f' , / 1 - t A 

cb dy ~ \lxsl(T-x) Jo \ u ) 

«(cos/3 — C)+2C du 

[w(coS|8-c)+2c]2 + (l-c2)M2sin2|3 ix 
u + 

(12) 

T-x 

The integration in (12) is over the branch cut 0 < « < 1 of the 
integrand, which itself exhibits simple poles at 

u = 
2x 2c 

u= , z = cos/3±z'V(l-c2)sin|8 (13«-c) T-x z-c 

and vanishes as 0(«~2) when \u\ —00. These poles lie off the 
branch cut, so that Cauchy residue theory can readily be ap­
plied to give 

dW„ dwh 
+ _ V w i + c)]V(-^) 

dy dy 

x(\ -c — ccos/3) — cT 

(xcoS|3 - cT)2 + (1 - c2)x2sm2p cos • (14) 

for y = 0,0<x<s. Substitution of (9), (11), and (14) into (8), 
along with the introduction of (J, IJ) and their integration 
variable counterparts \l2u-p + q and \/2v=p — q, gives the 
more explicit result 

b Jv0 \ % — V / h0 

M-Sr) (u — v)cos(3 — c(u + v-2ri0) 

D(u-v) 

-V[2c(l+c)]cos- i-(3fU dirj( " ^ ) 
2 J,„ \ £-v / 

(15) 

1: du 
(u-v)(l-c-ccos/3)-c(u + v-2ri0) 

Dsl(u-v)^l(M-u) 

where 

D=[(u-v)cosfi-c(u + v-27i0)]
2+(\-c2)(u-v)2sm2l3 (16) 

572/Vol. 56, SEPTEMBER 1989 Transactions of the AS ME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V2u0=V2£ -J- , V2M=V2T) 
V2ij-,y0 

dw 
--V 

/ dw dw 
= M cos/3 — sm/3- 3x 

(22) 

V 2 « - i ; ) 
\f2v*=s-r. (17a-c) 

The first term in (15) involves a ^-integration over the branch 
cut rj0 < u < M o f an integrand which exhibits simple poles at 

by' V dy 
which is evaluated by first choosing x' =cT, and then setting 
y' = 0 (cf., Dundurs, 1968). Performing this operation in view 
of (1) and (6) yields the following expression for the glide 
plane force per unit length of dislocation edge: 

u = v, u = v + 2c v-Vo 
z-c 

(18a,b) 
1 

IT \ 

s-cT\ 
cT -y-

& 
H rtan" 

IT 

and behaves as 0(«~2) when \u\ ~oo. The complex conjugate 
poles (18b) lie off of the branch cut for all TJ0 <V<V0, but the 
pole (18a) lies on the cut unless f*<y<t>0 . For the second 
term in (15), the M-integration is over the branch cut v<u<M 
of an integrand which also behaves as 0(u~2) when Iwl —oo, 
but which exhibits poles (186) off the branch cut for all 
i)0<v<v*. Cauchy residue theory can then be applied, and 
(15) becomes 

27T f "o 

*j2\/(z + c)dv 

^Uz-c)(r2-s2) + 2-j2v(zs + c(s0-x))+2cs0(x-s)-2w2(z + c)} 

-yJ(s2-c2T2sm2P)-s + cTcos-

2sl(cT)^I(s-cT) cos 0 
lib BU3, c) 

4ir cT 

Btf.C): 
! -c2 ) L 

. c(l + c) 2 (3 
1 + -; 7T c o s —z~ 

1 + ccos/3 2 

(23a) 

(236) 
V ( l - c 2 ) 

For (3 = 0, (23) reduces to the expression obtained by Brock 

f: 
J v* 

^2dv 

V [ r 2 - ( j - W 2 y ) 2 ] 
(19) 

for ±y<0, where (£, rj) have once again been eliminated in 
terms of (x,s), so that now 

s2-r2-s„(s—x) 
„ ° . (20) 
T+x 

The y-integrations in (19) can be performed by use of standard 
integral tables, with the results that, for all s> r, 

V2y„ = 

2TT W 

+ Re( sin" 

zx—cT+ V T+x ) 

(1989) for emission in the crack plane. When c is set to zero 
while cT is allowed to remain finite, the last term in (23a) 
reduces to the quasi-static result for dislocation emission in the 
crack plane (Majumdar and Burns, 1981). A twofold dynamic 
effect is thereby made apparent: First, the dislocation speed, 
i.e., c, appears explicitly in the term that represents the 
dislocation contributions to its own glide plane force. Then it 
is the speed which couples the emission angle (3 into the term. 
The lack of angle dependence in the quasi-static result is well 
known (e.g., Brock and Wu (1988a)). 

Brock (1988) argued that cT/s0 <<< 1 during the emission 
process. That is, the distance cT traveled by an emitted 
dislocation is small compared to the distance traveled by a 
shear wave during the interval prior to emission. Adopting the 
same argument here in view of (6b) yields the following ap­
proximation for the right-hand side of (23a): 

V[ (zx -cD 2 + (z2-c2).y2] 7T \ CT J cos 
lib B(p,c) 

4ir cT 
(24) 

r Tx + r2 "1 

L r(T+x) J 

- R e (sir 
zx-cT+ (z + c)(r-x) 

^l[(zx-cT)2 + (z2-c2)y2} • ) • 

(21) 

With (21) in hand, the complete solution (1) for the basic 
problem is now ideal for purposes of both computation and 
analysis. In the next section, this solution is used to examine a 
criterion for dislocation emission. 

Criterion for Dislocation Emission 

Following the precedent set in quasi-static emission 
analyses, e.g., Ohr (1985), we adopt the postulate (Bilby, Cot-
trell, Swinden, 1963; Shaw, 1984) that dislocation motion by 
glide cannot occur unless the glide plane force can overcome 
the lattice friction, which can be identified with the yield 
stress. 

To obtain the glide plane force, we adopt the Peach-Koehler 
scheme (Hirth and Lothe, 1982), whereby the force can be 
calculated in terms of stress components evaluated at the 
dislocation itself. More specifically, the glide plane force here 
involves the glide plane stress 

Satisfaction of the emission criterion requires that (24) exceed 
the value a, where a is the yield stress. Equating (24) with a, 
therefore, gives a quadratic equation for the values of ^J(cT) 
at which the force drops below the critical level. Because cXis 
the distance of the dislocation from the crack edge, this is 
analogous to quasi-static results for screw dislocation emission 
in the crack plane. Here, of course, as already noted, the equa­
tion includes an emission angle, as well as two essentially 
dynamic parameters (c, sn). 

The quasi-static results, e.g., Ohr (1985), interpret the 
smaller distance obtained from the quadratic as the point 
where the dislocation force overcomes resistance to glide, 
while the larger distance locates where the emitted dislocation 
arrests. Furthermore, the smaller distance must be a fraction 
of the dislocation core radius (Hirth and Lothe, 1982), while 
the larger value must exceed the core radius. Following Brock 
(1989), we also adopt this interpretation and, as a result, are 
able to find not only the distance d* from the crack edge at 
which arrest occurs, but also the instants (s0, s*) at which, 
respectively, emission and arrest occur: 

A — = ( u B ) 2 , 
h 

s0=\{-
2T sec 

J3_ 
2 )'[' 

/ d* M 2 d* 
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Fig. 2(a) Emission instant versus angle at various speeds: single 
dislocation; 2(b) arrest distance versus emission angle at various 
speeds: single dislocation 

Here, h is the core radius, while 

/ T (3 \ 2 , / d* \ d* 1 ixb 

ATT ah 

(26a-c) 

and the dimensionless parameter X is the aforementioned frac­
tion of the core radius, i.e., 0<X< 1. Substitution of (25a,b) 
reduces (26a) to 

(X-cofl)2;>0 (27) 

which is always satisfied. It should be noted that for X= 1 the 
strict equality in (27) implies that d* = h, i.e., the dislocation in 
essence does not leave the crack edge. For many engineering 
materials, /A/CT~0(103) and b/h~Q(\), while r/a~0(lO)-[ for 
a high but noncritical stress level. Equations (25a,b) then 
show that d*/h>\, while simultaneously, 

d* / 2T & 

T - ( - cos )'[' 

•«•$•)] 
« 1 , 

h 
« 1 . (28a,6) 

The first inequality confirms the assumption made in employ­
ing the approximation (24), while (286) implies that the 
dislocation emission and arrest times are not necessarily 
insignificant. 

Several other observations can also be made: First, (25) 
shows that if X is treated as a specified constant, the arrest 
distance is independent of the SH-wave. However, the instants 
of emission and arrest vary inversely with the square of T, 
which means that, while the arrest distance would remain 
finite in the limit as the SH-wave disappears, the emission and 
arrest process would never actually occur. Then, the form of B 
shows, as previously implied, a dynamic overshoot effect 
through its explicit dependence on c. This effect is especially 
pronounced at high (c— 1) values. It should be noted that this 
independence of arrest distance and applied loading can also 
occur in quasi-static analyses of screw dislocation emission in 
the crack plane, as pointed out by Brock (1989). 

Numerical Results 

To illustrate the behavior predicted by the emission 
criterion, we plot in Figs. 2(a,b) the dimensionless ratios sQ/b 
and d*/b, respectively, versus (5 for various values of c. For 
these plots we choose the dimensionless parameters 

= 1.0, = 0.0001, a = 0.001, X=1.0. (29a-d) 

That is, the core radius and Burgers vector magnitudes are 
equal, the SH-wave step-stress is high but noncritical, and the 
smaller value of cT corresponds to the core radius itself. 

Figure 2(a) shows that the time interval between diffraction 
and emission increases rapidly both with emission angle and 
dislocation speed. In particular, this time is seen to approach 
infinity for dislocations which attempt to leave the crack edge 
by paths very near the crack surface. Figure 2(b) shows that 
the distance from the crack edge at which an emitted disloca­
tion arrests also increases with dislocation speed, but varies in­
versely with the emission angle. Thus, emission on the plane 
directly ahead of the crack will occur earlier and the emitted 
dislocation will travel farther than on other planes. The varia­
tion of d* with c is clearly a dynamic overshoot phenomenon, 
while the variation of s0 with c is noteworthy for another 
reason: It suggests that screw dislocation emission will occur 
first for any /3 when c—0. That is, the emission process prefers 
in this respect to take place, in effect, quasi-statically. 

The magnitudes of the ratios in Figs. 2 (a, b) are also 
noteworthy: Because typical Burgers vector magnitudes are 
0(10-'°) m (Hirth and Lothe, 1982), Fig. 2(b) shows that ar­
rest distances are 0(10"6)m. Thus, this result of the essentially 
micromechanical emission process could possibly be 
measured, albeit with difficulty. In regard to Fig. 2(a), it is 
known (Achenbach 1973) that shear wave speeds for metals 
can be 0(103) m/sec. Therefore, the times to emission shown 
in Fig. 2(a) are 0(10"6)sec, which is, again, barely in a 
measurable range. Returning to Fig. 2(b) in view of (25c) and 
(28a), however, the results are not as encouraging: The d*/b 
magnitudes suggest that the difference between the instants of 
emission and arrest can definitely be less then 0(10~6) sec. 
Therefore, it may not be possible to distinguish between the 
two instants. 

Emission of a Dislocation Pair 

To gain insight into multiple dislocation emission, we now 
consider the situation shown in Fig. 1 (b): When s=s0, two 
right-hand screw dislocations leave the crack edge at angles 
±/3, 13 > 0 with respect to the crack plane. The solution (1) is 
again valid, as are (2)-(4). Simple symmetry arguments show 
that the expression (21) for Wb need be modified only by af­
fixing the factor 2, while (6a) for wb becomes 

2ir 
= tan~ 

+ tan~ 

cW(7*-/-2) 
x'(x'-cT) + (y')2 

i cy"-J(t1-r2) 

x"(x" -cT) + (y")2 ' 
T>r (30a,b) 

x" =xcos/3— ysinfi, y" =ycosP + xsinl3. (3la,b) 

The procedure just described for obtaining the glide plane 
force on the dislocation can again be followed and, for the 
dislocation which is emitted at angle j3, it is easily shown that 
(23)-(28) are again valid, with the exception that the definition 
(236) must be replaced by 

B(p, c) = , cos^ — 
l+ccos/3 Ll-ccos/3 V ( l - c ) 2 

(32) 

The general observations made earlier concerning (25)-(28) 
are also still valid, so we now present in Figs. 3 (a, b) plots 
analogous to those in Figs. 2(a, b): Again, the values 
(29a-d) are chosen. Figure 3(6) is similar to Fig. 2(b), in 
terms of 03, c)-dependence and order of magnitude, although 
the arrest distance variation with /3 is more pronounced. In 
Fig. 3(a), the emission time dependence on c noted in Fig. 
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Fig. 3(a) Emission instant versus angle at various speeds: dislocation 
pair; 3(b) arrest distance versus emission angle at various speeds: 
dislocation pair 

2(a) is preserved, as is the order of magnitude. The /3-
dependence, however, is somewhat different: Specifically, 
the emission time exhibits a nonzero /3 minimum, so that there 
exists for every c a specific value (3 > 0 for which emission of 
dislocation pairs will occur first. Differentiation of (25b) with 
respect to /3 leads to the equation 

\ + aB(/3, c) 

\+wB(0, c) 
= 0 (33) 

for this value, where B is given by (32) and (\,b/h) = 1 for the 
cases illustrated in Fig. 3(a). Equation (33) gives real values 
for 0 only if B(0,c) >B(/3,c), but it can be shown that this is 
indeed the case for either (23b) or (32) for all 

0 < c < l , 0<(3<ir. 

A direct comparison of Figs. 2 and 3 also shows that a pair 
of dislocations might well be emitted before a single disloca­
tion which moves at an angle to the crack plane. Moreover, it 
is possible for the dislocation pair to travel farther than such a 
single dislocation would prior to arrest. It should also be noted 
that the conclusion drawn from Fig. 2 is possible in Fig. 3, 
too: The emission process prefers, in the sense of minimum 
s0, to occur quasi-statically. 

The Role of Emission in Fracture 

We now apply our emission studies to the question of frac­
ture initiation at the crack edge and its characterization: For 
purposes of illustration, the stress intensity factor criterion is 
adopted. For Mode III fracture initiation, the relevant 
dynamic stress intensity factor K3 can be obtained from the 
definition 

dw 
K3= lirn ^l(2-wx)ryz(x, 0, s), ryz=n-

x-o ay 
(34a,b) 

If fracture begins prior to emission, then from the previous 
analysis it can be shown that the fracture criterion has the 
form 

2TS/( s)=Kc
3, s<s0 (35) 

where K^ is the critical value of K3. Solution of (35) for the in­
stant of fracture initiation sc gives 

2 \2T) 
Kc ft *C Sn , Kr — 

I 
H~Jh 

K\ (36a,b) 

is not satisfied, then dislocation emission occurs before frac­
ture initiation, and the results of the previous analysis can be 
used to show that the fracture criterion becomes 

Kf-)-^(>+4-) I 

7r = #§ (37) 

for s<s* + d*, where 7 V s 0 » l . The inequality constraint 
simply acknowledges that the previous analysis is not valid 
once the signal of dislocation arrest reaches an observation 
point. The second follows from the fact that, as can be 
gleaned from the sign difference between the two terms on the 
left-hand side of (37), the emitted dislocation relaxes the crack 
edge stress field. Such dislocation shielding of the crack edge is 
a common (Majumdar and Burns, 1981; Thomson and 
Sinclair, 1982) effect, and the consequence here is that it will 
be some time after s = s0 before fracture can begin. Equation 
(37) is quadratic in V r , and it is easily shown that two real 
roots always exist, but that one is negative. The positive real 
root gives, therefore, the fracture initiation instant, sc, as 

^ ' [ T M ( T * ) ; 

2rb 
V ( l + — ) ) h<s*+d*. „ . _ . (38) 

Tr/xn \ c / J / 
For the general case /x/<r~0(103), b/h~0(\), T/ff~0(10"3) it 
can be shown that, indeed, T/s0 S> 1. 

To further examine the constraint in (36a), we substitute 
(25b) and find that the relation 

B-4ir\ -7 k. c o s - - > 0 
b LV(27T) C 2 n J 

(39) 

must hold. Similarly, we find that, for the constraint in (38) to 
hold, the relation 

rb 
V(l + +-) — 

c / 2TTVX 
'(-f)' 

•4-r(-f *')' + -5rv(1+4>! >0 (40) 

where kc is a dimensionless constant. If the constraint in (36a) 

must be satisfied. 
The constraints (39) and (40) give, in effect, conditions for 

the relative brittleness or ductility of the fracture initiation 
process: Only those dislocations with (/?, c)-values which 
violate (39) can be emitted prior to fracture. If such disloca­
tions also satisfy (40), then fracture will initiate prior to the in­
stant at which the crack edge is aware that dislocations have 
arrested. These conditions apply, of course, for either single 
or paired dislocation emissions, depending on the choice of 
the function B. In fact, it is easily shown that the two func­
tions are equal only if ft = ic, and that B defined by (32) exceeds 
that defined by (23b) for 0</3< -K. This implies appropriately 
that brittle fracture is more likely to initiate prior to emission 
of dislocation pairs than prior to single dislocation emission. 

More generally, the equations in (36a) and (38) and the con­
straints (39) and (40) demonstrate again (Brock, 1989) that 
fracture initiation can be characterized in terms of the timing 
of various events. Finally, it should be noted that the orders of 
magnitude obtained for (s0, s*), i.e., the instants of disloca­
tion emission and arrest, imply that, unless fracture initiates in 
a time interval of 0(10 -6) sec after diffraction occurs, not only 
will it then initiate after emission, but after the crack edge is 
aware of dislocation arrest. 

Brief Discussion 

This work extended earlier results in the transient analysis 
of dislocation emission from dynamically loaded cracks. The 
particular problem of single and paired emissions of screw 
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dislocations at constant speeds and in arbitrary directions 
from a crack subjected to SH-wave diffraction was treated, 
and closed-form solutions given. An emissions criterion based 
on the dislocation force concept was adopted from quasi-static 
emission analysis. The transient nature of the analysis in­
creased the robustness of the criterion, however. First of all, 
the force itself was found now to depend explicitly on disloca­
tion speed and, precisely because of the speed dependence, to 
also be more sensitive to emission angle values. Secondly, the 
criterion yielded not only formulas for the distance traveled by 
the emitted dislocation to arrest, but the instants of emission 
and arrest as well. These formulas generally depended on 
dimensionless parameters related to the SH-wave stress, the 
dislocation speed, the dislocation core radius, the Burgers vec­
tor magnitude, and the angle of emission. 

Numerical calculations indicated that a single dislocation 
would most likely be emitted in the crack plane, whereas a pair 
of dislocations would leave the crack at optimum angles. The 
calculations also demonstrated that single dislocation emission 
will generally but not always occur before emission of a 
dislocation pair. Finally, the calculations showed that the ar­
rest distances and emission times are both small, reflecting the 
micromechanical nature of the emission process, but not 
necessarily insignificant. On the other hand, it may be difficult 
to distinguish between the times of emission and arrest. The 
arrest distances, it should also be noted, would give insight in­
to the extent of the dislocation-free zone (Thomson and 
Sinclair, 1982) around the crack edge. 

This work also considered the role of dislocation emission in 
fracture. By using the same analysis and a standard critical 
stress intensity factor fracture criterion, formulas for the in­
stants of fracture initiation were obtained for both emission-
free and postemission situations. These instants were 
associated with constraints which in effect, provided condi­
tions for assessing the relative brittleness or ductility of the in­
itiation process. Furthermore, the aforementioned magnitudes 
of the instants of dislocation emission and arrest suggested 
that, unless fracture initiation occurred less than 0(10~6) sec 
after diffraction, it would occur under the influence of both 
moving and arrested dislocations. 

In summary, then, the transient nature of the analysis gave 
additional insight into the emission process, chiefly by allow­
ing the derivation of actual times of events. Interestingly 
enough, it was the study of one, the emission instant, which 
indicated that the emission process prefers to occur quasi-
statically, as a series of single events, and in the crack plane. 
Thus, screw dislocation emission studies such as that by Ohr 
(1985) may be sufficient for gaining insight into nontemporal 
parameters. This and the other results obtained here suggest 
that, in fact, the emission instant might be adopted as part of a 
more complete emission criterion in future work. 

Such future work is now planned to relate emission to crack 
extension, and some preliminary efforts using approximate 
transient solutions (Brock and Jolles, 1987) and treating 
preexisting dislocations (Brock and Wu, 1988a) have already 

been made. Moreover, the analysis and physical insight de­
vised here is currently being extended to studies of edge 
dislocation emission from Mode I and Mode II cracks: One 
preliminary result (Brock and Wu, 1988b) suggests that the 
quasi-static emission process is not necessarily preferred for 
the edge dislocation case. 
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Elastic Yield Zone Around an 
Interfacial Crack Tip 
A closed-form approximate solution for a small-scale yielding (SSY) plastic zone 
around a planar interfacial crack tip, occurring between two dissimilar ideally-
bonded elastic half spaces, is obtained by equating the elastically-calculated Mises 
equivalent stress with the material yield strength, ays. The dimensionless parameter 
f(d), which is defined as {(d) = zK + e/m-p(0), where zK is the phase angle of the 
complex stress intensity factor K, e is the bimaterial constant, and rp (6), is the polar 
representation of the plastic zone radius, naturally arises. The SSY interfacial load 
angle (ILPA), defined as f0= zK + e/«(KK/cj2

ys7rcosh2(ire)), leads to periodic 
zone growth. The ILPA characterizes the overall applied load phase by combining 
the oscillatory radial phase shift, attributable to the increase in zone size due to 
increased loading, with z K. At a particular angle d0 from the uncracked interface, 
the plastic zone radius thus calculated is independent of z. K, proportional to KK, 
and has no oscillatory radial phase dependence. The derived plastic zone expression 
reproduces the shape characteristics, and it modestly reproduces the zone size when 
compared with solutions for an elastic/perfectly-plastic solid adjoint to an elastic 
solid. As the strain-hardening exponent in the plastically deforming medium 
decreases, agreement between the approximation and various accurate numerical 
solutions improves. In the limiting case when e = 0, the well-known homogeneous 
elastic solutions for pure Mode I and Mode II are recovered, as well as all possible 
mixed-mode combinations. Approximate validity conditions for the existence of 
Williams-type asymptotic fields (traction-free crack faces) are presented. 

1 Introduction 

Much effort has recently been focused on interfaces which 
exist between dissimilar media, with specific attention being 
directed toward media separation or fracture events. Publica­
tions on the subject, such as Shih and Asaro (1988), Hutchin­
son et al., (1987), and Rice (1988) clarify several aspects of the 
oscillatory stress solution originally obtained by Williams 
(1959) for an interfacial crack, and aim to apply or further ex­
tend traditional (homogeneous) fracture mechanics ap­
proaches to interface cracking phenomena. Elastic interfacial 
crack-tip fields between isotropic media are well character­
ized, although only a limited number of geometries have had 
their stress fields and stress intensity factors solved exactly. 
Ting (1986) has presented a rigorous framework for determin­
ing the degree of singularity and the asymptotic characteristics 
for the general interfacial crack between two anisotropic 
elastic materials. When nonlinear material responses are in-
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eluded, no explicit unifying characterization presently exists to 
unite the various fracture parameters. However, dimensional 
analyses by Rice (1988) and by Shih and Asaro (1988) lead to 
symbolic functional relationships consistent with the present 
results. 

Insight concerning contained crack-tip inelastic deforma­
tion zones (in the small-scale yielding, SSY, sense) can be ob­
tained by considering the characteristics contained within the 
elasticity solution. One approximate method which has been 
used to determine the plastic zone shape and size around a 
crack tip in a homogeneous medium is equating the elastically-
calculated Mises or Tresca equivalent stress with the yield 
strength of the material (McClintock and Irwin, 1965; Rooke, 
1963). The locus of all points satisfying this condition is con­
sidered to be the plastic zone boundary which separates the ex­
terior elastic region from the interior plastically-yielding 
region. The changes in plastic zone size and shape, with 
respect to the applied load or stress intensity factor(s), can 
then be estimated from this expression. 

The goal of this work is to present a closed-form approx­
imate plastic-zone solution for an interfacial crack between 
isotropic linear elastic media, and propose various dimen­
sional and dimensionless quantities, which naturally arise in 
the derivation, as interfacial fracture parameters that uniquely 
characterize the interface crack-tip region. Comparisons are 
made between the approximate solution and various precise 
numerical solutions to demonstrate its accuracy. Conditions 
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which approximately determine the validity of this expression 
will be stated. 

2 SSY Plastic Zone Approximation 

The problem considered is a planar interfacial crack, as 
shown in Fig. 1, whose constituents have shear moduli 
IXj(j=l, 2) and Poisson's ratios vj. (Subscripts 1 and 2refer to 
the upper and lower domains, respectively.) Far field loads 
produce a local elastic stress field which is well characterized 
by the complex stress intensity factor K and associated asymp­
totic interfacial crack-tip stress fields. Following Hutchinson 
et al., (1987), the stress intensity factor is defined such that, as 
r - O o n 0 = O, oyy + ioxy~Krk/42;Kr. For the interfacial "Grif­
fith" crack configuration of length 2a, this definition for K 
differs from Q, the "stress intensity vector" given by Shih and 
Asaro (1988), by the complex factor e 

3: K = Qe"-'eln20. 
(See Rice (1988) for calculated examples of K for various 
geometries and for the interfacial stress fields.) 

The bimaterial constant, e, which modulates the stress and 
displacement oscillation period, can be defined as 

2TT 
-In 

( — + - ) 

x Mi V-i' 

\ H2 /i, / 

(1) 

where K,- = 3 - AVJ for plane strain and K} = (3 - vj) / (1 + vj) for 
plane stress. We note in passing that Dundurs (1969) has 
shown that elasticity solutions to problems of this class depend 
functionally on only two dimensionless functions of vlt v2, 
and /xi//x2. The second of these parameters, ;32, c a n be ex­
pressed as 

2 _ ^(K2 + \) + H2(KI + 1) ' 

Thus, the bimaterial constant e can also be expressed in terms 
of/32; e.g., 2 « = ln[(l-/32)/(l+/32)]. 

The general stress field for an isotropic elastic solid can be 
represented by the Muskelishvili potentials (Rice, 1988) 

and 

: + ayv = 2W + 0 ' ] 

. + Hoxy = 2Hz-z)4>"-<l>'+Q']. 

(2) 

(3) 

Retaining only the dominant asymptotic term as r—0, the 
plane-strain elastic potentials in the upper domain are 

<t>{ = ar,e-"lz~Vl-k (4) 

and 

Q,' = d0e
mz- (5) 

Using (2)-(5), an expression for the Mises equivalent stress in 
region 1 can be obtained. (Appendix A contains the complete 
general series potential functions and formally calculates the 
Mises equivalent stress). Equating the Mises equivalent stress, 
a, in 0427) with the material yield strength, ays, and solving 
for the radius yields 

Fig. 1 Schematic interfacial crack tip 

where 

and 

D=J + 1, (7) 

(8) f ( f l ) = z K + dnrp(fl). 

Here 6 is the angle measured from the interface, rp (8) is the 
plastic zone radius from the crack tip, and z K is the phase 
angle of the (complex) stress intensity factor defined with a 
branch cut at 8 = ir such that ir> I z K l . ( z K = arc-
tan(3K/5RK), which in the homogeneous case, e = 0, reduces to 
z K = arctan (Kn/Kr).) For plane stress conditions, (6) and (8) 
are still valid; however, (7) is redefined as D= 1 and the plane 
stress value for e must be used. 

This approximation is valid only when a dominant elastic 
crack field exists and the maximum extent of the plastic zone is 
small compared to crack length (L) or other characteristic 
dimensions (maximum rp<KL). Further clarification will be 
stipulated in Section 3.4. 

3 Discussion 

3.1 Mathematical Considerations. Several interesting 
mathematical features arise from (6). Foremost, the dimen­
sionless {(8) is naturally obtained in the derivation. It 
removes the dimensional problems associated with assigning 
length units in K definitions (Rice, 1988) since f (8) is invariant 
provided rp(8) and K are evaluated using the same length 
units. Recall that the generic K can be expressed as 

K = ff°°Ce-''ElnLVxZ, (9) 

where a00 is a complex number (with dimensions of stress) 
representing the far field load, C is a dimensionless complex 
geometric constant, and L is the characteristic length dimen­
sion. Examination of (9) reveals that when different length 
units are used to express L, the z K changes. Equation (9) can 
be rewritten as 

K=llff00llxllClle,'<*-£lnL»V7rZ, (10) 

where II II denotes the magnitude of a complex expression, 

0 = z f f ° ° + z C , (11) 

and 

z K = 0-e ln i , . (12) 

Substituting (6), (11), and (12) into (8) produces 

3KK 

" a2
ys 8ircosh2(ire) 

2cos(0 + 2 f ( 0 ) ) [ Y - - Ae 2 f (^ ' r>-(2es in6 l + cos0) 

+ e-, 2 e ( i -» ) ' 

(6) 
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100 

to 

Fig. 2 The angle 00 is shown for plane-strain conditions over the com­
plete range of c for various values of v from 0 to 0.5 in increments of 0.1 

f(0) = </>-elnL + eln — _ _ ^ ( 0 , £ , Z ) , r ( 0 ) ) , (13) 
<̂  ffj,j7rcosh2(ire) J 

where g(fi, e, D, $(6)) is a nondimensional function. Using 
(10), KK can be expressed as 

KK=I :xllCII27rL. (14) 

Furthermore, (13) can be rearranged and simplified by using 
(14), reducing to 

C ll<7°°ll x IICII ") 
f(0) = </> + 2eln — — Jg~(0,e,D,r(d)) {• (15) 

<- a^cosh(7re) J 

From (15), it is clear that f (6) is dimensionless and indepen­
dent of length units used to express K. This is true as long as a 
single length measure is assigned to all L used when evaluating 
K in, e.g., (10). 

For a wide range of engineering interface material proper­
ties, an angle d0 exists for which the coefficient 

/AD 
l )e2«<«- T ) - (2esin0 + cos0), 

which multiplies cos(0 + 2f (0)) in (6), is identically zero. Thus, 
when 6 = d0, 

(— l)e2£(9o-'r>=2esin6l0 + cos6lo. (16) 

Figure 2 shows the plane-strain 0O, numerically obtained from 
(16), for various v from 0 to 0.5 for the complete range of e, 
assuming non-negative v in each material. Note that, 0O is 
generally not the same for plane-strain and plane-stress condi­
tions since, under each condition, e and D have different 
definitions. The existence of 0O indicates that radially, at angle 
e0: 

(a) Plastic zone growth is independent of the applied 
loading phase, z. K. 

(b) The elastically-calculated Mises equivalent stress does 
not oscillate. 

(c) The plastic zone radius is proportional to KK. 
Substituting (6) into (8), and defining the SSY interfacial 

load-phase angle (ILPA), f0, as 

f o ^ z K + e l n j -
v. a 

KK 
2
JJTCOsh2(7re) J' 

(17) 

yields 

10 
o 

^ 
-2.0 -1.0 0.0 1.0 

x (ayf nCoshs(£7T))/KK 

Fig. 3 Approximate plastic zones for various fo values 

Equation (18) reveals that f (6) can be additively decoupled 
into a load-phase dependent quantity, f0, and a transcendental 
angular dependent function. Alternative definitions of f0, dif­
fering trivially by a pure constant, are possible. Such a con­
stant could be chosen, e.g., to approximately normalize the 
angular function to unity. Equation (17) is a convenient ex­
pression for the SSY ILPA since it is an explicit single term 
representing the total load-phase angle and is common in all 
t(d). The ILPA totally describes the phase angle of the load 
by summing the loading phase shift, which is attributable to 
the change in zone size due to increase in loading, and the 
load-phase angle ( / K ) . 

Shih and Asaro (1988) have independently defined a related 
load-phase parameter, £, for elastic-plastic analysis of inter­
face cracks. Under small-scale yielding conditions, it can be 
shown that the current load-phase parameter, f0, is related to 
the parameter J of Shih and Asaro by 

fo = £-ln0rcosh2(«)) . (19) 

In view of the weak dependence of (19) on e over the practical 
range of interface elastic constants, f0 and § are effectively 
identical parameterizations of mixity for interface cracks. 

Another expression of interest is obtained by evaluating the 
plastic zone size at 8 = 80, in which case, using (16), 

, ( * < > ) = • 

3KK 

cr2
JJ87rcosh2(7re) "[("-)' 

2e(» 0 - i ) 

+ e 
-2e(90 -T)1

 : 

(20) 

This entity may prove to be useful in investigating the effects 
of various material and loading parameters, since it does not 
contain any radially oscillatory terms and is insensitive to load 
phase. 

3.2 Zone Growth Considerations. From the previous ex­
pressions, the overall plastic zone growth characteristics with 
respect to increasing applied load (K) during SSY can be 
outlined. After sufficient initial loading has been applied to 
produce a continuum size plastic zone, the expressions for rp 

become valid and applicable. Examination of (6) and (18) 
shows that zone growth is quasi-proportional to (KK/<r2

s), 
and that the zone shape periodically repeats itself with every v 
increase in f0. For (very) large cracks, it is possible that the 
plastic zone may repeat its shape during loading. For every 

f(f?) = f0 + £ln 

2cos{d + 2t{6))\(— l)e2e ( l ' - ' r>-(2esine + cosfl)l 

+ e2e(«-x) r(2esin0 + cos0)2 + 2 (—- l\ 

+ e ,2e(7r-0) 

(18) 
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Fig. 4 Plastic zone comparison between the elastic approximation and 
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Fig. 5 Plastic zone comparison between the elastic approximation and 
a finite element solution for an elastic/perfectly-plastic medium adjoint 

to an elastic medium; K = 
(-57.5 deg) 

30e" MPa(m; % +0.0793/. 
fo = -1.004 

discrete value of f0, a unique zone shape and a unique set of 
tractions exists along rp(6). Figure 3 shows the plastic zone at 
various values of f0 for e=.170 and v=.342. This suggests 
that f0 uniquely describes the very local crack-tip fields within 
the zone as long as all previous loading experiences affect the 
current plastic state in the same manner. For the loading case 
where cycles of f0 have occurred, this would appear to be true. 
Since two loadings with unequal tractions can produce iden­
tical plastic zones, (e.g., ft, = 90 deg and f0 = - 90 deg produce 
tractions with opposite signs), a full 27r-evaluation of f0 is re­
quired to determine all the local fields. 

3.3 Comparisons. In the limiting homogeneous elastic 
case (e = 0), comparison with numerical solutions (Shih, 1974) 
indicate that the plastic zone shape and size for pure Mode I 
and Mode II, as well as for various mixed modes, are 
recovered. Comparing the approximate homogeneous plastic 
zones with plastic zones numerically obtained for strain-
hardening material shows that as the strain-hardening expo­
nent, n, increases (strain a (stress)"), the elastic approximation 
overestimates the plastic zone size behind the crack tip and 
underestimates it ahead of the crack tip. This is accompanied 
by slight distortional effects which tend to rotate the strain-
hardening plastic zone lobes toward the region in front of the 
crack as compared to the elastic approximation. 

Figures 4 to 7 show finite element (FE) calculations of SSY 
plastic zones for an interfacial crack tip with an 
elastic/perfectly-plastic medium adjoint to an elastic medium 
(Zywicz, 1988), and the approximate plastic zones for several 
values of E, ><!, /*], and z K. Although the precise shape is not 
reproduced, the general size and distribution of the lobe(s), as 
well as their position(s), are well represented by the simple ap­
proximation. An examination of Fig. 5 shows that the size 
scale is significantly different from that of the other figures, 
demonstrating the accuracy of the approximation in 

^ 0.8 

<n 
O 

O 

N o.o 

1 1 
FE 

Approximation / 

•~'P~~~~ 

• 1 

i i i | i i i 

/ / £ = 0.0 

• ^ - V \ <ryI=32 MPa 

J i/,=.342 

/ E,=70.1 GPa 
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-

x (cryf nCosh2(n€))/KK 

Fig. 7 Plastic zone comparison between the elastic approximation and 
a finite element solution for an elastic/perfectly-plastic medium adjoint 
to an elastic medium; K = 63.4e~ 0 0 / MPa(m)1/2 + 0 0 ' ; r0 = 0 

predicting overall size. Figures 4 to 7 represent the worst case 
comparisons since perfect plasticity formally represents a 
strain-hardening exponent of n = oo. The jaggedness of the 
finite element calculated plastic zones is attributable to ex­
trapolation/approximation errors and mesh discretization. 
Thus, the jaggedness should only be interpreted as an artifact 
of the discretization and plotting procedure. Figures 8 and 9 
show FE calculations of plastic zones for a deformation 
theory Ramberg-Osgood strain-hardening material, with 
strain-hardening exponents « = 3 and n= 10, respectively, ad­
joint to a rigid material (Shih and Asaro, 1988), and the ap­
proximate plastic zones for several load levels. These FE 
calculations were performed for a Griffith-type crack, similar 
to the one shown in Fig. 11, with e = .0935, L = 2a = 2 m, and 
C) = .3, where the stress intensity factor for the geometry and 
loading is K= 1.803 o°°e° W Here a°° represents 
the remote stress normal to the crack face (the ayy stress com­
ponent, as shown in Fig. 11), and aQ is the reference (or yield) 
stress. The FE plastic zone has been defined as the locus of 
CT=(70. The overall sizes and shapes are well characterized by 
the (asymptotic) approximation. As in the homogeneous case, 
when the strain-hardening exponent is decreased, the elastic 
approximation becomes more precise. (Recall, the Ramberg-
Osgood material idealization produes a linear response for 
n=l.) Although the plastic zone radii are not all identically 
the same at 6Q, the extent of the plastic zone in the vicinity of 
60 is indeed approximately the same for all loadings (f0). 

3.4 Valid Solution Domain. The plastic zone approx­
imation is based upon the assumption that a dominant 
(Williams type) field exists, as defined in (4)-(5), near the 
crack tip and transitionally along the plastic zone boundary. 
This section develops a methodology, based upon exact 
elasticity solutions for a Griffith crack, for determining ap­
proximately when such a Williams-type field exists, and thus 
defining the valid domain for the characterization of the 
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plastic zone in terms of f0, K, and material parameters. 
In examining the exact elasticity solution for an interfacial 

crack between two semi-infinite media (Rice and Sih, 1965), 
the stress potentials can be additively decoupled into singular 
terms and homogeneous far field terms, and reduced to obtain 
the dominant asymptotic potentials. Consider $, the <f>{ stress 
potential for the Griffith crack, given by Rice and Sih (1965) 
which is, 

U-i2ea) 

Vz2 
,ta) I z + a \ K ofy-

^2 V z-a ) l + i 

JO-" 

$ = (21) 

* t + ayy 

l+e2 V l + e 2 " 1 + K, / 

Here the crack tips are located at z= ±a, and wf is the far-
field rotation in Region 1. In the region near the crack tip, the 
stress potential can be represented by the first line of the right-
hand side of (21), namely 

where 

a — la p _ uyy ,uxy 

l+e2 (23) 

To obtain the asymptotic potential, substitute z = a + x in to 
(22) and assume kll <5C a, yielding 

1 
* 

Ya(\-i2e)/2a\ " "I = £ jr^_ _J 

L V2ax W / J V2TTX l + < llax v x / \ V2irx 1 + e ' 
Using 0423), (24) can be shown to be identical to (4). 

(24) 
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Fig. 11 Geometry for a Griffith-type interfacial crack 

By considering one potential of the exact elasticity solution 
for a Griffith-type crack, (21), an error parameter can be con­
structed which represents the discrepancy between the exact 
solution and the (Williams-type) dominant asymptotic solu­
tion, (4)-(5). Normalizing (24) by (22), which is the singular 
portion of (21), yields the asymptotic norm 

N= *asymp- = (1 + V (l+x)W2-k- (25) 
*near V 0 . 5 - 7 e / 

Here x = x/2a is the normalized distance with respect to crack 
length, and N represents the portion of the singular potential 
term represented by the asymptotic potential, given by (24). 
Evaluating (25) along the interface at x=0.1 yields N= 0.874 
for e = 0, while the extreme values e= ±0.1748 (positive v), 
N=0,889e±omi. For all e, as i - 0 , JV-1 . This, in conjunc­
tion with the previous observations, indicates that the asymp­
totic expression reproduces the singular term reasonably well 
over the entire domain where the singular potential term 
dominates. (From (21), it can be shown that at x~0.13, the 
singular term contributes to the total stress potential an 
amount, equal in magnitude, to that of the homogeneous 
term. For \x\ <0.13, the singular portion dominates.) 

Based upon the previous discussion, the asymptotic 
representation, (4)-(5) or (24), is representative in the crack-
tip region where 

>/->0. (26) 
10 

Here, L is the characteristic dimension. (Note, a slight 
modification has been made for convenience, and that is to 
limit the domain to L/10 instead of L/8). Such a conclusion is 
also typical of homogeneous crack solutions. 

A second condition must also be satisfied if (4)-(5) are to 
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represent the actual dominant asymptotic behavior; namely, 
that any perturbations within the dominant asymptotic solu­
tion domain must be small compared to that domain and oc­
cur near the crack tip. Using a St. Venant's-type argument, 
this can be expressed mathematically as 

3Z, 
* npr t i i rha t inn — TTT^ • K^1' ) ' perturbationm a x - 100 

Such perturbations could include plastic zones and crack face 
contact and interpenetration, if present. (Note, Williams-type 
fields, (4)-(5), are based upon the condition that the crack 
faces are traction-free.) Equation (27) represents a very con­
servative restriction and, depending upon the actual condi­
tions, it may be appropriate to relax it somewhat. 

The asymptotic relative crack-face displacement (CFD), Au, 
as a function of r (Hutchinson et al., 1987) is 

(C,+C2)Kr , £v7 

2V27r(l + *'2e)cosh(7re)' 

where 

u(r)=uy(r)+iux(r), 

(28) 

(29) 

and Cj are defined according to (Al). Following (A2A), f is in­
troduced and is defined as 

f = x K + dnr. 

Substituting (30) into (28) yields 

(C t +C2)HKHV7e'f 
Au( r )=-

(30) 

(31) 
2V27rcosh(ire)(l + He) 

Crack-face interpenetration occurs when A«y<0=»9?Au<0, 
or when 

cosf+2esinf<0. (32) 

The critical values f,, the beginning and ending points of in­
terpenetration, occur when 

cosf, + 2esinf, = 0 

tanf,= - J - . 

(33) 

(34) 

Note that for the homogeneous case, the condition 
represented by (32) occurs any time a negative K, is applied. 

The previous conditions on r, (26) and (27), coupled with 
the oscillatory crack-face behavior, can be restated as valid 
solution domain conditions in terms of f (via (30)), K and 
material parameters. Thus, Williams-type fields, (4) and (5), 
will exist transitionally along the plastic zone boundary if and 
only if 

and 

where 

cosf+2esinf>0 

KK 

o'2s7rcosh2('7re) 

€>0 f0<f<fm a x 

«<0 fm a x<f<f0 

<.03L, 

(35) 

(36) 

f m a x = x K + 6ln(ZV10). (37) 

The condition described by (35) requires that no crack-face 
contact or interpenetration occurs between the plastic zone 
boundary and the maximum valid extent of the dominant 
asymptotic field. It also assumes that the size of the plastic 
zone along the crack face can be approximated by the 
characteristic length, KK/<T^7rcosh2(ire). Figure 10 shows for 
plane strain the values of f, as a function of e, which will not 

produce crack-face interpenetration. In order for (35) to be 
true, both f0 and £"max, as well as the entire path which con­
nects them, must be in the unshaded region of Fig. 10. Note 
that for e = 0 (homogeneous case) the admissible range is 
Ifo I <TT/2, corresponding to K,>0. 

Expressions (35)-(37) are necessary, but not sufficient, con­
ditions for a Williams-type field to exist. Crack closure 
beyond L/10 is possible and must be ruled by other considera­
tions, such as global geometrical and loading factors, or by 
other solutions. However, for a (remotely-loaded) Griffith 
crack, Comninou and Schmueser (1979) showed that crack 
closure is continuous from the crack tip outwards; thus if 
closure exists beyond L/10, it will also occur within Z./10 (with 
respect to one crack tip). Henceforth, (35)-(37) are also suffi­
ciently validity conditions for a Griffith-type crack. 

4 Conclusion 

An approximate expression for the plastic zone around an 
interfacial crack tip in small-scale yielding has been presented. 
It modestly reproduced the characteristic size and shape, as 
compared to various precise numerical solutions, with increas­
ing accuracy as the strain-hardening exponent approached 
unity. The overall crack-tip plastic zone size was found to be 
quasi-proportional to (KK/a2

s). Plastic zones were found to 
change shape with applied load in a periodic manner depen­
dent upon an interfacial load-phase angle (ILPA), |"0. The 
IPLA was identified as a comprehensive single load-phase 
angle which determines the zone shape and tractions along the 
zone boundary, and which may serve as a parameter uniquely 
characterizing the fields within the zone. Approximate condi­
tions for determining the applicability of this expression were 
stated in terms of to and fmax, where fmax is dependent upon 
the characteristic length in the problem. 

From the previous derivations it appears that the ILPA (f0), 
e, (possibly v), and the magnitude of K (expressed as KK or J, 
where / is the /-Integral), are the local interfacial fracture 
mechanics variables needed to describe interfacial SSY 
behavior. Following homogeneous fracture mechanics, it 
seems natural to construct interfacial fields analogous to HRR 
or slip-line fields, utilizing the same material idealizations and 
similar framework, but with the degree of local (plastic) mode 
mixity being now dependent upon f0. Using f0 and / as 
loading conditions describing the SSY plastic zone boundary, 
the characteristics deep within the zone should be identifiable. 

In order to familiarize readers with the application of these 
concepts to interfacial fracture mechanics, a hypothetical ex­
ample is included in Appendix B. It demonstrates how to 
determine various local crack-tip quantities. 
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A P P E N D I X A 

Mises Equivalent Stress Derivation 

An asymptotic expression for the Mises equivalent stress 
around an interfacial plane-strain crack tip, as a function of r 
and 6, is derived. 

The general series potential functions for an interface crack, 
as expressed by Rice (1988), are 

041) 4>[ = e-"z-'/^iif(z)+2C2g(z)/(Ci+C2), 

$> = e"z-v'-kf(z)+2Clg(z)/(Cl + C2), 

Q{ = e^z~Y' + kf(z)~2C2g(z)/(Ci+C2), 

and 

Q2' = e-"z"'/' + uf(z)-2C,g(z)/(Cl+C2), 

with 

0 0 

042) 

(A3) 

044) 

(A5) 

(46) 
n = 0 

and 

CJ=(1+KJ)/,IJ. (47) 

Here fij are the shear moduli, «y = 3 - Avj for plane strain and 
Kj = (3-Pj)/(l + i>j) for plane stress, vj are the Poisson's 
ratios, and the subscripts 1 and 2 refer to the domains above 
and below the interface, respectively. 

From (2) and (3), the individual stress components can be 
expressed as 

and 

where 

°« = y (B + B), 

°yy = -j(A+A), 

°xy = —(A-A), 

(A8) 

(49) 

(AW) 

and 

A = (z-z)<l>"+i>'+Q', 

B=24>'+4>'-Q'-(z-z)<l>". 

(4U) 

0412) 

Here / = v — 1 and a bar denotes the complex conjugate. For 
plane-strain isotropic elastic solids, the Mises equivalent stress 
is 

=.2 = f_2 (0%, + o2 )D + (axxa )F+ 3a xy> 

with 

and 

V+l 

F=2v2-2v-l, 

0413) 

0414) 

0415) 

where v is the Poisson's ratio of the solid. For plane-stress 
isotropic elastic solids 0413) is still valid, but 0414) and 0415) 
are redefined as D=\ and F= — 1, respectively. After 
substituting (A8)-(AIG) into (A 13) and doing some complex 
algebra, 0413) is written as 

a2 = — $R ((D - 3)AA +(D + 3)AA + DBB 

+ DBB + FAB+FAB}. 0416) 

Further simplification is obtained by using 0411) and 0412), 
so that (A 16) becomes 

a1 = 'R{3(z-z)(z-z)<t>"V -6(z-z)<j>"4>' + 6(z-z)<l>"ti' 

+ (8Z) -6 )^ ' 0 '+ (8Z>-3 )< / ) ' 0 '+3Q 'Q , -6 f i> ' : (Ail) 

The asymptotic potential functions for the upper domain, 
(4) and (5), are obtained by considering the dominant term in 
041) and 043) as r—0. At this point attention shall be focused 
upon the upper domain since the lower domain solution is ob­
tainable by substituting — e for e. Differentiating (4), using 
z = re'e, expanding out (4) and (5), and defining 

we obtain 

S = a„r-k, (A\^) 

<!>'{=&< 

and 

(e-i)a-i3«/2 r-3/2 

p£(ir-8)»-/9/2, 

0419) 

( - 1 - f c ) . 0420) 

Substituting 0419)-0421) into (411) yields 

a* = —JR (33H- 3 - i6e)(e-/2S - 1) - 6 
r 

+ e2^e-n) <8D-6)(cos9-i sin 0)] 

+ 53[e2£<e_T)(l - cos20) ( — + 6e2) 

(421) 

_ e 2 e < e - T > ( _ 3 _ / 6 £ ) ( e - •1) 

+ e2^6-*)(8D-3) + 3e2^-V]}. (A22) 

The constant a0 is related to the complex stress intensity factor 
K (Rice, 1988) via 

a0=-
K 

2v27rcosh(Tre) 
0423) 
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Defining f as 

f= ^ K + elnr, 

and using (A 18), we find 

KK 
& & = • 8Trcosh2(7re) •(cos2f-sin2J), 

and 

$3--
KK 

0424) 

0425) 

(A26) 
87rcosh2(7re) ' 

The complete expression for the Mises equivalent stress is ob­
tained by substituting 0425) and 0426) into 0422), and can be 
expressed as 

The stress intensity factor for the left-hand crack tip is the 
same as for the right-hand crack tip because the applied load is 
symmetric (axy = 0). Substituting in for the numerical values 
Oyy = 1 MPa, e = 0.03373, and la = 0.0508 m yields, 

K=.2831e -0.03315/ MPa(m)'/ 

Using (17), the ILPA is f0 = - .33982 radians ( - 19.47 deg). 
The characteristic plastic zone length KK/cr2

s7rcosh2(7re) 
= 1 .577x l0 - 5 m. Evaluating (36) indicates that the 
characteristic plane zone length is sufficiently small compared 
to crack length. (Alternatively, from (6), (17), and (18) the 
maximum size of the plastic zone is 8.88 x 10~6m and occurs 

3KK 

r8ircosh2(7re) 
X < 

2cos(0 + 2f(0)) |Y——l)e 2 e ( e - ' r>-(2esin0 + cose) 

+ e2E<e-')[(2esin0 + c o s 0 ) 2 + 2 ( - ^ - l ) 

+ e2e(7r-0) 

0427) 

A P P E N D I X B 

Interfacial Crack Example 

A detailed hypothetical example demonstrating the pro­
cedures to characterize a plane-strain interfacial Griffith-type 
crack between 1100-O Aluminum and 1080 Steel is presented. 
The geometry considered is shown in Fig. 11, and the material 
properties are listed in Table 1. From (1), e = .03373. For this 
geometry, with the appropriate o^. imposed such that the in­
terface remains straight, the stress intensity factor for the 
right-hand crack tip in terms of the far-field stresses is (Rice, 
1988) 

K = (a + ia ) (1 + He) (la) ~k VTT«. I 

at 0=122 deg. Comparing rp to the crack length gives, 
rp/la= 1.748xlO"4.) From (37), f m a x = - . 2 1 1 3 radians 
(-12.11 deg). Checking (35) indicates that no crack face in-
terpenetration is anticipated. Thus, at this loading all the SSY 
conditions and the assumption of no crack face interpenetra-
tion are satisfied. 

Table 1 Material properties for 1100-O Aluminum and 1080 
Steel (Hertzberg, 1976) 

Material 

1100-O Al 

1080 Steel 

M(GPa) 

26.1 

80.7 

V 

.342 

.300 

<V(MPa) 

42.' 

585. 

Brown et al., 1989. 
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Thermal Stresses at the Edge of a 
Bimetallic Thermostat 
The plane stress problem of a semi-infinite, bimetallic thermostat subjected to 
uniform heating or cooling is treated with the theory of elasticity. Solutions to this 
problem are expressed as the sum of a basic solution for a bimetallic strip of infinite 
length and a series of complementary solutions. Interlay er peeling stresses at the free 
edge of the bimetallic thermostat are shown to be singular or nonsingular (but still 
higher than the nominal values) depending upon whether the combination of the 
two Dundurs' bimaterial constants, a (a—2/3), are greater or less than zero. In an 
example problem, current solutions agree well with finite element results while 
results predicted by a modified beam theory show a large deviation from the other 
two solutions near the free edge. Boundary layer effects near the free edges of a 
bimetallic thermostat are also discussed. 

1 Introduction 

Thermal stress in bimetallic thermostats subjected to 
uniform heating or cooling has been of interest for many 
years. Timoshenko (1925) and later Boley and Weiner (1960) 
solved the problem by the classical beam theory for an 
infinitely long, bimaterial elastic strip. Chen and Nelson 
(1979) used the concept of force equilibrium in calculating 
thermal stresses of bonded joints in electronic devices. 
Recently, Suhir (1986) presented a solution for a finite length, 
bimetallic thermostat with free edges at both ends. Adding to 
the normal stresses predicted by the strength of material 
approach (Timoshenko, 1925, and Boley and Weiner, 1960), 
Suhir calculated interlayer peeling and shear stresses at the 
free edges by the use of a simplified interface compliance. 
With this simplified interface compliance, Suhir was able to 
show high stress concentration near the free edges. However, 
as later pointed out by Razaqpar and Suhir (1987), the 
simplified approach used by Suhir (1986) has its inherent 
shortcomings in predicting accurate interlayer peeling and 
shear stresses near the free edges. 

It has been shown by Bogy (1968, 1970), Dundurs (1969), 
Hein and Erdogan (1971), and many others that, under certain 
combinations of material properties, stresses at a bimaterial 
wedge, such as the edge of a bimetallic thermostat, may 
behave singularly. This paper presents an analytical solution 
to the thermal stresses at the free edge of a semi-infinite, 
bimetallic strip subjected to uniform heating or cooling. 

2 Formulation 
As illustrated in Fig. 1, this paper considers a semi-infinite, 

bimetallic thermostat subjected to an uniform temperature 
change of AT. Plane stress condition is assumed in this paper. 
The plane strain solutions can be easily obtained by extending 
the plane stress solutions through the use of an equivalent 
Young's modulus and Poisson's ratio. It is also assumed that 
both materials are homogeneous, isotropic, and elastic with 
Young's moduli E" and E', Poisson's ratios v" and v', and 
coefficients of thermal expansion 5" and 5', respectively, for 
the upper and lower layers. Thicknesses of the two layers are 
h" for the upper strip and h' for the lower strip. Throughout 
this paper, the superscript prime is designated to variables or 
functions in the lower strip and the superscript double-prime is 
devoted to variables or functions in the upper strip. 

As the first step, we will find a basic solution to the problem 
of an infinitely long, bimetallic thermostat under uniform 
temperature change AT (see Fig. 2). For semi-infinite 
thermostats, a complementary solution will be needed later to 
account for the free edge. It has been shown by Boley and 
Weiner (1960) that, for an infinitely long rectangular beam 
under uniform temperature change, the classical beam theory 
can provide exact solutions to the problem. Thus, as shown in 
Fig. 2, moment equilibrium leads to the following condition: 

M' +M" =P (h'+h")/2. (1) 
Continuities of curvature and x-displacement at the interface 
lead to another two conditions: 
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Fig. 2 An infinitely long, bimetallic strip 
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M"h" 

E"A" 2E"I" 

(2) 

(3) 

where A and / are cross-sectional area and bending rigidity, 
respectively, and, as shown in Fig. 2, P and M are force and 
moments, respectively, acting at the center line of the two 
strips. With equations (l)-(3), the three unknowns, P, M', 
and M", can be solved explicitly, and thereafter, the normal 
stresses a'^ and a'^, can be estimated by 

P M' h' \ 

x(x,y) = <(y) = — (y + — J (4) 

°Zx(x,y) = oZx{y) = -
A" 

r 
M" 

I" ('-44- (5) 

Note that, in the classical beam theory, all the other stress 
components, o'xy, axy, <j'yy, and ayy, vanish. It is obvious that 
equations (4) and (5) are valid only for infinitely long 
thermostats. For a semi-infinite thermostat with a free edge at 
the left end (x = 0), the aforementioned solutions must be 
superimposed with a complementary solution to account for 
the stress-free boundary conditions at the edge. As illustrated 
in Fig. 1, the complementary solution is the solution of a semi-
infinite, bimetallic thermostat (AT=0) subjected to edge loads 
« ' and n", which are the negative of the normal stresses 
predicted by equations (4) and (5). 

Numerically, the complementary solution can be obtained 
by the alternating method. That is, by solving and 
superimposing a series of two fundamental problems'. («) two 
joined quarter-spaces loaded at the boundary (see Fig. 3), and 
(b) an infinitely long, bimetallic strip loaded symmetrically 
(with respect to x = 0) at both the upper (y = h') and lower 
{y = h") surfaces (see Fig. 2). 

3 Surface Loading in Two Joined Quarter-Spaces 

As shown in Fig. 3, the first fundamental problem is a com­
posite half space with prescribed surface normal loading n " (y) 
and n'(y) on the boundary surface (h" <y< —h'). This pro­
blem has been solved by Bogy (1968, 1970) through the use of 
two Airy stress functions and the Mellin transform. It was 
later shown by Dundurs (1969) and Bogy (1970) that, as the 
distance r from the free edge approaches zero, stresses near the 
free edge have an asymptotic term of r~x, Ln(r), or r° (r—•0) 
depending upon whether a (a — 2)3) is greater, equal, or less 
than zero, where X = X («,/?) is a positive number between 0 
and 1, and a and /3 are the two composite material parameters 
defined by Dundurs (1969). Definition of X will be given in the 
latter part of this section. Bogy (1970) has also pointed out 
that the logarithmic singularity, Ln(r) as r—O, exists only 
when there is a finite discontinuity in the shear load on the 
boundary of the composite half plane, i.e., only when 

nVl 
/ 
0 

1- E" 

E' 

v" 

v' 

6" I 

6' \ 

h" 

h ' 

Fig. 3 Two joined quarter-space loaded at the boundary 

t'{0)^t" (0) where t' and t" are applied shear loads on the 
boundary surface. Since neither equations (4) and (5), nor 
solutions to the second fundamental problem, which will be 
discussed in the next section, would generate any shear loads 
on the boundary surface (x = 0), the logarithmic singularity 
does not exist in the first fundamental problem. That implies 
that thermal stresses resulting from an uniform temperature 
change at the edge of a semi-infinite bimetallic thermostat will 
behave asymptotically like either r~x or r°, depending on 
whether a(a — 2/3) is greater or less than zero. 

Taken from Bogy's paper (1970), stress solutions to the first 
fundamental problem are 

o'n{r,6) = ~ f 0°Re*;[(- l -n | , f l ) /•*>] dr, 
•wr Jo 

— Lim [ ( s+ l )a ; r ( s ,0 ) / " ' ] 
2 j - - i 

1 f°° 
i'm (r,6) = — Re[a 9 ' e ( - 1 - n,, fl) /•"] dr, 

irr Jo 

°rt{r,6) = - Jo" ReM(- 1 - iv, 6) rir>] dr/ 

(6) 

(7) 

(8) 

and similar equations for a-'k (r, 9) by replacing ajk with afk. In 
equations (6)-(8), a-k are defined as 

4 4 

*<**--?©-('£+\S) k=\ k=i 

4 

(9) 

o'ee(sfi)= -
s(s+\) 

16D 

5+1 

£ (C"<*> [ M ^ ' ^ + M J M L J ] } (10) 
k=l 

•*"*--is-(• S+J S) 
l(-l)*S'<*Wi(*).Z<i+M3<*>Z,3]) 

where 

£ , ( * )= ' -
1 f*' 

— — 1 n' 
s + 1 ) Jo 5(5+1) 

1 

(/•)rs+1 dr 

L ^ = TT1T ( ' n"(r),^dr 
5(5+1) Jo 

(ID 

(12) 

(13) 
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£> = £>(a,/3,A) = [/3cos2 (-£) + (a-(3)(s+ l)2]2 

+ cos2 (^-) sin2 (~) - a2 (s + l)2 (14) 

/Sirs\ 
M f > (s) =/>_/*> (s) + Q}*> (S) Cos2 | — ) 

J&J&fc) = Pj*>2(5) + Qji\(s) cos2 ( i l ) (16) 

E' -E" 2[E'(\~v")-E"(\-v')\ 

E'+E" '" 4(E'+E") ' ( 1 7 ) 

and X is the root between 0 and 1 of the equation 
D (a,/3, A — 2) = 0. Similar definitions for a"k (s, 8) can be writ­
ten by replacing Mjk) with Mf}2

 m equations (9)—(11). In 
the aforesaid equations, functions C" (*!, C" (*', S' {k\ S" <*>, 
Pjk), Pjk), Q}k), and Qj*> are defined in pages 1293 and 1294 
of Bogy's paper (1970) and thus are not repeated in this paper. 

Thus, to get the solution for the first fundamental problem, 
we can convert the two surface loading functions, n'(r) and 
n" (r) , into the frequency domain by equations (12) and (13), 
and thereafter, calculate stresses by equations (6)-(8). 

4 Surface Loading in an Infinite Bimetallic Strip 

In the second fundamental problem we need to solve, as 
shown in Fig. 2, an infinitely long, bimetallic strip loaded sym­
metrically with respect to the>>-axis (x = 0) at both top (y = h") 
and bottom (y= —h") surfaces. Like the first fundamental 
problem, solutions to the second fundamental problem can 
also be expressed in terms of two Airy stress functions, <j>' (x,y) 
and 4>"(x,y) for the upper and lower layers, respectively. To 
solve the second fundamental problem, we first convert the 
boundary loading at top and bottom surfaces into an integral 
form as follows: 

a"(x,h") - j ; Fx(s) COS(MC) ds (18) 

S CO 

F2(s) sm(sx) ds (19) 

i oo 

G,(s) cos(sx) ds (20) 

G2(s) sin(sx) ds (21) 

where Fu F2, G{, and G2 are Fourier transforms of the 
loading functions applied on the upper and lower surfaces. We 
can then show that the two stress functions are as follows: 

[Aie
sy+A2e-sy+Aiye5y 

+ AAye~sy] cos (sx) ds (22) 

{A5e
s>'+A(le~s>'+A1yesy 

+Asye-w] cos (sx) ds (23) 

where the coefficients Aj=Aj(s) are determined by a set of 
eight simultaneous equations: 

HjkAk=Rj t / , * = l , 8 ) . (24) 

Four out of these eight equations result from the four stress 

boundary conditions (two each on top and bottom surfaces) 
and the other four result from the four continuity conditions 
on the interface (two for stress continuities and two for 
displacement continuities). Definitions of Hjk and Rj are given 
in the Appendix at the end of this paper. 

Thus, for a given set of surface loads, ayy (x,h"), a"y (x,h"), 
a' (x,-h'), and a' (x,-h'), solutions to the second fun-

(i J> damental problem are given by equations (22) and (23) 

5 Procedure for Total Solution and Numerical Results 

The total stress solution to the problem of a semi-infinite, 
bimetallic thermostat subjected to an uniform temperature 
change is the superposition of the basic solution derived in 
Section 2 and a series of the two complementary solutions 
discussed in Section 3 and 4. The following numerical pro­
cedure has been set up to obtain the total solution: 

(a) Calculate stress [ojk]0 and [afk]0 by equations (4) and 
(5) and set m = 1. 

(b) Define n' and n" as: 

«'('•)= - K* (0,/-)]2m-2 (25) 
n"(r)=-[a^(0,-r)2m_2. (26) 

(c) Substitute n'(r) and /?"(/•) into equations (12) and (13) 
and calculate stresses [ff^hm-i by equations (6)-(ll). Pro­
cedure for calculating [<rfk]2m-i is similar. 

(d) Calculate F{ (s) by 

2 r°° 
F,(5)= [a'(x,h')]2m_lcos(sx)dx (27) 

i Jo 

and, similarly, for F2(s), G^s), and G2(s). Then, calculate 
stresses [aJk]2m according to the Airy stress functions defined 
in equations (18)—(21). 

(e) Check convergence. If the solution meets the con­
vergence criterion, go to step if) - otherwise increase m by 1 
and go back to step (b). 

(f) Calculate total stresses by 

"jk- [°>]o + lajkhm-l +[ f f*l 'jkilm i (28) 

There are several ways to set the convergence criterion in 
step (e). In this paper, convergence of the solution is deemed 
as being achieved when the relative increment of ayy (0,0) is 
less than 0.01. 

As a numerical example, the same material properties and 
geometrical dimensions of the problem solved in Suhir's paper 
(1986) were used in this paper, i.e., 

E" =325000 MPa, v" =0.293, 8" =4 .9x 10-61/°C, 

E' =70380 MPA, v' =0.345, 5' =23.6x 10"6 1/°C, 

h' =h" =2.5 mm, Ar=240°C. 

The two materials in this example problem are molybdenum 
and aluminum, respectively, for the upper and lower strips. 
The corresponding bimaterial constants, a and 13, and the 
order of stress singularity, X, at the free edge are found to be 
-0.6330, -0.1395, and 0.1485, respectively. Thus, as shown 
by Dundurs (1969) and Bogy (1970), the interlayer stresses will 
behave asymptotically like r~0A4iS as r approaches zero at the 
free edge. Numerical quadratures were used to calculate the 
integrations in the solutions. With only three iterations, the 
stress solutions converge. Resulting interlayer stress distribu­
tions are plotted and compared with the beam theory solutions 
(Suhir, 1986) and results of a finite element analysis in Figs. 
4-7. The stresses shown in Figs. 4-7 have been normalized by 
a constant, (£"5"AT). The normalized asymptotic coeffi­
cients of the singular term, which is of order (r/h " ) -° 1 4 8 5 as 
(r/h") approaches zero, are 0.8038, -0.4148, - 1.3733, and 
0.3001 for <j'xx, a'^, ayy (=oyy), and axy ( = ff^)> respectively. 
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The finite element mesh used to obtain the stress results in 
Figs. 4-7 is shown in Fig. 8. In this finite element model, all 
the elements are the two-dimensional, eight-node, 
isoparametric elements. In Figs. 4-7, it is seen that current 
solutions agree well with finite element results for all stress 
components. However, results predicted by the modified 
beam theory (Suhir, 1986) are off by a large margin near the 
free edge due to the inherent shortcoming of the strength of 
material approach. 

In this example problem, it is observed that the interlayer 
peeling stress ayy (x,0) has an asymptotic form of 

/ x \ - ° - 1 4 8 5 

ayy(x,0)=Kyy(E"5"AT) \-j-y) + higher order terms 

(29) 

near the free edge, where Kyy is a constant and is defined as in­
tensity factor of the peeling stress ayy. To check the con­
vergence of the solution scheme described in Section 5, 
calculations for the example problem were carried out to twen­
ty iterations and are plotted in Fig. 9. At the end of the first 
five iterations, the intensity factor of the peeling stress, Kyy in 
equation (29), are -1.3406, -1.3680, -1.3733, -1.3754, 
and - 1.3764, respectively. Although not shown in Fig. 9, a 
monotoic and quick convergence similar to that for Kyy is also 

p 0.40 

o o o o o Finite Element 
Seam Theory 

Fig. 7 Comparison of normalized axy (x, 0) 

Fig. 8 Finite element mesh 
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Fig. 9 Convergence study of the solution scheme 

observed for K^, Kxx, and Kxy, which are intensity factors for 
stress components a'^, 0'^, and axy, respectively. Thus, it is 
concluded that the alternating method and the convergence 
criteria used in this paper can provide a monotonically con­
vergent solution to the problem. 

6 Discussion and Conclusions 

For bimaterial thermostats with nonsingular free edges (i.e., 
a(a —2/3) <0), the solution procedure described in Section 4 is 
still valid. However, most of the bimetallic structures of prac­
tical interest fall in the range of nonzero A (i.e., 
a (a — 2/3)>0). It is found that, for a singular free edge in a 
bimetallic thermostat, the stress distributions at a distance of 
more than three times the thickness of the thinner layer is 
essentially the same as the nominal stresses predicted by the 
strength of material approach discussed in Section 2. This 
observation suggests that, except within a boundary layer 
range, which is approximately three times the thickness of the 
thinner layer, the classical beam theory can provide sufficient­
ly accurate results to the problem of a bimetallic thermostat 
subjected to uniform heating or cooling. Within the boundary 
layer range, however, interlayer stresses are much higher and 
an appropriate method such as the alternating method dis­
cussed in this paper or finite element methods with a special 
element at the edge must be used to properly address the free 
edge effects. Results of this study also suggest that, as long as 
the total length is greater than six times the thickness of the 
thinner layer, thermal stresses in a finite length, bimetallic 
thermostat can be treated as the superposition of two semi-
infinite, bimetallic strips. Finally, if the finite element method 
is used to analyze a bimetallic thermostat with singular edge 
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(a (a — 2(3)>0), continued refinement of the conventional 
isoparametric element size at the free edge will not guarantee a 
convergent peak stress but a special element, which has ap­
propriate interpolation functions built in to account for the 
singularity at the free edge, is needed to calculate the intensity 
of the singular term at the edge. 
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A P P E N D I X 

Definitions of H jk and Rj 

R, — F, R0 R-, = G, i?a = G, 

-H 22 : -s2e'sh" 

Rj = 0 for all the others 

Hn=h" Hn HH = h" H12 

H23=s(l+sh ")<?"" H2i=s(\-sh")e-sh" 

H,, =H-n = — i/35 = —H*6 = Ha = Hfr -Hfn = — Hce = 1.0 

HA, —HA-) —H* -Hi2 = (\ + v")b"/E" 

H43 = - HM = - HS3 = - H5A = 2(1 2)/E" 

HA* — HA, I5J = - - " 3 6 - - a + " ' ) « ' / £ ' = ^ 5 5 - ~H56 = 

-H41^H4S=H„=HSS=2(1-P'2)/E' 

H(,i = -H62 = -H65=H66 =s 

H75 = -H„ = -s2e-°h' H16 =HK = - i V 

H77=-h'H14 Hn= —h' H75 

Hg7=s(l-sh')e-sh' Hss=s(l+sh')esh' 

Hjk = 0 for all the others. 
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Istituto di Scienza delle Construzioni, 

56126 Pisa, Italy 

How to Model a Bonded Joint 
The problem is considered of a semi-infinite plane region bonded to a rigid region, 
with the boundary of contact being in the shape of a cosine curve. It is shown that, 
when a rigid displacement is applied to the boundary of the elastic region, there is a 
particular value of the amplitude of the contact curve that minimizes the sum of the 
strain energy and adhesion energy. 

Introduction 

In the problem of joining together two separate elastic 
bodies, the question arises of how to model the profile of the 
joint in order that it supports a prescribed load. A typical ex­
ample is shown in Fig. 1, where two bodies, V and V, are 
bonded along their common surface E, while the parts S and 
S' are subjected to given surface tractions F. 

When the bodies are elastic and E is known, the stresses 
throughout the respective volumes may be determined (at least 
in principle) by solving a contact problem in linear elasticity. 
In particular, the stresses across E can be determined. 

For many practical problems, however, although the sur­
faces S and S' are specified, there is a certain freedom in se­
lecting the shape of E, provided, of course, that it is bounded 
by the curve of intersection between S and S'. 

The strength of the connection between V and V increases 
with the amount of adhesive material interposed between the 
two bodies along their common boundary E. Thus, it seems 
that a certain advantage can be achieved by enlarging the area 
of E by giving it a wavy shape instead of flat. But the 
amplitude of these waves can not be too large since, in this 
case, a sharp increase of stress around E may occur. In prac­
tice, a compromise between these two opposite requirements is 
obtained by joiners when they connect sheets of wood by carv­
ing extra interpenetrating teeth, which, on the other hand, are 
not too sharp nor too deep, since otherwise high concentra­
tions of stresses would be produced. 

The designer must therefore decide between two conflicting 
objectives in modeling joints: to maximize the surface area 
of E by allowing, for instance, E to be of oscillatory shape, 
and, at the same time, to keep E reasonably smooth to avoid 
the introduction of notch stresses. 

In this paper a simplified model is studied, which never­
theless provides a rational criterion for the optimal shape of 
an oscillatory interface between two plane elastic bodies. It is 
assumed that the two bodies are semi-infinite and joined along 
a periodic curve of parametric equations x = u — a1sinu, 
y = alcosu (Fig. 2) where a, is a constant and u ranges on the 
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whole real axis. It is further supposed that one of the two 
bodies is much more rigid than the other to the extent that it is 
regarded as practically indeformable. In the present case the 
lower body is considered as rigid. 

The shape of the base of the upper body can be adjusted by 
varying the amplitude ax of the periodic oscillations. 

Regarding the load conditions, two cases are considered. In 
the first, the wavy boundary E undergoes a uniform displace­
ment in the direction of the .y-axis in order to create a state of 
pure tension for large values of y\ in the second case a uniform 
displacement is impressed to E in the x-direction generating, in 
this way, a state of pure shear as y becomes large. 

The solutions to these two mixed boundary value problems 
in plane elasticity are achieved by extending a method used by 

surface of 
adherence 

Fig. 1 
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Weber (1942) for the prestressed half space with a periodically 
oscillating boundary free from surface tractions. 

Under the displacement boundary conditions just described, 
an increase in ax causes a decrease of the strain energy stored 
within the elastic body. On the other hand, the surface area 
available for adhesion increases with a{ and so does the sur­
face energy that can be stored in the bond. It will be shown 
that there is a single value of at which minimizes the sum of 
these two energies. This value of a, defines the amplitude 
which must have each wave of the curve E of Fig. 2 in order 
that the joint has the least tendency to rupture. The result may 
help to explain, in this particular case, empirical formulae 
used in design (cf., Vinson and Sierakowsky (1986)). 

2 Pure Extension 

If the upper body is a long cylinder with the generators 
parallel to the z-axis and the terminal sections remain at right 
angles to this axis, the state of strain can be regarded as plane, 
and the displacements £, ij along the x, j-axes are functions of 
x, y only and the displacement f along z vanishes. 

Let the material be elastic, homogeneous, and isotropic, 
with Young's modulus E and Poisson ratio a. To simplify the 
formulae it is sometimes useful to introduce the constant 
a = 2(1-a) . 

In absence of body forces, it is known that the 
displacements may be written in terms of two plane harmonic 
functions, called the Boussinesq-Papkovic-Neuber functions. 
More precisely, let $0(x, )>)> $i(x> y) be two harmonic func­
tions and define the plane biharmonic function F to be 

F=$0+x$i, (1) 

then, the displacements assume the form (cf., Neuber, 1937, 
Chapter 4, No. 1), 

2 ^ = 
dF dF 

- + 2a<l?1, 2/MJ = —- (2) 
dx " r • dy ' 

where JX is the shear modulus related to E and a by the formula 
jx = E/2{\ + a). 

The stresses associated with these displacements and ex­
pressed in terms of the functions F, *0> *[ are given by 

d2F 
o„ = 

d2F 9$, 
— - 5 - + 2 a — - + 
ox1 ox 

+ (.--f-)v* 
0~r) V2F, 

d2F 3$, 
- + a-

dxdy dy dy2 \ ' o / ' • ' no­

where V2 = d2/dx2 + d2/dy, and the stress-strain relations 

a / di, 

(3) 

a*=24^+7T^-( dx 

dr) 

dy (1 - 2a) 

( l - 2 a ) 

a ( 3£ 

dr) 

dx dy 

dx dy 

) 

*)} 
,=/i [ 

d£ dy 

dy dx ] 
have been used. 

In order to find the functions $ 0 , $j it is necessary to 
change independent variables and introduce curvilinear coor­
dinates u, v such that 

x=u — a1e^"sm«, y=v + axe "cos u, (4) 

where a, is a constant strictly less than one. Under this restric­
tion, the mapping (4) is conformal and takes harmonic func­
tions in the w, y-plane into harmonic functions in the x, y-
plane. In particular, the images of the lines v = v0 = constant in 
t h e u , y-plane are the lines x = w - a 1 e "sin u, y=v0 + 
a^e °cos u in the x, j-plane, and the image of the axis y = 0is 
the line x = u — ais'm u, y = alcos u (Fig. 2). 

The elastic body, occupying the region v>0, is stressed 
when a rigid translation of the type £ = 0, ij = A, with A con­
stant, is applied at the boundary. 

The boundary conditions are satisfied when * 0 and *, are 
given by 

$o = A[(u - a xe~l'sin u)2 -(v + a {e~l'cos u)2] 

+ ble-"cos u + b2e~2"cos2u + b3v + E(u2 ~ v2), 

$l=B(u — ale~"smu) + cle~"sinu, (5) 

where A, B, bit b2, • • . ,£j are constants. It is evident that, 
with this choice, both * 0 and $; are plane harmonic func­
tions, and the biharmonic function F assumes the form 

F = (A + B)(u~a{e~"sin u)2-A{v + ale~"cos u)2 

+ bxe~"cos u + b2e~2vcos 2u + b3v 

+ E(u2 - v2) + cie~"s\n u(u-ale~"sm u). (6) 

To determine the unknown constants it is necessary to write 
displacements £, r\ in curvilinear coordinates and observe that 
the conditions £ = 0, T? = A, are satisfied at v = 0. In terms of 
the new variables u, v, the partial derivative dF/dx becomes 
(cf., Neuber, 1973, Chapter 4) 

dF 

~lx~ h2 H- dF dx dF dx 

du du dv 

dF dx \ 

dv dv / 
(7) 

where h2 = (dx/du)2+ {dx/dv)2 = \-2 ^ " " c o s u + a\e-2v, 
and an analogous formula holds for dF/dy, with y instead of 
x. 

Thus, the boundary conditions that £ = 0, 17 = A for y = 0, 
written in terms of F and $ , , are equivalent to the following 
pair of equations 

2/tl/(K,o) = — I - - — (H,O) + 2 a * , (w,o) — - (w,o)l 
n(u,o) L du du J 

= ——r- 2(A+B)(u — fljsin « ) ( l -a ,cos u) 

- 2Aa\sin u cos u 

— bxsin u — 2Z?2sin 2w + c,cos u(u - a t sin u) 

+ C|Sinw(l-a,cos u) 

dx 
+ 2a*l(u,o)~ ( H , 0 ) J = _ _ _ _ („,0), 

= — 2{A+B)(u — «,sin M)(fl,sin u) 

- 2^4fl[C0s u(l - cos u) 

— i^cos u — 2&2cos 2u + b3 -Cismw(u — Oisinu) 

dx "I 
+ c1a1sin2 u + 2a$i(u,o) (u,o) 

dv J 

2/iA dy 

h(u,o) dv 
(u,o). 
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These equations yield seven linear independent equations, 
from which it is possible to obtain the constants defining the 
function F in terms of the single constant A. The result of the 
process of elimination of the constants is 

B = 
( 2 a - \)A 

2 a ( a - l ) 

Aa\ 

~2a~ 

-2/xAfl! 

-2/iA, 

b*=AKa--L)> 
E= — 

Aa, 

la 
(9) 

From these values of the constants the stress function Fand, 
hence, the full solution is determined to within the constant A. 
The solution, however, can be further simplified by observing 
that, in practice, the amplitude a, is not only strictly less than 
one, but even a small fraction of the half-period T. In con­
sideration of this fact the terms containing the powers of 
second order in ax can be disregarded. 

The constant A remains indeterminate since the solution to 
the boundary value problem is not uniquely defined until the 
displacement is prescribed at least on another point, not lying 
on the boundary. In the present case it will be assumed that the 
point with coordinates u = 0, v = d, with d'» l, remains fixed. 
Because u = 0, is on the jy-axis, the (/-component of displace­
ment is zero by symmetry and, therefore, the only significant 
condition concerns the vanishing of the K-component of 
displacement: 

l 
2,iV(o,d) = 

h(o,d) 

dF dx 
— - (o,d) + 2a*,(o,rf) - — (o,d) 
dv dv 

h{u,o) 
-lA{d+ale-d(\-aie-d)-ble-d-2b2e~ 

d2F' d2F' d2F' 

"x dy2 ' "y dx2 ' 'x'y dxdy ' ( 1 4 ) 

The construction of ${ is almost immediate if, in the second 
of (5), the term with c, is neglected, and only then with B is 
taken into account. Under this approximation, $, becomes Bx 
and $i can be written 

*;= -^-B(x2-y2) = -^-B (u — axe "sin u)2 

+ (y + a1e~"cos u)2 (15) 

and, hence, F' is 

2-a 
F' = (A+—^B\u-axe-'>sm u)2 

- [A B)(v + a1e~"cos u)2 

+ ble-"cosu + b2e~2vcos2u + biv + E(u2-v2). (16) 

Given F', by a known transformation of surface tractions 
in plane elasticity (cf., Love, 1924, Article 154), the resultant 
Y is then expressed by the simple formula 

dF' dF' 
y = — ( 2 * , o ) — — (o,o). 

dx dx 
Here again, by using (7), Ytakes the form 

- 4 , ( ^ 1 . ) 
2 / (1-0!,) 

(17) 

(18) 

whence the expression for the strain energy W= 1/2 FA can be 
derived explicitly. 

-2Ed + b,\=0. (10) 

The coefficients bx, b2, b3, E may be expressed in terms of 
A by means of formulae (9) and a substitution into (10) leads 
to an equation for A alone. On neglecting higher order terms 
in flj and d~', this equation reduces to 

2Ad + d-2nA = 0, 
a 

which yields for A the surprisingly simple form 

Once the functions $ 0
 a n d *i a r e known, the state of stress 

is also determinable by using the formulae (3). But, in order to 
calculate the strain energy stored in each strip 0 < u < 2ir, v > 0, 
the detailed expression of the single components of stress are 
not necessary, since it can be directly determined from the 
resultant of the tractions parallel to the .y-axis acting upon the 
portion of lower boundary of the strip 0 < « < 2 T T . If Yis this 
resultant, the strain energy is simple given by 1/2 FA, as a con­
sequence of Clapeyron's theorem. 

The easiest way to find Y is to apply a result of Neuber 
(1937, Chapter 4, No. 1), which modifies the expression (3) of 
stress components. In fact, by introducing two new harmonic 
functions <I>o, ${ s u c n t n a t 

#. 
dx *o = a*i' + *o . 

and defining 

F' = * o + x 
a*,' 
~dx~ 

(12) 

(13) 

the stress assumes the simpler form 

3 Simple Shear 

The calculation of stress when a rigid translation A parallel 
to the axis of x is applied to the boundary v = 0 of the upper 
body is quite similar. The appropriate expressions for the 
functions * 0 and $[ are now 

$Q=A(u — axe~l'sinu)(v + a,e_t'cos u) 

+ b0u + ble~"sin u + b2e~2vsm2u + Euv, 

* 1=fi(y + a1e "cosu) + cle "cosu, (19) 

where A, B, E, b0 , . . 
monic function F is then 

, c, are new constants. The bihar-

F = (A + B)(u - a xe~" sin u)(v +a xe~v cosu) 

+ b0u + o1e~"sin u + b2e~2vsin 2u 

+ Euv + cxe~" cos u(u — axe~vsinu), (20) 

and the conditions that £=A, i? = 0 for v = 0 yield the two 
equations of the type 

1 r 
-(A+B){\ - a , cos u) a,cos u 

h(u,o) L 

{A+B)(u-axsin u) 

2(i U(u,o) = 

x ( - a 1 s i n u) — b0-bxcos u-2b2cos 2u 

— Cjcos u(\— axcos u) 
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dx 
+ c,sin «(! -«!s in w) + 2a<S>,(«,o) (u,o) 

du 

2;uA 3A: 

2IJ,V(U,O) = 

h(u,o) du 

1 

(u,o) 

[-{A+B)a\ sin wcos u h(u,o) 

(A+B)(u — tfjsin w)(l-a,cos w) + Z?,sin « 

+ 262sin 2u — Eu — c,(cos u)a,sin a 

+ c,cos «(« — «!sin w) + 2a$1(«,o) 
3« 

(", o) 

2/xA dx 

h(u,o) dv 
(K,0). (21) 

These equations are satisfied for each w when the constants 
obey the following relations 

2aa, ua\ 

(2a-

A = 

F = 

1) 
. / J ) ( 

B 

( 2 a - 1 ) 

2a 

J 2 

» 

B, 
2(2a-l) 

2afl 

( 2a -1 ) 

( 2 a - 1 ) 
B, b0 = 

( 2 a - 1 ) 

5 + 2 / ^ A, 

5-2f iA. (22) 

The constant Z? is then determined by requiring that the 
point (o, d) with d> > 1, remains fixed. This condition implies 
that 

2(xU{o,d) = -j-r-
A(o,d) L 

( ^+5 ) ( l - a 1 e - d ) ( r f + fl1e-d) 

-b0-ble-d-2b2e- -Ed 

-cie~d(l-ale-d) + 2a^l(o,d) 
dx 

du 
(o,d) = 0 (23) 

By expressing the other constants in terms of B through (22) 
and omitting the small terms, it is found that 

B= — 
2/*A 

2ac? 
(24) 

Once the harmonic functions $ 0 and $! are determined, the 
stress components are given by (3), but a form like (14) is ob­
tainable by introducing the function 

${ = Bxy = B(u — a1e "sinu){v + axe "cos u), (25) 

which satisfies the relation $, =d$1'/djc, provided that the 
coefficient c, in the second of (19) is omitted compared with 
B. 

Then, by a formula like (13), the new stress function/7 ' may 
be written as 

F' = \A +(a— 1)5\(u — a1e~"sin u)(v + a1e~"cos u) 

+ b0u + b1e~vsin u + Z>2e~2"sin 2u + Euv. (26) 

Given F' the resultant of surface tractions, parallel to the pr­
axis extended along the lower boundary of the strip 0 < u < 2ir, 
is simply 

dF' dF' 
X= — (2ir,o) + — — (o,o), 

dy dy 

and consequently, using the expression of F', A'becomes 

X= -2IT\A-(U-Y)B\-2-K , 
L J 1 - f l i 

and the strain energy is now W= 1/2 XA. 

(27) 

(28) 

4 The Effect of the Adhesive 

After having calculated the strain energy stored in the elastic 
body under pure extension and pure shear, it is now necessary 
to evaluate the surface energy localized on the welding line E, 
where the adhesive is interposed. The simplest expression for 
this surface energy derives from the assumption that it is pro­
portional to the length of the line of contact. On denoting by y 
the surface energy per unit length, the energy of that part of 
the boundary 0 < u < 2-w, v = 0 is given by 

^rJc-f-H2^-^^)2*- (29) 

On recalling that the integrand in (29) is just 
/!(w,0) = V l - 2 a , c o s u + a\, the value of t/ is explicitly com­
putable (cf., Gradshteyn and Ryzhik, 1965, 2.576) 

U = 4 Y ( 1 + « 1 ) £ W (30) 

where 

k = 
4fl, 

(l + «,)2 

and E(k) is the complete elliptic integral of the second kind. 
Thus, v increases with ax and so a higher amount of surface 
energy may be obtained by increasing the amplitude of the 
oscillations. Again, since ax is small, the expression of (30) 
may be simplified by retaining only the first two terms in the 
power series expansion of E(k) (cf., Jahnke-Emde-Losch, 
1966, V,C) 

E(k)=l-
1T 

k2 

£)'-
To this order of approximation, U assumes the form 

U=2-wy\(\+a{)-
( l + « i ) 

= 2x7(1 + 
d+f l i ) 

(31) 

Once the strain energy W and the surface energy U have 
been determined as functions of ax, the optimal shape of the 
surface is given by the value of ax minimizing the sum 
(W+U). 

In the case of pure tension, still assuming ax to be small and 
d large, the optimum value of ax is the first positive root of the 
equation 

JL(W+U) = 0 (32) 
da j 

where W=l/2 FA and U is given by (31). 
After a substitution from (9) and differentiation with 

respect to ax, equation (32) is found to be equivalent to the 
following: 

2lr
 EA

 2 + 4 T - J g i - - 2 , ^ 2 =0 , 
( l - « , ) 2 (1 + a,) ( l+o , ) 2 

which, considering only the terms of first-order in ax, admits 
the root 

a, = 
EA 

^ 7 ~ 
(33) 

or better, recalling that E- -A/2awithA=2)iaA/(2ce + \)d, 

p.A2 

a>=W^hd- (34) 

In the case of pure shear, an equation like (32) must be 
solved with respect to ax, with the only difference that now 
W=\XA, while [/remains unchanged. The resulting equation 
in a i is then 

EA 

(1 • « , ) 2 

+ 47T 
ya i 

(l+«l) 
-2TT 

7 « I 

(1+a,)2 
= 0, 
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which, recalling that E = 2aB/(2a - 1) with B = - fiA/ad, and References 
neglecting the terms of higher order in ax, yields Gradshteyn, I. S., and Ryzhik, I. M., 1963, Tables of Integrals Series and 

A 2 Products, Academic Press, New York. 
a —i _ (35) Jahnke, E., Emde, F., and Losch, F., 1966, Tafeln Hoherer Funktionen, 

2 ( 2 a - l ) Y t f ' Teubner, Stuttgart. 
Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, 

Formulae (34) and (35) show that Once the constitutive 4th ed., Cambridge University Press. 
properties of the upper body are given through \x and y, and Neuber, H., 1937, Kerbspannungslehre, Springer-Verlag, Berlin, 
the magnitude of the load is specified by A and d, there is a Vinson, J. R., and Sierakowski, R. L., 1986, The Behaviour of Structures 
unimie value of a minimi/inn trip total pnprov Trip minimum Composed of Composite Materials, Martinus Nijhoff, Dordrecht. 
unique value ot a{, minimizing tne total energy. 1 he minimum Weber i c_ 1942_ ..Haibebene mit periodisch geweiitem Rand," z. Angew. 
in pure tension is lower than the minimum in simple shear. Math. Mech., Vol. 22, No. 1, pp. 29-33. 
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Interfacial Stresses in Bimetal 
Thermostats 
The magnitude and the distribution of the interfacial stresses in thermostat-like 
structures are determined on the basis of an elementary beam theory, with con­
sideration of both the longitudinal and the transverse ( "through-thickness") inter­
facial compliances of the thermostat strips. The suggested approach is applicable, 
generally speaking, to any elongated lap shear assembly, subjected to thermal or ex­
ternal loading. 

Introduction 

A bimetal thermostat is a useful theoretical model for the 
analysis of stresses in thermally-mismatched structures. The 
mechanical behavior of bimetal thermostats was apparently 
first examined by Timoshenko (1925) on the basis of an 
elementary beam theory. In Timoshenko's analysis, however, 
only the normal stresses in the thermostat strips were 
evaluated using an assumption that these stresses remain un­
changed along the strips. As to the interfacial stresses, it was 
just mentioned that they are of "local" type and concentrate 
near the strip ends at the distances comparable with the strip 
thicknesses. At the same time, it should be emphasized that 
while the normal stresses in the thermostat strips themselves 
are responsible for the ultimate and fatigue strength of the 
strips, it is the interfacial shearing and peeling stresses which 
are responsible for the structural integrity of the thermostat. 

Valuable insight into the thermally-induced stresses in 
heterogeneous structures, including interfacial stresses and the 
"edge problem," were later provided by Aleck (1949), Bogy 
(1968, 1970), Hess (1969), Zayfang (1970), Chang (1981), 
Chen et al. (1982), Wang and Choi (1982), Zwiers et al. (1982), 
Blech and Kantor (1983), and others on the basis of the theory 
of elasticity methods. The obtained solutions are, however, so 
complex that a substantial additional effort seems to be need­
ed to make their utilization convenient in engineering 
applications. 

Therefore, various simplified approaches to the problem in 
question were suggested during the last decade, mostly in con­
nection with the needs of the microelectronics technology. 
These approaches, in one way or another, extend the original 
Timoshenko theory and are based primarily on the elementary 
methods of strength of materials and structural mechanics, 
rather than methods of the theory of elasticity. Examples are 
Grimado (1978), Chen and Nelson (1979), and Suhir (1986). 

The utilization of the concept of the finite longitudinal inter­
facial compliance enabled the last author to satisfy the stress-
free boundary conditions for the normal stresses in the strip, 
and to obtain simple formulas for the interfacial stresses. 

In the forthcoming analysis we suggest a somewhat more 
complicated analytical model for evaluation of the interfacial 
stresses in bimetal thermostats. This model is also based on an 
elementary beam (or long-and-narrow plate) theory, but con­
siders, in addition to the longitudinal, also the transverse 
("through-thickness") interfacial compliance. The obtained 
solutions satisfy the boundary conditions for the interfacial 
shearing stresses, as well as for the normal stresses in the ther­
mostat strips themselves. 

Note that since the mid-1960s many investigators applied 
numerical, mainly finite element, methods to analyze 
bimaterial structures, subjected to thermal loading: Saganuma 
et al. (1984), Blanchard and Watson (1986), Gerstle and 
Chambers (1987), and others. Although these methods offer 
high flexibility in dealing with different geometries and 
material properties, they could be less appealing than suffi­
ciently simple analytical solutions. 

Analysis 

Basic Equations. The interfacial shearing r(x) and peeling 
p(x) stresses, which occur in an elongated bimaterial plate ex­
periencing temperature change, are related by the following 
equilibrium equation (Fig. 1): 

- J * ^ t P ^ ) d m = D x w ' { ( x ) - ^ - T(x) = 

-D2wftc) + -^-nx)- (1) 
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Here 

7X*)=j* ,*•(£)# (2) 

is the shearing force caused by the thermal expansion or con­
traction mismatch of the materials, w,(*) and w2(x) are lateral 
deflections of the strips, which are treated here as elongated 
rectangular plates, 

D - E ^ 
1 12(1-,?)' 

D, 
EM 

12(1-*!) 

are flexural rigidities of these plates, Ex and E2 are Young's 
moduli of the materials, vl and v2 are Poisson's ratios, hx and 
h2 are the strip thicknesses, and / is half the thermostat's 
length. The origin of the rectangular coordinates x, y is in the 
middle of the plate on its interface. The relationship (1) simply 
states that the bending moments 

M ,(*) = j * j ' p& ')</£ 'di' + A T(x) 

M2(x)=^ ^ ptf')«/£'</£' + A T(x) 

acting over the cross-sections of the strips and caused by the 
stresses T{X) and p(x) are equilibrated by the elastic moments 
£>,<(*) andD2w£(x). 

By differentiating the relationship (1) twice, we obtain: 

p(x) = - J D,<(x ) + 4 L T'(X) = D2W>2
V(X)-^ T'(X). (3) 

On the other hand, the peeling stress p(x) can be represented 
as: 

p(x) = K[wl(x)-w2(x)], (4) 

where K is the through-thickness spring constant. This con­
stant is due to the transverse compliance of the thermostat 
strips and can be assessed on the basis of the following elemen­
tary considerations. The lateral displacements in a long-and-
narrow strip due to a transverse load p(x) can be evaluated by 
the formula w(x) = (1 - v2)h/Ep{x), which can be obtained us­
ing the Ribiere solution for a long-and-narrow strip (see, for 
instance, Timoshenko and Goodier, 1970). Treating the 
longitudinal cross-sections of the thermostat plates as long 
and narrow strips, we obtain the following formula for the 
total spring constant in the through-thickness direction: 

From (3) and (4) we have: 

< ( * ) 

< ( * ) 

D2 n, h 

— pIV(x) + T'(X) 
KD 2D 

(5) 

where D = Dl+D2 is the total flexural rigidity and h = hx+h2 
is the total thickness of the thermostat. Then equations (3) 
result in the following relationship: 

plv(x) + 4a.4p(x) = 4tia.'iT'(x). (6) 

Here, the parameters /i and a are expressed by the formulas: 

hxD2-h2Dx A\ KD 
M=- 2D 

Note that the peeling stress p(x) is zero if the combination of 
the material properties is such that the ratio hx/h2 of the strip 
thicknesses is equal to the ratio Dx/D2 of the flexural 
rigidities. 

The second equation for the functions T(X) and p(x) can be 
obtained using the condition of compatibility for the 
longitudinal displacements U\{x) and u2(x) of the extreme 
(interfacial) fibers of the thermostat strips. If the stresses T(X) 
and p(x) were known, then these displacements could be 
evaluated by the formulas: 

S x fa 

T{£)d£, +K1T(X) — y w[(x) 

u2(x) = a2Atx + \2^_iTtt)dZ-K2T(x) + -j- wi (x) 

(7) 
where al and a2 are coefficients of thermal expansion of the 
materials, \l={\~v\)/Elhl, and \2 = {\-v\)/E2h2 are in-
plane compliances of the strips, K{ =2(1 + pl)h1/3E1 and 
K2 = 2(1 + v2)h2/3E2 are their interfacial compliances (Suhir, 
1986), and At is the temperature change. The first terms in (7) 
are unrestricted thermal expansions. The second terms are due 
to the thermal mismatch forces T(x) and reflect an assumption 
that these forces are uniformly distributed over the strip 
thicknesses. The third terms account for the nonuniform 
distribution of the aforementioned forces, and are based on an 
assumption that the corresponding corrections can be 
evaluated by taking into account only the shearing stresses in 
the given cross-section. The last terms are due to bending. 

The compatibility condition ul(x) = u2(x) results in the 
equation: 

T(*)~X12J 7T*)d« = 
ht h. 

• AaAtx + — w[(x) + - W2'(JC), (8) 

where X12 = X[ + X2 and K = K, + K2 are the total in-plane com­
pliance and the total interfacial compliance, respectively, and 
Aa = a2-Qi1 . By differentiating (8), with consideration of (2), 
we find: 

h h 
KT'(x) - X12T(x) = AaAt + —- w,"(x) + — w2"(x), (9) 

KT"(X)-\12T(X) = -J- w["(x) + w2"'(x). (10) 

Using the formulas (5), equation (10) can be presented in the 
form: 

T"(x)-k2T(x) = mp'"{x) 

where the following notation is used: 

~X 

K 

(11) 

k = . * * h* ^ h2 

X = X12 + = X, + X2 + , 
12 AD ' 2 AD 

m- KK 

Equations (6) and (11) form a system from which the stress 
functions T(X) andp(x) can be determined. In order to separate 
these functions, we rewrite (11) in the form 

p,v{x) = [T'"(x)-k2T'(x)] 
m 

and substitute this equation into (6). Then we have: 

1 
P W = 7 T - t(l +e)k2T'(x)-T'"(x)]. 

Aorm 
(12) 

ADXD2 Here 
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D 

D,D, X / 2MDlD2 \ 

\ h,D,~h7D, J 

is the dimensionless parameter of the peeling stress. This 
parameter changes from e = 0, when hl/h2-Dl/D2, to e = 3, 
when D2»DI

 o r D\ » 7 ? 2 . Now substituting (12) into (11), 
we obtain the following homogeneous differential equation 
for shearing stress function T(X): 

Tv'(x)-(\+e)k2T,v(x) + 4a4T"(x)-4a4k2T(x) = 0. (13) 

By introducing the expression for the derivative T'(X) from (6) 
into (12), one can obtain an identical equation for the peeling 
stress functionp(x): 

p v'(x) - (1 + e)k2p'v{x) + 4a V " to - 4a4 k2p(x) = 0. (14) 

Thus, both the shearing and the peeling stresses can be deter­
mined on the basis of the same ordinary homogeneous dif­
ferential equation of the sixth order. 

The equation for the shearing force T(x) can be obtained, 
using (13) and (2), in the form: 

Tv"(x)-{\ + e)k2Tv(x) + 4a4T'"(x)-4a4k2T'(x) = 0. (15) 

Boundary Conditions. The function T(X) must be antisym­
metric with respect to the origin. In our analysis we assume 
that this function satisfies the following boundary conditions 
at the edge x = l: 

AaAt 
r(/) = 0, T ' ( / ) = , T"(/) = 0 . (16) 

The first of the conditions (16) follows from the equilibrium 
equation (1), which could be, by differentiation, presented in 
the form: 

A. h, 
j ^ p t t t f ^ A w f to—J" T t o = -D2w2"(x) + ^- T(X). 

The peeling stress p(x) must be self-equilibrated, and therefore 
the left part of this equation becomes zero for x-l. The elastic 
terms are also zero at x = l, since there are no concentrated 
lateral forces at this cross-section and, therefore, w2 (/) = 
w2(l) = 0. This leads to the condition T(1) = 0. The second con­
dition in (16) can be obtained from (9) using the facts that 
there are no external forces at the free edges, i.e., T(F) = 0, and 
that there are no bending moments in the cross-section x = I, so 
that w"(l) = w2(l). The third condition follows from (10). In­
deed, since T(/) = 0 and, in addition, w'"{t) = w2"(0 = 0, then the 
second derivative of the shearing stress function must also be 
zero at this cross-section. 

It is important to mention, however, that elastic analyses 
(see, for instance, Bogy, 1968, 1970; Hein and Erdogan, 1971) 
indicate that stress singularities generally occur at the corners 
of geometric boundaries joining dissimilar materials, and that 
the interfacial shearing stress may become unbounded at the 
corner, depending on the particular material combination and 
remote loading. The assumption r(/) = 0 seems, nonetheless, 
consistent with the elementary approach taken in the present 
study. 

The peeling stress p{x) must be symmetric with respect to the 
origin and should satisfy the equilibrium conditions for the 
lateral forces and bending moments: 

J_; p(x)dx=0, J J ^ ptt)dtdH = 0. 

Obviously, these conditions are fulfilled automatically as long 
as the conditions T([) = 0 and T(/) = 0 are satisfied. 

The function T(x) must also be symmetric with respect to 
the origin and should satisfy the conditions: 

AaAt 
71(0 = 0, 7" (0 = 0, T"(0 = , 7"" (0 = 0. 

The first condition reflects the fact that no external forces act 
on the free edge. The remaining three conditions follow from 
the conditions (16) and the relationship (2). 

Solutions. In order to obtain solutions to the differential 
equations (13), (14), and (15), we form a characteristic equa­
tion: 

(36 - (1 + e)Ar2/34 + 4a4j32 - 4a4k2 = 0. 

By introducing a new unknown 

l + e 

(17) 

f=/32 k2, 

this equation can be reduced to a simple cubic equation: 

{3 + 3ql£+ 2 ^ = 0. 

Here 

2 / 1 + F \ 3 

q0=-— (2-e)a4k2-(-^-k2) , 

(18) 

Q\ a" + 

The analysis of the discriminant d = ql + q\ of the equation 
(18) indicates that the lvalue is always positive, and therefore 
this equation has one real and two conjugate complex roots: 

a + b r- a — b 
f i = o + 6, f2|3= ^—±iV3—^—. 

Here/ = V - 1 , and 

c=V-( j 0 + V5, &=V^ <7o -yfd. 

Accordingly, the characteristic equation (17) has the following 
roots: 

/3,,2 = ±Jr 1 + 
1 + 6 

k2 

03,4 = ±^^2 +-J^ k2 = ±7l ±'72 

J 5 , 6 " ±A^3+-
1 + e 

k2= ±yl=Fiy2 

where 

7i = 

and 

(V/i? + **2+/*i)> 7 2 = A J - ^ - ( > ^ I + / * 2 - / * I ) > 

/M : 
a + b l+e ,. ,_ a — b 

—z- + -^-k2, ^2 = v^——•. 

Thus, the solutions to the equations (13), (14), and (15) can 
be presented in the form: 

T(X) = Cisinh^!A:+ C3cosh7,xsin72x+ C5sinh7!A:cos72A:, (19) 

p(x) = C2cosh(3jX + C4cosh71xcos72x + C6sinh71xsin72x, (20) 

T{x) =A2 cosh/3 [ x+A 4 cosh7, xcos72x 

+ A 6 sinh7 ] xsiny2.x: + C0, (21) 
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where the antisymmetry of the function T(X) and the symmetry 
of the functions p{x) and T(x) have been taken into 
consideration. 

Constants of Integration. The relationship between the 
constants with the odd indices in (19), on the one hand, and 
the constants with the even indices in (20), on the other hand, 
can be obtained by substituting (19) and (20) into (6): 

W0> „ „ ...... 
(3f+4a 4 

C „ C 4 = V a 4 ( 6 1 C 3 + 5 2 C 5 ) , 

C 6 = 4 M a
4 ( 6 2 C 3 - 5 1 C 5 ) . (22) 

Here 

2 Pi 

A 7 i C 5 - 7 2 C 3 
4 2 , 2 ' 

7 1 + 7 2 

„ 7 i C ,
3 + 7 2 C 5 

6 2 , 2 

7 i + 7 2 

, / i 7 2 - / 2 7 1 . / i 7 i + / z 7 2 

' ./?+/! ' 2 /?+/! ' 

/ l = / 4 - Ml + 4 a \ f2 = 2/1^2. 

The relationships between the constants C l 5 C 3 , and C5 and 
the constants A2,A4, and ̂ 46 can be found on the basis of the 
equation r ( x ) = TW, which follows from (2). After 
substituting (19) and (21) in this equation we have: 

(23) 

The constant C 0 can be determined using the condition 
T(J) = 0, which results in the formula: 

C 0 = - y 4 2 c o s h « — y 4 4 c o s h f 1 c o s y 2 - ^ 4 6 s m h t ' i s m ( ; 2 - (24) 

The constants Cu C 3 , and C5 in (19) can be found using the 
boundary conditions (16). These result in the following system 
of linear algebraic equations: 

CjSinhw + C3coshi;1sini>2 + Cssinhi^cosi^ = 0 

C ^ c o s h u +C3(71sinhi>1sinj;2 + 72coshi;1cos(;2) + 

AaAt 
+ C5(Y1coshy1cosi>2-72sinhi>1siny2) = 

K 

Cl /3f sinhw + C 3 (^1 coshf! sini»2 + ^ s i n h f ! cosu2) + 

+ Cs(ju1sinht;1cosv2 - /^cosht^s in t^) = 0 

Here, u = Pll, vx = 7 i / , v2 = y2l- Then we have: 

.(25) 

AaAt / cos2y2 

C, = ( c o t a n h 2 u r 

1 

KD0 \ 

AaAt / siny. 

KDn v sinhy. 

sinh2y. 

2 3 f! cosu2 

2 JX2 cosh 

coshu 

tanhw 

C« = 
AaA/ / cosi>2 3 ft siny2 

«A, V coshy, 2 /i2 sinh 

sini;2 \ 

inhf, / 
tanhw 

(26) 

where 

D0=[ 3 ft / 3 fi \ sin2t>2 

7 , + — — 7 2 + ^ 7 2 - — — 7 , ; ^ ^ ^ 

cos2t>2 \ 

2 /*2 

- j S , (cotanh2y[ 

tanhw 

sinh2fi 

is the determinant of the system (25). This concludes the solu­
tion of the problem. 

Special Cases 

In the case of zero through-thickness stiffness (K=0), the 
peeling stress is also zero and (17) yields: 

/3 = V l + e£. 

Then we have: 

2 (1+6) 
f= k2, <7o = <?i = - ( — p ^ 2 ) . « = 0, 

1 + 6 
k2, , i 1 = / i 2 = 0, 7 i = 7 2 = 0. 

and the equation (19) for the shearing stress reduces to the 
following simple formula: 

T(x) = Clsinh(3]x. (27) 

The constant integration of C, in this formula can be obtained 
from the nonzero boundary condition in (16): 

AaAt 
C, = . 

1 K ^ cosh/3,/ 

The maximum shearing stress occurs at the end cross-section 
* = /: 

•Ml)--
AaAt 

tanh/3,/ . 

For sufficiently large fSxl values, tanh/3,/ is approximately 
equal to unity, and the maximum shearing stress becomes in­
dependent of the plate size. 

In the case of infinitely large through-thickness stiffness 
(K~ oo), the basic equations (6) and (11) yield: 

P{X) = IIT'{X), T"{x)-k2r(x) = 0. (28) 

Note that in this extreme special case the equation for the 
peeling stress p(x) can be still presented in the same form as the 
equation for the shearing stress T(X). Indeed, from the first 
equation in (28) we have: 

1 
T"(X) = p'{x). 

Introduction of this relationship into the second equation in 
(28) yields: 

r{x) = —^-p'{x). 

Substitution of this formula into the first formula in (28) 
results in the equation: 

p"(x)-k2p(x) = 0, (29) 

which is identical to the second equation in (28) for the shear­
ing stress. 

Equations (28) and (29) have the following simple solutions: 

T(X) = C, sinhfcr, p(x) = C 2 coshfc*:, (30) 

where the antisymmetry of the function r{x) and the symmetry 
of the function p(x) are taken into account. 

Introducing (30) into the first equation in (28), we conclude 
that the constants C, and C2 are related as follows: 

C2 = kp,Cx. 

Evidently, since there is only one independent constant of 
integration in the solutions (30), all the three boundary condi­
tions in (16) cannot be satisfied. Using the nonzero condition, 
we have: 

C,=-
AaAt 

nkcoshkl' 
C, = / * • 

AaAt 

Kcoshkl' 
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The maximum interfacial stresses occur at the end cross-
sections: 

AaAt 

Kk 
tanhA:/, pn 

AaAt 

Note that the distributed peeling stresses determined by the 
second formula in (30) do not satisfy the conditions of self-
equilibrium. Therefore, concentrated forces 

1 f' AaAt 
N°=~r\o p{-x)dx=* ~~kT~tanhkl=MTmax (3!) 

should be introduced at the end cross-sections to satisfy these 
conditions (Suhir, 1986). 

Comparing the formulas for the maximum shearing stress in 
the cases ^ = 0 and K~<x, we conclude that when the spring 
constant K increases from zero to infinity, the maximum 
shearing stress increases by a factor of 

Since the e value changes from e = 0 (in the cases of 
hl/h2=Dl/D2) to e = 3 (in the cases of D2»Di or 
Dx »D2), the factor i\ changes from JJ = 1 to ij = 2. Therefore, 
for thermostats characterized by small e values (and small 
peeling stresses), the through-thickness sifffness has a small 
effect on the maximum shearing stress. This effect increases 
with an increase in the e value, but even for a significant dif­
ference in the flexural rigidities and thicknesses of the ther­
mostats strips (when the parameter e is close to 3) the factor ?? 
does not exceed two. This justifies the fact that in an approx­
imate analysis the maximum shearing stress can be determined 
without considering the effect of the finite through-thickness 
stiffness at all. This is, of course, a conservative approach, 

which results in a reasonable overestimation of the actual 
stress. 

Numerical Example 

The numerical example is carried out for a molybdenum/ 
aluminum thermostat. The following input data is used: 
Ei= 3.247 x l 0 5 M P a , = 0.293, «! = 4 . 9 x 10"6 

A, = 2 . 5 4 m m , E2 = 7 .033 x 1 0 4 M P a , 
1/°C, 

0 . 3 4 5 , 
a 2 = 2 3 . 6 x l 0 " 6 1 /°C, ft2 = 2.54 mm, / = 2 5 . 4 mm, 
At = 24Q°C. 

The calculated stresses T(X) and p(x) are plotted in Fig. 2 as 
solid lines. The maximum shearing stress occurs in the vicinity 
of the cross-section x s 0 . 9 and is about 138MPa. The max­
imum value of the peeling stress takes place at the end cross-
section and is 920MPa. The calculated spring constant value is 
about K=2.1x 1013N/m3. The stresses predicted by the 
simplified formulas, assuming K—co, are shown as dotted 
lines. As evident from the obtained data, these formulas con­
servatively predict the maximum shearing stress, but 
underestimate the extremes of the peeling stress. (Note that 
since the formula (31) determines the maximum force at the 
end cross-section, the corresponding stress shown in Fig. 2 was 
evaluated, assuming that this stress is distributed over the 
same length as in the nonsimplified analysis.) Stresses 
calculated on the basis of the present theory for a hypothetical 
case of a very large spring constant (AT = 10l2lb/in3) are shown 
as broken lines. These curves are rather close to the curves, ob­
tained on the basis of the approach, assuming infinitely large 
through-thickness stiffness. 

Conclusion 

An engineering theory of interfacial stresses in thermostat­
like structures is developed. In this theory the boundary condi­
tions at the short edges are satisfied not only for the normal 
stress in the thermostat strips, but also for the interfacial 
stresses. A numerical example showed that the formulas, ob­
tained on the basis of a simplified approach assuming infinite­
ly large through-thickness stiffness, satisfactorily predict the 
maximum shearing stresses, but may underestimate the peel­
ing stresses. Therefore, it is recommended that the latter be 
evaluated on the basis of the more accurate analysis presented 
in this paper. 
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Three-Dimensional Transient 
Interlaminar Thermal Stresses in 
Angle-Ply Composites 
This paper studies the three-dimensional transient interlaminar thermal stresses in 
elastic, angle-ply laminated composites due to sudden changes in the thermal 
boundary conditions. The transient temperature field and transient interlaminar 
thermal stresses of the laminate are obtained by solving the heat conduction equa­
tion and by a zeroth-order perturbation analysis of the equilibrium equations, 
respectively. Numerical results for a four-layer angle-ply laminate have shown that 
the interlaminar normal stress near the free edge is significantly higher than that in 
the interior region and it increases rapidly with the fiber volume fraction. 

Introduction 
With the increasing applications of advanced fiber com­

posites under severe environment, the thermomechanical 
behavior of such materials, especially metal and ceramic 
matrix composites, has received considerable attention. This is 
mostly because that the temperature at which the metal and 
ceramic composites could be utilized is much higher than that 
for polymer-based composites. 

Among the tremendous research interests in the analysis and 
design of advanced fiber composites, the problem of "free-
edge effect" of laminated composites has attracted con­
siderable attention. Both experimental studies and approx­
imate analytical solutions have indicated that there exists 
highly localized regions of stress concentration near laminate 
free edges due to the geometrical as well as material discon­
tinuities. The highly localized, boundary layer stress coupled 
with the relatively low interlaminar strength is often detrimen­
tal to the durability of laminated composites. Thus, there is 
the need to establish adequate analytical and experimental 
techniques to investigate the interlaminar stress behavior near 
free edges of laminates due to thermal and mechanical 
loadings. 

Considerable effort has been made to investigate the 
behavior of edge stresses. Pipes and Pagano (1970) first 
employed finite difference method to study the nature of in­
terlaminar stresses in symmetric composite laminates due to 
mechanical loadings. Wang and Crossman (1977) used the 
finite element method to investigate the edge effect in sym-
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metric composite laminates subjected to uniaxial tension and a 
uniform temperature change. Wang and Dickson (1978) ex­
tended the Galerkin procedure to reveal the singularity 
behavior of interlaminar stress in composite laminates. Wang 
and Yuan (1983) presented a hybrid finite element method for 
analyzing the composite laminate elasticity problems with 
singularities. 

The interlaminar edge stress problem also has been exam­
ined by analytical techniques. For example, Pipes and Pagano 
(1974) developed an approximate elasticity solution for the 
response of a finite width, angle-ply composite laminate under 
uniform axial strain and yielded the sinusoidal-hyperbolic 
series solution form of the interlaminar stresses. Hsu and 
Herakovich (1976, 1977) used the perturbation method to ob­
tain a zeroth-order solution for edge effects in angle-ply com­
posite laminates subjected to a uniform strain. Wang and 
Choi (1979, 1982) employed the Lekhnitskii's complex 
variable potential approach to investigate the singularity of 
boundary layer stresses in composite laminates subjected to a 
uniform extension and a uniform temperature change. Recent­
ly, Kassapoglou and Lagace (1987) obtained the closed-form 
solutions to the problem of interlaminar stresses at a straight-
free edge of cross-ply and angle-ply laminates using the force 
balance method and the minimum complementary energy 
principle. Comparison of the existing results of studies of free-
edge effect has shown good agreements in the far field and ap­
preciable difference near the laminate boundary. 

To the authors' knowledge, there is a lack of fundamental 
understanding of the interlaminar stress concentration in­
duced by transient temperature field. Wang and Chou (1987, 
1988) initiated the study of this problem. Transient thermal 
stress analyses in unidirectional fiber composites have been 
reported by Wang and Chou (1985, 1986) and Wang, Pipes, 
and Chou (1986). With the development of laminated metal 
and ceramic matrix composites for elevated temperature ap­
plications, there is certainly the need for better understanding 
of the transient interlaminar stresses. 
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Fig. 1 Geometry of the angle-ply laminate for analytical modeling 

This paper analyzes the transient heat transfer and ther-
moelastic problem of a balanced, symmetric angle-ply 
laminate by dividing the plate into the interior and boundary 
layer regions. In the interior region of the laminate, the stress 
and displacement are studied by the classical laminate theory, 
while in the boundary layer region, a perturbation method is 
applied to the elastic governing equations. This approach is 
adopted because the transient interlaminar thermal stress in 
the boundary layer region can not be assessed accurately by 
the classical laminate theory due to the existence of high gra­
dient displacement and stress fields, and the three-dimensional 
nature of the boundary layer effect. The Prandtl's matching 
principle of perturbation theory is imposed to match the solu­
tions of these two regions. A four-layer (-6/d)s laminate is 
presented as a numerical example. The boundary layer stress 
singularities, and the fiber volume fraction and fiber orienta­
tion effects have been studied. The laminate thickness-to-
width ratio influence and stress solution sensitivity to the com­
posite elastic and thermal properties have also been assessed. 
Finally, the transient thermal effect on boundary layer stress is 
compared with that induced by the application of uniaxial 
tension. 

Thermal Stress Field 

1 Basic Equations. A 4-ply symmetric ( — 6/d)s com­
posite laminate is considered in this study. The laminate is of 
thickness 2h and width 2b; it is infinite in extent along the x-
direction (Fig. 1). Since the thermal boundary conditions are 
uniform along the surfacesy = ±b (Fig. 2), the displacements 
are independent of the x-axis and expressed as: 

u = u(y,z,t) 

v = v(y,z,t) (1) 

w=w(y,z,t) 

The time variable t will not be written out for convenience in 
the following discussions. The equilibrium equations are 

d<jx/dx+dTxy/dy + drxz/dz=0 

drxy /dx + doy /dy + dryz /dz = 0 (2) 

drxz/dx + dryz/dy + dcz/dz = 0. 

Here, a and T denote normal and shear stress, respectively. 
The stress-strain relations for orthotropic materials are 

(Vinson and Chou, 1975; Vinson and Sierakowski, 1986): 

°x = Cnex + c\2h + c n ^ + Cl6yxy -PiT 
oy = Cuex + C22 ty + C23 ez + C26yxy -fi2T 

°z = Cnex + C23ty + C33ez + C36yxy-@3T 

Tyz = ^Ailyz 

Txz = C55Jxz 
Txy = Cie6* + C26ey + C36ez + C66yxy ~P6T 

(3) 

T: 
Fig. 2 Thermal boundary conditions 

where 

0i = axcn + <XyCl2 + otzCn + axyCl6 

fo = ocxC12 + ayC22 + azC23 + axyC26 

03 = a x C 1 3 + O y Q a + « z C 3 3 + OlxyC36 

06 = axCl6 + ayC26 + azC36 + otxyC66. 

In equation (3), C,y are elastic stiffness constants; ax, ay, az 

are coefficients of thermal expansion, and T = T(y, t) 
denotes the transient temperature field (Appendix A). axy is 
given in Appendix C. 

Using the stress-strain equation (3) and strain-displacement 
relationship (Vinson and Chou, 1975; Vinson and 
Sierakowski; 1986), the equilibrium equations are written in 
terms of displacements. 

C66d
2u/dy2 + C55d

2u/dz2 + C26d
2v/dy2 

+ Ci6d
2w/dydz = P6dT/dy 

C26d
2u/dy2 + C22d

2v/dy2 + C4,d
2v/dz2 

+ (C2}+ C44)d
2w/dydz = /32dT/dy (4) 

C36d
2u/dydz+ (C44 + C23)d

2v/dydz+C44d
2w/dy2 

+ C33d
2w/dz2 = 0. 

The following nondimensional variables and constants are in­
troduced: U = u/h, V = v/h, W = w/h, Y = y/b, Z = z/h 
and Qij = Cij/Cmm, where Cmax is the largest value among all 
the Cj/s. Thus, the equilibrium equations could be written as 
follows after eliminating (h/b) and higher-order terms (Hsu 
and Herakovich, 1976, 1977). 

Q55d
2U/dZ2 = 0 

Q44d
2V/dZ2 = 0 (5) 

Qnd
2W/dZ2=0. 

The solution of equation (5) assumes the following general 
form in terms of functions A, B, C, D, E, and F of Y. 

U=A(Y)Z + B(Y) 

V=C(Y)Z + D(Y) (6) 

W=E{Y)Z + F(Y). 

With the following conditions of symmetry with respect to the 
laminate midplane, 

dU(Y,0)/dZ=0 

dV(Y,0)/dZ = 0 (7) 

fV(Y,G) = 0, 

the solution of equation (6) becomes 

U=B{Y,t) 

V=D(Y,t) (8) 
W=E(Y,t)Z. 

2 Solution for the Interior Region. The classical plate 
theory is assumed to hold in the interior region, such that az = 
TXZ = ryz = 0. Utilizing the condition of az = 0, and equa­
tions (3) and (8), we obtain 

E(Y,t) = W3/Cii)T{Y,t). (9) 
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It is assumed here that h/b is sufficiently small (< 10 percent) 
and can be neglected. Obviously, the conditions of TXZ = rn 

= 0 are satisfied with the solution form of equation (8). 
The symmetry conditions at the laminate central plane are 

17(0,Z) = 0 

V(0,Z)=0 (10) 

dW(Q,Z)/dY=0. 

Equations (10) lead to 

B(Y) = -B(~Y) D(Y) = -D(-Y). 

Furthermore, the requirement of continuity of displacements 
in U and V results in 

5 ( D = £ ( 2 ) = .=B(Y) Z>d> =£>»> = . . .=D(Y). 

Here, the superscripts denote the laminae in the laminate. 
Displacement continuity in W is not satisfied in the present 
zeroth-order approximation. Continuity in W could be 
achieved only when higher-order terms of (h/b) are included. 

To obtain explicit expressions of B(Y,f) and D(Y,t), it is 
necessary to consider the force equilibrium. 

(11) 
where tk = hk/h,hk = thickness of the kth lamina and h = L 
hk. So, B( Y, t) and D(Y, t) for each layer are given by 

(h/b)B( Y,t) = [q3Qx(Y,t)-q2Q4(Y,t)]/(q2q$-q3
2) 

(h/b)D(Y,t) = [q5Ql(Y,t)-q3Q4(Y,t)]/(q3
2-q2q5) (12) 

where 

Ql(Y,t)=mc23/C33)P3-p2]WTW(Y,t)hk 

q2 = LC22^hk q3=LC26^hk q5=ZC6^hk 

Q4(Y,t) = £[(C36/C33)/33 - 0 6 ] ( « J ( « ( Y,t)hk 

PkHY,t) = \lT<-kHY,t)dY. 

The displacement field in the interior region is as equation (8), 
and B(Y,t), D(Y,t), and E(Y,t) are given by equations (9) 
and (12). 

3 Solution for the Boundary Layer Region. Following 
Hsu and Herakovich (1976, 1977), a stretching transformation 
parameter is introduced. 

r, = (l-Y)/(h/b) (13) 

Then the equilibrium equation (4) becomes 

Q66d
2 U/dr,2 + Q55d

2 U/dZ2 + Q26d
2 V/dv

2 

- Q36d
2W/dndZ = (h/b) (!36/Cmax)dT/dY 

Q26d
2 U/dr,2 + Q22d

2 V/dy2 + Q44d
2 V/dZ2 (14) 

-Q23+Q44)d
2W/dvdZ = (h/b)((32/Cmax)dT/dY 

- Q36d
2 U/dridZ -(Q23+ Q44)d

2 V/dvdZ 

+ QMd2 W/drj2 + Q33d
2 W/dZ2 = 0. 

To satisfy the Prandtl's matching principle, the following ex­
pressions of the displacement field are assumed. 

[/<*» =B(Y,t) +Pex 'cos(aZ) 

K<*> =D(Y,t) + ReXr>cos(aZ) 

W(k) =E(Y,t)Z + Se^sin(aZ) 
(15) 

Here, B(Y, t), D(Y, t), and E(Y, t) are the interior region 
solutions of equations (9) and (12); P, R, and S are undeter­
mined coefficients; a is an undetermined positive quantity; X 
is the characteristic. 

Substituting the.£/<*', V{k) and Ww expressions into the 
equilibrium equations (14), we obtain 

Q66x2-e55«2 

Qi^1 

Q^a 

e26A2 

Qn^-Q^2 

(Q23+G44)Xa 

- Q^<x 

-(G23 + G44)X« 

Q44\
2-Q33a

2 

(Q6(y - QW)P+ Q**R - Qie^s=o 
Ql6^P+ (Q22^-QMC2W~ (G23+644)XaS=0 (16) 

Q36\aP+ (Q23 + Q44)\aR+ (Q44\
2-Q33a

2)S = 0. 

For nontrivial solutions of P, R, and S, the determinants of 
these algebraic equations must vanish and, thus, the 
characteristic equation is 

= 0. 

(17) 

The six roots of X have been found in the following forms (Ap­
pendix B): 

Xi>2= ±awa 

\3A=±b^u (18) 

X5|6=±c<*»a 

where aik), b{k) and c(k) are three positive constants. The 
positive roots of X are dropped to avoid divergence in the 
displacement field. 

Thus, the displacements in the boundary layer region can be 
written as follows: 

[/W =B(y,t) + (Ple~aar>+P2e-ba'> + P3e- r a ' )cos(aZ) 

yw = £ ) ( Y,t) + (Rle-ac"'+R2e~b^ + i?3e~m")cos(aZ) (19) 

W(k) =E(Y,t)Z+ (Sie-"ayi + S2e-bari + S3e-car>)sm(aZ). 

There are ten unknowns for the kth layer solution (Pl, P2, P3, 
RltR2,R3,Si,S2,S3,aada). 

The available equations are: (i) three stress boundary con­
ditions, oy (b, z) = 0, Txy (b, z) = 0 and ryz(b, z) = 0, (ii) six 
equilibrium equations (16), and (Hi) the integrated equilibrium 
condition 

\lnTxy(Q,Z)hdZ = \lrxz(Y,\n)bdY. 

The nine equations of (0 and (ii) are summarized next: 

Q22aRl + Q22bR2 + Q22cR3 + Q23SX + Q23S2 

+ Q23S3 + 626^1 + 626^2 + QT*CP3 =Ft/acos(aZ) 

QvflR\ + Q26bR2 + Q26cR3 + Q36St + Q36S2 

+ 636^3 + QMOP, + Qf6bP2 + Q66CP3 = F2/«COS(aZ) 

Q„Rt + Q44R2 + Q44R3 - Q44aSl - Q44bS2 - Q44cS3 = 0 

B^+C.St+AaP^O 

£>, /} ,+£ f l S 1 +5 o P,=0 

BbR2 + CbS2+AbP2=0 

DbR2+EbS2+BbP2 = 0 

BcR3 + CcS3+AcP3=0 

DcR3+EcS3+BcP3=0 

where 

(20) 

(21) 

Ft = - Q22DD - Q23EX - Q26DB + $2 T0 /Cm a x 

F2=-Q26DD-Q36E^Q66DB + I36T0/Cm!ix 

Aa= Q^a2-QS5 Ab = Q66b
2-QS5 Ac = Q66c

2 - Q 5 5 

Ba= Q26a
2 Bb = Q26b

2 Bc = Q26c
2 

Ca= Q36a Cb = Q36b Cc = Qi6c 

Da= Q22a
2-Q44 Db = Q22b

2-Q44 Dc = Q22c
2-Q44 

Ea= (Q23 + Q44)« Eb=(Q23 + Q44)b EC=(Q23 + Q44)c 

DQ4 = L[(C36/C33)$3-ll6]MT0hk 
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Table 1 Fiber thermoelastic properties 

S i C 

M 2 0 3 

T300 

P 

(g/cm3) 

3 . 2 

3 . 9 

1.77 

El 
(Gpa) 

406 

3 8 5 

2 2 1 

E2 

4 0 6 

3 8 5 

14 

G12 

169 

154 

9 

G23 

1 6 9 

154 

4 . 8 

V 12 

0 . 2 

0.26 

0 . 2 

" 2 3 

0 . 2 

0.26 

0.25 

a 1 ( i / °c ) 

xlO 6 

5 . 2 

8 . 5 

1 

a2 

5 . 2 

8 . 5 

10 

Kl 
(W/m,K) 

86 

30 

84 

K2 

86 

30 

8 . 4 

Cp 
(J /kg,K) 

670 

8 0 0 

920 

p: density 

E1,E2,G12,G23: axial,transverse and shear Young's modulus 

12 ' V23: Poisson's ratio 
alr a2 :thermal expansion coefficient 

Kl,K2: thermal conductivity 

Cp: specific heat 

Table 2 Matrix thermoelastic properties 1 .2 

BG 

LAS 

Al 

Mg 

P 
(g/cm3) 

2 . 2 

2.42 

2 . 7 

1.7 

E 
(Gpa) 

63.7 

85 

69 

45.5 

G 

28 

35 

26 

17 

U 

0.21 

0.22 

0.33 

0.33 

a (l/°c) 
xlO6 

3.25 

1 

23.6 

26 

K 
(W/m,K) 

1.09 

1.5 

300 

169 

Cp 
(J/kg,K j 

711 

800 

481 

67 

BG: bo t ros i l i ca te g l a s s 
LAS: l i t h ium a l u m i n o s i l i c a t e 
Al: aluminum 
Mg: magnesium 

0 . 2 

0 . 0 

0 . 0 

• 

-

^__^-

- SiC/BG 
Vf=30% 

' < -45 /45) s 
1 

t=oo 

20 min 

/l\ 
\ 

2 min / / 

S10 s e c / 

0 . 2 0.4 0 .6 
Y=y/b 

Fig. 3 Transient temperature distributions 

Table 3 Identifications of composite systems 

N , f i b e r 

m a t r i x >* 

BG 

LAS 

A l 

Mg 

Sic 

(11) 

(21) 

(31) 

(41) 

A1203 

(12) 

(22) 

(32) 

(42) 

T300 

(13) 

(23) 

(33) 

(43) 

2000 

1500 

"to a 
K 1000 

N 
e 

500 

0 . 0 0 . 2 0.4 0 .6 
Y=y/b 

0 .8 1.0 

DB= {qjDQt - q2DQ,)/(q2qs - q,2) 

DD= (q5DQl-q,DQ4)/(qi
2-q2q5) 

Therefore, the P, R, and S could be solved in terms of a. To 
determine a, the force equilibrium equation (20) must be 
considered. 

Numerical Results 

A four-layer {-d/d)s laminated plate is taken as a 
numerical example. Each layer is 5 mm in thickness (hk), 200 
mm in width (b). The fiber and matrix thermoelastic proper-

Fig. 4 Transient interlaminar thermal stress of a SiC/BG ( - 4 5 deg/45 
deg)s laminate for Vf = 30 percent and T0 = 1°C 

ties come from Chou and Yang (1986), Chamis (1984), Bren-
nan and Prewo (1982), and are listed in Tables 1 and 2. 
SiC/borosilicate glass (BG) laminate is used as a baseline com­
posite system for demonstration of the results, and numerical 
computations are also performed for eleven other composite 
systems (Table 3). 

From Appendixes B and C, the eigenvalues of the 
characteristic equation (17) are obtained for (-45 deg/45 
deg)s SiC/BG laminate. 

X, = -cvVco7= -1.1018a 
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2000 

0.90 0.925 0.95 0.975 

Y=y/b 

Fig. 5 Detailed edge stress distribution of Fig. 4 

1.00 

Fig. 6 Transient interlaminar thermal stress of a ( - 4 5 deg/45 deg)s 

SiC/BG laminate for Vf = 30 percent and T0 = 1°C 

X2= - a V ^ = -0.7917a 
X3 = — avco^ = — 1.0a 

The solution of equation (21) is 

Ri =0.5555 X 10"6 { T0/[acos(aZ)] j 
R2 = 0.3129 Xl0-6{7,

o/[acos(aZ)]) 
R} = - 0.9247 X 10"6 { ro/[acos(aZ)]) 
S, = - 0.7380 X 10"6 ( T0/[acos(aZ)]) 
52 = - 0.2120 X 10~6 ( T0/[acos(aZ)]) 

53 = 0.9247 X 10"6 ( T0/[acos(aZ)]} 
P, = - 0.2576 X 10"6 ( T0/[acos(aZ)]} 
P2 = 0.U51xW-6{To/[acos(aZ)]} 
P3 = 0.9247 X 10~6 { ro/[acos(aZ)] j . 

Equation (20) leads to a transcendental equation for deter­
mining a at Z= 1/2 and different time t. 

t= 10 s 2 min. 20 min. oo 

a = 6.2831 6.2833 8.0614 8.9868 
Then, the displacement field is readily obtained from equation 
(19), and the transient thermal interlaminar stresses are de­
rived from the displacement field. 

The transient temperature profile is depicted in Fig. 3 for a 
(-45 deg/45 deg)s SiC/BG laminate of Vf = 30 percent. 
There exists a sharp variation of the temperature field along 
the width of the plate at the beginning of the sudden heating, 

4000 

3000 

O, 2000 

0.4 0 . 6 
Y=y/b 

Fig. 7 Fiber volume fraction effect on interlaminar normal stress for a 
SiC/BG ( - 4 5 deg/45 deg)s laminate at T0 = 1°C and t = 2 min 

2000 

Fig. 8 Fiber orientation effect on interlaminar normal stress for a 
SiC/BG ( - BI0)s laminate at T0 = 1°C, t = 2 min, V, = 30 percent, and V 
= 1.0 

and it is obvious that the temperature distribution becomes 
uniform as time tends to infinite. 

The transient interlaminar normal stress distribution of the 
(-45 deg/45 deg)̂  SiC/BG laminate which is subjected to a 
sudden edge heating of the magnitude T0= 1°C at t = 0+ is 
demonstrated in Fig. 4. No stress singularity is found as a con­
sequence of the assumed displacement field, but it is apparent 
that the interlaminar normal stress increases very significantly 
as approaching to the boundary (Y= 1). The detailed local in­
terlaminar normal stress distribution (Y = 0.9 ~ 1.0) is 
shown in Fig. 5. The stress at Y - 1.0 is about 3-20 times 
higher than that at Y = 0.99 for different transient times. This 
indicates the existence of high stress concentration. As the 
heating proceeds, the overall interlaminar normal stress in­
creases smoothly, but the stress which is very close to the 
boundary remains almost constant. On the other hand, the in­
terlaminar normal stress tends to zero away from the free edge 
of the laminate due to the adoption of the classical laminate 
theory in the interior region. 

Unlike the interlaminar shear stresses induced by axial ten­
sion, which are in the same order of magnitude as the in­
terlaminar normal stress (Hsu and Herakovich, 1977), the 
transient thermal interlaminar shear stress TXZ in Fig. 6 is very 
small compared to the interlaminar normal stress. 

The fiber volume fraction effect is studied in Fig. 7. The in­
terlaminar stress increases significantly with the fiber volume 
fraction due to the composite stiffness increase. For (-9/d)s 
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Fig. 11 Interlaminar stress versus modulus of twelve composite 
Fig. 9 hib effect on interlaminar stress for a SiC/BG ( - 45 deg/45 deg)s systems for ( - 45 deg/45 deg)s laminates at Vf = 30 percent, Y = 0.99, 
laminate at Vt = 30 percent, T0 = 1°C, and t = 2 min and t = 2 min 
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Fig. 10 Parametric studies of stress solution sensitivity to composite 
elastic and thermal properties, SiC/BG ( - 4 5 deg/45 deg)s laminate is 
used as the baseline materials, t = 2 min and Y = 0.99. 

angle-ply laminates, the interlaminar stress reaches its peak 
value when 6 = 45 deg (Fig. 8). 

The laminate thickness-to-width ratio effect is investigated 
in Fig. 9. The interlaminar stress increases with the h/b value, 
and the stresses (at Y ~ 1.0) are the same for different h/b 
values. The present analysis is based upon the thin laminated 
plate theory, and neglects h/b and higher-order terms. 
Therefore, the theoretical prediction will be more accurate for 
smaller h/b values. 

Figure 10 provides the parametric study of the stress solu­
tion sensitivity to the composite elastic and thermal properties. 
The Young's modulus (£3) and thermal expansion coefficient 
(a3) along the plate thickness direction have a more significant 
effect on the stress solution than the thermal conductivity (Kt) 
and specific heat (Cp). This is so because the linear stress-
strain relationship is adopted and terms containing K3 and Cp 
are in negative exponential form in the present analysis. 

Figure 11 presents the interlaminar thermal stresses of 
twelve composite systems (Table 3) versus their moduli. The 
data are generated for ( - 45 deg/45 deg)̂  laminates at Vf = 
30 percent, Y = 0.99 and t = 2 min. 

Finally, the transient thermal effect in the boundary layer 
identified from the present analysis is compared with that in­
duced by uniaxial tension for a (45 deg/ - 45 deg)s 
graphite/epoxy laminate (Hsu and Herakovich, 1977). The 
uniaxial tensile strain ev is assumed to be 10 "3 for mechanical 

« 1000 

-500 

present analysis 
Hsu & Herakovich (1977) 

(457-45)s graphite/epoxy 

_1_ 

0.6 0.7 0.9 1.0 0.8 

Y-y/b 

Fig. 12 Comparison of transient thermal effect and axial tension 

loading, and the boundary layer thermal condition is T0 = 
10°C for computing the transient thermal effect. It can be seen 
from Fig. 12 that the interlaminar normal stress tends to zero 
away from the boundary layer (Y< 0.8), and increases sharply 
as one approaches to the free edge for both cases. 

Conclusions 

(1) Transient interlaminar thermal stresses within the 
boundary layer region of an angle-ply composite laminate are 
three-dimensional in nature. They can not be determined by 
the classical laminate theory, but they have been examined ex­
plicitly by the present method. 

(2) The interlaminar stress az is very significant close to the 
free edge of the laminate and increases with fiber volume frac­
tion due to the composite stiffness increase. 

(3) The interlaminar normal stress reaches its maximum at 6 
= 45 deg for ( - d/d)s laminates, and a minimum for unidirec­
tional composites (6 = 0 deg or 90 deg). 

(4) The interlaminar thermal shear stress is small compared 
to interlaminar normal stress. 

(5) The overall interlaminar normal stress increases with the 
plate thickness-to-width ratio (h/b), but the peak value of in­
terlaminar stress (at Y » 1.0) is independent of (h/b). The 
present analysis is suitable for small (h/b) values. 

(6) The sensitivity of the stress solution to composite ther­
mal and elastic properties is of practical interest. The results of 
these parametric studies indicate that the elastic stiffness and 
thermal expansion coefficient have a more severe influence on 
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the stress solution than the thermal conductivity and the 
specific heat (see Fig. 10). This is due to the assumption of the 
linear stress-strain relation and because the terms containing 
specific heat and thermal conductivity are in negative ex­
ponential form. 

Discussions 

(1) There is the need to define the boundary layer width on 
a rational basis. Pipes and Pagano (1970) defined the bound­
ary layer width as the distance from the boundary at which the 
interlaminar shear stress is about three percent of the value 
calculated at the free edge. Since the interlaminar shear stress 
is relatively small in the present case, the applicability of this 
definition is questionable. Wang and Choi (1982) used an 
alternative definition of boundary layer width based on strain 
energy density consideration and defined the boundary layer 
width as the distance from the free edge where the strain 
energy density is three percent higher than that obtained in the 
far field. 

In the present studies of transient thermal stress, the bound­
ary layer width based on the definition just discussed changes 
with time. There is the need of further studies of boundary 
layer width for the transient case. 

(2) There is still the uncertainty about the existence of the 
singular property of free-edge stresses from both 
mathematical and physical viewpoints. No mathematical 
stress singularity is found based upon the present method of 
analysis and assumed displacement field. 

(3) Delamination of composites could occur due to the 
coupling of low interlaminar strength and relatively large in­
terlaminar stresses induced by transient thermal effects. 
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A P P E N D I X A 

Temperature Field 

The heat conduction equation for general anisotropic solid 
of constant conductivity coefficients without internal heat 
generation in rectangular coordinate system is (Ozisik, 1980): 

Kn d2 T/dx2 + K22d
2 T/dy2 + K3} d

2 T/dz2 + 2Knd
2 T/dxdy 

+ 2K nd
2 T/dxdz + 2K23 d2 T/dydz = pCpdT/dt. (A 1) 

Here, Ky are the coefficients of heat conduction. 
We consider an x-direction infinite plate subjected to a 

temperature field T= T0 on two edges 0 = ±b) at time t = 0 + 

(Figs. 1 and 2) and assume that temperature field in each layer 
is independent of the thickness direction, i.e., T= T(y, t) only. 

The heat conduction equation for each layer is 

d2 T/dy2 = (l/g2)dT/dt (A2) 

where g2 = Ky/pcp, Ky, p and cp are the coefficient of heat 
conduction in j>-direction, mass density, and specific heat, 
respectively. 

The boundary and initial conditions are 

T(±b,t) = T0 (Al) 

T(y,0) = 0. (A4) 

The solution of governing equation (A2) by the method of 
separation of variables is 

T=T0(\+LBncoso)nYe-Dn') (A5) 

where 

5„ = (-l)"4/(2n-l) ir 
D„ = [(n-l/2)irg/b]2 

co„ = ( « - 1/2)TT 

Y=y/b. 

A P P E N D I X B 

Solution of Characteristic Equation 

The expansion of the characteristic equation (17) is 

C1X
6 + C2a2X4 + C3a4X2 + C4Q;6 = 0 (51) 

where 

C 1 = ( Q 2 2 Q 6 6 - Q 2 6 2 ) Q 4 4 

c2 = Q22QU2 + G33G262 + QeeQii2 + ZQnQA - QnQnQm 
- Q22Q44Q55 - 2Q2,Q26Q,6 - 2 Q 4 4 Q 2 6 Q 3 6 
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C3 = 233244266 + Q22Q33Q55 - G44Q362 - Q55Q232 - 2Q23Q^Q[ 

C4=-Q33QuQs5-
Let X = + txVco, then equation (52) becomes 

C,w3 + C2co2 + C3co + C4 = 0. (52) 

Let w = 7 -C 2 / ( 3C 1 ) , where C, ^ 0 , then equation (52) 
becomes 

7 3 +P7 + <7 = 0 (53) 

where 

p = C 3 /C 1 -C 2 V(3C 1
2 ) 

9 = (2C2V27C1
3)-(C2C3)/(3C1

2) + C4/C1. 

Some properties of equation (53) are discussed in the follow­
ing based upon the discriminant A = (q/2)2 + Co/3)3: 

Case 1: A > 0, There exists one real root and two complex 
roots. 

Case 2: A = 0, There exist three real roots, two of them are 
equal. 

Case 3: A<0 , There exist three unequal real roots. 
Let y = <j> + \l/, then the characteristic equation (53) could be 

separated into two equations 

</>3 + i/<3 = - q 

<t>$ = -p/3 (54) 

which give the following solutions 

<t>i = [-q+ (±V<?2 + 4p3/27)]/2 

tf = {-q-(±4q2 + 4pl/21)]/2. (55) 

A P P E N D I X C 

Rule of Mixtures 

The rule-of-mixtures which is used to predict the composite 
elastic and thermal properties from the fiber and matrix 
properties is as follows (Chamis, 1984): 

E{ =En Vf + E,n Vm E2 = £ 3 =Em/[l -yfVjQ. -Em/Efl)] 

Gn = Gll = Gm/[\-4vf(\-Gm/Gm)} 

G23 = Gm/[l-JVf(l-Gm/GA3)] 

"12 = "13 = "/12 Vf+Vm Vm "23 = Vi2 = E2/(2G23) - \ 

"31 = "21 =E2v12/E1 a, = (ctflEfl Vf + amEm Vm)/El 

a2 = a3 = a / 2VT>+(l - VT>)(1 + VfvmEfl/Ei)am 

Kl=KflV/ + KmVm 

K2 =K3 = (.l-yTPf)K„+Kmy/Vf/[(l-y/Vf)(l+K m/Kfl)]. 

(CI) 

From the basic thermoelastic properties of the composite, 
equation (CI), the elements in the stiffness matrix of stress-
strain relationship in the direction of material principal axis 
are (Vinson and Chou, 1975; Vinson and Sierakowski, 1986) 

C „ = (1 - U23U32)£,
1/A Cu = ("12 + V32Vl3)E2/A 

C13 = ("13 + "12"23)£3/A C22 = (l- V13U31)E2/A 

C23 =("23 + V21Un)E3/A C33 = ( 1 - Vl2V2[)E3/A 

CM~G23 C J J = G 3 1 Cg5 = G1 2 . (C2) 

Here A = l - u i 2 " 2 i ~ "23"32 ~ "i3"3i — 2v2iv32vi3 and the 
underlined subscripts 1, 2, and 3 denote the principal material 
axis. The angle between the fiber direction and the reference 
axis is defined as 8. The elastic constants and thermal expan­
sion coefficients in terms of the reference axis are (Vinson and 
Chou, 1975; Vinson and Sierakowski, 1986) 

C„ = Ci,cos46l + 2(^2 + 2CM)cos20sin20 + C^s in^ 

C,2 = (C„ + CU- 4Qs)cos20sin20 + Ci_2(cos40 + sin40) 

C13 = C i3cos20+C23sin20 

Ci6= -C22cos0sin30 + Cijcos30sin0 

- (C12 + 2C£6)cos0sin0(cos20 - sin20) 

C22 = C„sin40 + 2(C i2 + 2Cg5)cos20sin20 + C^cos4© 

C23 = C13sin20+C23cos20 

C26 = - C22cos30sin0 + Ci!cos0sin30 

- (CIJ + 2C£6)cos0sin0(cos20 - sin20) 

^33 ~ CJJ 
c36 = (Ci3 - C2_3)cos0sin0 

C44 = C^cos^ + C55sin20 

Q5 = (C55 _ C44)cos0sin0 

C55 = C55Cos20 + C44sin20 

C« = (C„ + Cv - 2C12)cos20sin20 + C66(cos20 -- sin20): 

ax = a1cos20 + a2sin20 

ay = a 1 sin20 + a2cos20 

axy - (a, - a2)cos0sin0. (C3) 
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The Extended Free Formulation of 
Finite Elements in Linear Elasticity 
The free formulation of Bergan and Nygard (1984) has been successfully used in the 
construction of high-performance finite elements for linear and nonlinear structural 
analysis. In its original form the formulation combines nonconforming internal 
displacement assumptions with a specialized version of the patch test. The original 
formulation is limited, however, by strict invertibility conditions linking the as­
sumed displacement field to the nodal displacements. The present paper lifts those 
restrictions by recasting the free formulation within the framework of a mixed-
hybrid functional that allows internal stresses, internal displacements, and boundary 
displacements to vary independently. This functional contains a free parameter and 
includes the potential energy and the Hellinger-Reissner principles as special cases. 
The parameter appears in the higher-order stiffness of the element equations. 

1 Introduction 

Bergan and Nygard (1984) have developed the so-called free 
formulation (FF) for the construction of displacement-based 
incompatible finite elements. This work consolidated a decade 
of research of Bergan and co-workers at Trondheim, 
milestones of which may be found in Bergan and Hanssen 
(1976), Hanssen et al. (1979), and Bergan (1980). The products 
of this research have been finite elements of high perform­
ance, especially for plates and shells. Linear applications are 
reported in the aforementioned papers as well as in Bergan 
and Wang (1984), Bergan and Felippa (1985), and Felippa and 
Bergan (1987); whereas nonlinear applications are presented in 
Bergan and Nygard (1985) and Nygard (1986). By "high per­
formance" it is meant that solution of engineering accuracy 
can be obtained with coarse meshes of simple elements, and 
that those elements exhibit low distortion sensitivity. 

The original FF was based on nonconforming displacement 
assumptions, the principle of virtual work and a specialized 
form of Irons' patch test that Bergan and Hanssen (1976) 
called the individual element test. A key ingredient of the FF is 
the separation of the element stiffness matrix into the sum of 
two parts, called basic and higher-order stiffness, respectively. 
The basic part is constructed for convergence and the higher 
order part for numerical stability and (in recent work) 
accuracy. 

An intriguing question has been: Does the FF fit in a varia­
tional framework? This was partly answered by Bergan and 
Felippa (1985), who showed that the basic stiffness part was 
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equivalent to a constant-stress hybrid element. But persistent 
efforts by the present author to encompass the higher-order 
stiffness within a hybrid variational principle were unsuc­
cessful until the development of parametrized mixed-hybrid 
functionals in Felippa (1989a, 1989b). With the help of these 
more general functionals it is possible to show that the FF is a 
very special type of mixed-hybrid element which does not fit 
within the classical Hellinger-Reissner principle. In retrospect, 
the classification of FF elements as hybrids is not surprising. 
Under mild conditions studied in the Appendix, hybrid 
elements satisfy Irons' patch test a priori, and the FF develop­
ment has been founded on that premise. 

To encompass the FF within the hybrid framework, the 
following assumptions must be invoked. 

(1) A specific hybrid functional, identified as n^ in the se­
quel, is constructed. This functional depends linearly 
on a parameter 7. 

(2) Three fields are assumed over each element: 
(a) a constant stress field, 
(b) an internal displacement field u defined by nq 
generalized coordinates collected in vector q, and 
(c) a boundary displacement field d defined by nv 
nodal displacements collected in vector v. Both d and u 
must represent rigid body motions and constant strain 
states exactly. 

(3) The number of generalized coordinates, nq, equals the 
number of nodal displacements, nv, and the square 
transformation matrix G relating v = Gq is 
nonsingular. 

In Felippa (1989b) it is shown that substituting the finite ele­
ment expansions into n^, rendering the functional stationary 
with respect to the degrees-of-freedom, and eliminating both 
internal fields by a combination of static condensation and 
kinematic constraints, leads to the FF stiffness equations in 
terms of the nodal displacements v. The parameter 7 appears 
as a coefficient of the higher-order stiffness. These stiffness 
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equations can be readily implemented into any displacement-
based finite element code. 

This variational pathway to FF is of interest for two 
reasons. First, it explains the behavior of FF elements as 
regards convergence, stability, and accuracy. Second, it opens 
up the door to extensions that are not obvious from a physical 
standpoint. Two such extensions involve: retaining higher-
order stress fields, and allowing more internal displacement 
modes than nodal displacements, that is, nq > nu. The main 
purpose of this paper is to study these two extensions, which 
are shown to be closely related. The resulting framework for 
deriving finite elements in elasticity is called the extended free 
formulation (EFF). 

2 Governing Equations 
Consider a linearly elastic body under static loading that oc­

cupies the volume V. The body is bounded by the surface S, 
which is decomposed into S: Sd U St. Displacements are 
prescribed on Sd whereas surface tractions are prescribed on 
S,. The outward unit normal on S is denoted by n = «,-. 

The three unknown volume fields are displacements u ^ «,, 
infinitesimal strains e = e,y, and stresses 0=0y. The problem 
data include: the body force field b = b{ in V, prescribed 
displacements d on Sd, and prescribed surface tractions t = tt 

on St. 
The relations between the volume fields are the strain-

displacement equations 

e = -j- (V u + V Tu) = Du or e~(uid + uu) in V, (1) 

the constitutive equations 

a = Ee or cr,y = Eijklekl in V, (2) 

and the equilibrium (balance) equations 

-d iv (r = D*ff = b or CT,yj + i , = 0in V, (3) 

in which D* = - div denotes the adjoint operator of D = 1/2 
(V + V 7 ) . 

The stress vector with respect to a direction defined by the 
unit vector v is denoted as av = a.\, or avi = OyVj. On S the 
surface-traction stress vector is defined as 

o„=o.n, or o„i = ou-nJ. (4) 

With this definition the traction boundary conditions may be 
stated as 

<r„ = t or oyKj = ij on S,, (5) 

and the displacement boundary conditions as 

u = d or U-, = d; on Sd. (6) 

3 Notation 

Field Dependency. In variational methods of approxima­
tion we do not work, of course, with the exact fields that 
satisfy the governing equations (l)-(3), (5)-(6), but with in­
dependent (primary) fields, which are subject to variations, 
and dependent (secondary, associated, derived) fields, which 
are not. The approximation is determined by taking variations 
with respect to the independent fields. 

An independently varied field will be identified by a super­
posed tilde, for example, u. A dependent field is identified by 
writing the independent field symbol as superscript. For exam­
ple, if the displacements are independently varied, the derived 
strain and stress fields are 

e «_L. (v + V r )u = Du, <r"=Ee"=EDu. (7) 

An advantage of this convention is that u, e, and a may be 
reserved for the exact fields. 

Integral Abbreviations. Volume and surface integrals will 

610/Vol. 56, SEPTEMBER 1989 

Fig. 1 Internal interface example 

be abbreviated by placing domain-subscripted parentheses and 
square brackets, respectively, around the integrand. For ex­
ample: 

(f)v= \vfdV>lf]s=\sfdS,Wsd = 

[ JdS, lf\s.= \ fdS. (8) 
)s? Js< 

If f and g are vector functions, and p and q tensor functions, 
their inner product over Kis denoted in the usual manner 

(f,g)K
d= \vf.gdV=\vfigidV, 

(p,q)v=\vP.qdV= \vPijqijdV, (9) 

and, similarly, for surface integrals, in which case square 
brackets are used. 

Domain Assertions. The notation 

(a = b)v, [a = b]s, [a = b]Sd, [a = b]Si, (10) 

is used to assert that the relation a = b is valid at each point of 
V, S, Sd, and S,, respectively. 

Internal Interfaces. In the following subsections a varia­
tional principle is constructed, in which boundary 
displacements d can be varied independently from the internal 
displacements u. These displacements play the role of 
Lagrange multipliers that relax internal displacement continui­
ty. Variational principles of this form will be called 
displacement-generalized, or rf-generalized for short. 

The choice of d as independent field is not variationally ad­
missible on Sd or S,. We must therefore extend the definition 
of boundary to include internal interfaces collectively 
designated as S,-. Thus, 

S:SdUStUSi. (11) 

On S,- neither displacements nor tractions are prescribed. A 
simple case is illustrated in Fig. 1, in which the interface S, 
divides Finto two subvolumes: V+ and V~. An interface such 
as Si on Fig. 1 has two "sides" called S/- and Sf, which iden­
tify S, viewed as boundary of V+ and V~, respectively. At 
smooth points of S,, the unit normals n + and n - point in op­
posite directions. 

The integral abbreviations (8)-(9) generalize as follows, us­
ing Fig. 1 for definiteness. A volume integral is the sum of in­
tegrals over the subvolumes: 

(f)v=\ fdV+\ fdV. (12) 
J v+ JV-
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An integral over S, includes two contributions: 

>[g}Si= \,g+dS+\, -S~dS, (13) 

where g+ and g~~ denotes the value of the integrand g on Sf 
and Sf, respectively. These two values may be different if g is 
discontinuous or involves a projection on the normals. 

4 The Hu-Washizu Principle 

There are several essentially equivalent statements of the 
Hu-Washizu functional of linear elasticity. The starting form 
used here is the four-field functional 

n^(u,e,<r,d) = -j-(a%e)K+ ( a , e " - e ) K - ^ , (14) 

where F1 is the "forcing" potential 

Pd(u,a4) = (b,n)v+la„,u-d]Sd + [i,u]S/+l5„,u-d]s..(i5) 

The function IF^is called d-generalized in the sense that the 
volume fields u, e, a, and the surface displacement field d are 
subject to independent variations, whereas in the conventional 
form of the principle the relation [d = u ] s u s . is enforced a 
priori. The superscript d is used to distinguish it from the t-
generalized variant 

nV(u)e,of>t) = ^ - ( ^ , e ) K + (a f , e " -e ) K -P ' , (16) 

in which the surface tractions t are varied independently from 
the internal stress field a. This is the starting form in the 
classical textbook of Washizu (1968). Parametrized versions 
of (16) are studied in further detail in Felippa (1989a). 

Functionals that are not d or ^-generalized will be called 
conventional. The three versions differ only in the forcing 
potential term. 

5 Parametrization 

Constraining the Hu-Washizu functional (14) by selectively 
enforcing field equations and boundary conditions a priori 
yields six functionals listed (in their conventional form) in 
Chapter 4 of the monograph of Oden and Reddy (1983). Of 
particular interest for the present study are the rf-generalized 
Hellinger-Reissner functional 

n£(u,<7,d~)= -j- (ff,e")K+ (3,e")v-P
d, (17) 

as well as the ^-generalized potential energy functional 

n^(u,d") = -i-( (r»,e")K- JP
/ . (18) 

These two functionals are special cases of the following 
parametrized form 

n^(u,a)d") = ^-( l -7)(ff u
)e«)K 

—jl(9,e')v + y{S,e>')y-Pd, (19) 

where 7 is a scalar. If 7 = 1 and 0 we obtain the functionals 
11$ and Uf, respectively. Parametrized forms, such as (19), of 
the elasticity variational principles were studied by Chien 
(1983). 

First Variation. Defining the 7-weighted stresses 

ff7def7fif + (i - y)„« in V, <r],leSya„ + (1 - y)au„ on S (20) 

the first variation of (19) can be written 

5n^ = 7(eu-e°,5ff)K-(divffT+b, 5u)K 

-li-tq,8u]Sl-iaB-6y,6u]Sd-lu-A,63B]Sd (21) 

- [9„ ~ oy„M]Si - [u - d,8S„hi ~ l°n Mh, • 
Since d is unique on S, whereas u and 3 are generally discon­
tinuous on it, the interface integrals in (21) split as follows: 

[a„ -aj,fiu]S/ = [<?+-a^ ,5u + ]s.+ + [8--ay M~\s-, 

[5-d' ,Sa] s . = [u+ -d,89B1s++ [u- -d,5a~) s ' r (22) 

[ff„,«d]s = [<tf,5d~] . + [a;,Sd] = [a„+-a-,5d] 

Setting the first variation to zero and taking (22) into account, 
the Euler equations and natural boundary conditions for 7 T̂  0 
are found to be 

(e"=e°)K , (dtv aT + b = 0)K, K = t ] v 

K = 4)sd. l» = fls„. W+ -"n=^h, (23) 
[ol- -<T ,7=0] S J , [u+ = u " =d] s . , K - a „ - = 0 ] S / . 

The constitutive equations do not appear since they are en­
forced a priori in ITjf. If 7 = 0, the first equation (e" = e°)v, 
drops out. 

Modified Forcing Potential. Substituting d in lieu of u in 
the forcing potential (15) 
Pd(n,3,d) = {b,u)v+[3n,d-d]Sd +[t,6]s. + [ a > - d ~ ] s . (24) 

is not variational^ admissible because incorrect Euler equa­
tions result. A correct potential that resembles (24) can be ob­
tained in two stages. First, surface terms [<?„, u - d ] S ( and [a„, 
u - d] s are added and subtracted to produce 

Pd(u,ff,d) = (b ,u) y +[of„ ,d-d] S d - [ f f„- t ,u] S r + [ a „ , u - d ] s . 

(25) 

Second, t is assumed to be in the range of a„ and the condition 
[<j„ = t ] s satisfied a priori, reducing (25) to 

/*'(fi,«f,d) = (b, u)v+ [a„,d-d)Sd + [ t , d \ + [<r„,u-d]s . (26) 

This expression differs from (24) in that the all-important sur­
face dislocation integral is taken over S rather than S,. Further 
simplification results if the displacement boundary conditions 
[d = d]Sd are exactly satisfied: 

Pd(u,d,d) = (b,u)v+[i,d~]St +[ef„,u-d"]s. (27) 

This expression of F1 is used in the sequel, as modifications 
required to account for the case [dVd]Sd are of minor 
importance. 

6 Energy Balancing 

Distances. Let U(e) = 1/2 (Ee,e)K denote the strain energy 
associated with field e. We may rewrite (19) as a potential-
energy deviator 

n? = n £ - 7 £ / ( e " - e * ) , (28) 

because 

7 , , P = ( a , e ° - e " ) K ~ (S-a",e")v 7/2 

= (a" - a , e " - C ) K = (Ee" -Ee",e" - e " ) K . (29) 

If E is positive definite, U (e" - e°) > 0 and, consequently, 

n ^ < n ^ i f 7 > 0 . (30) 

If u is kinematically admissible, Up exceeds the exact potential 
energy as will be shown. It follows that to improve solutions in 
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energy, we expect to take 7 > 0. Thus, principles associated 
with 7 < 0 have limited practical interest. 

Let II(u) denote the exact potential energy 

n(u)= (ff,e)K-(b,u)K-[t,u]S ( , (31) 

where a and e denotes the exact stress and strain field, respec­
tively. If u is kinematically admissible and thus satisfies 
[u = d] s , then the energy distance from n£(u) to the exact 
functional (31) is (see, e.g., Section 34 of Gurtin (1972)) 

ng-n = -(ff"-<7,e"-e)K=f/(e"-e) . (32) 

Adjusting 7. To derive an "energy balanced" approxima­
tion we impose the condition IT^ = n , which yields 

£/(e"-e) (ou-o,e"-e) 
1b-- (33) 

C/(e"-e") (<r"-ff,e"-e") 

For example, if we assume that the exact stresses and strains 
lie halfway between the approximate fields, 

a = -^-(au + a), e = ̂ - (e° + e"), (34) 

then 7,, = 1/4. But, as the exact stresses and strains for the 
elasticity problem are not generally known in advance, the 
practical determination of yb has been based on application of 
(33) to element "patches" under simple load systems, as 
discussed in Bergan and Felippa (1985) and Felippa and 
Bergan (1987). 

Error Estimates. The strain difference e" — e" may be used 
as a pointwise measure of solution accuracy, and the 
associated "dislocation work" U(e" — e") as an energy error 
measure for applications such as adaptive mesh refinement. 

7 Finite Element Discretization 

In this section the finite element discretization of n^ is 
studied. Following usual practice in finite element work, the 
components of stresses and strains are arranged as one-
dimensional arrays whereas the elastic moduli in E are ar­
ranged as a square symmetric matrix. The FE assumption is 
globally written 

(u = Nq)„, (ff = Aa)„, [d = Vv]s. (35) 

Here, matrices N, A, and V collect generalized-displacement 
shape functions, internal stress modes, and interface displace­
ment modes, respectively, whereas column vectors q, a, and v 
collect generalized internal displacements, stress mode 
amplitudes, and generalized interface displacements, respec­
tively. The assumed volume fields 5 and u need not be con­
tinuous across S,. The derived fields are 

(e"=DNq = Bq)K, (o«=ERq)v, ( e "=E- 1 a = E - ' A a ) K . 

(36) 

Inserting these expressions into n^ with the forcing potential 
(27), we obtain the algebraic form 

n?(a,q,s) = 4 - ( l - 7 ) q r K „ q - 4 - ^ a r C a 

+ 7 q r Q a - q r P a + v 7 ' La -q 7 ' f ? -v r f „ (37) 

where 

(38) 
Ku = (B rEB)K = K„7', C = ( A ' E ^ A ) K = CT , Q = (B rA)K , 

L = [YTA„]S, P = [N rA„] s , f, = (N r b) F , f„ = [ N % . 

The matrices K„, C, Q, L, and P are called internal-
displacement stiffness, compliance, leverage, nodal-force 
lumping, and boundary dislocation matrices, respectively. 
Making (37) stationary yields the linear system 

- 7 C 7 Q r - P 7 ' 1 / 

7 Q - P (1-Y)K„ 0 

0 0 J 

-

'a^ 

q • = = -

0 " 

(39) 

The first matrix equation is the discrete analog of the first, 
fifth, and eighth relations in (24), and expresses internal and 
boundary compatibility. The third matrix equation is the 
discrete analog of the last relation, and expresses equilibrium 
across S,. The second matrix equation is the discrete analog of 
the remaining relations, and expresses internal and boundary 
equilibrium. 

It is shown later (in Section 9) that if the assumed stress 
modes in A are divergence free (self-equilibrating), then 
P = Q, and (39) simplifies to 

- 7 C - ( l - 7 ) Q r L r 

(1 -7 )Q (1 - 7 )K„ 0 

L 0 0 

a 

i q 

v 

0 

•I in (40) 

These results are now reinterpreted in terms of hybrid 
elements. 

8 Hybrid Elements 

Approach. The preceding treatment is relevant to the con­
struction of displacement-connected hybrid elements. Hybrid 
elements based on more restricted assumptions were originally 
constructed by Pian and co-workers (see Pian, 1964; Pian and 
Tong, 1969; Pian, 1973). From current perspective, the prin­
cipal features of the hybrid formulation are: 

(A) The domain is subdivided into elements before the 
variational principle is established. 

(B) Continuity requirements across element boundaries 
are relaxed by introducing boundary tractions or boundary 
displacements as Lagrange multiplier fields. 

( Q All stress and internal-displacement degrees-of-
freedom are eliminated (by either static condensation or 
kinematic constraints) at the element level. 

(A) says that hybrid functionals are effectively mesh-
dependent, because the domain subdivision process introduces 
element boundaries which must be treated as internal inter­
faces, and therefore become part of S ;. Previous develop­
ments remain valid if one reinterprets "body" as "individual 
element," "volume" as "element volume," and "surface" as 
"interelement boundary." 

Continuity and Connectors. The internal fields a and u 
may be discontinuous across elements. The boundary 
displacement field d, however, must be continuous on S,-, i.e., 
it must have the same value on adjacent elements. This condi­
tion may be satisfied if d on an interface separating two 
elements is uniquely interpolated by nodal values on that inter­
face. It is natural to take such nodal values as entries of v, 
which automatically becomes the vector of connected node 
displacements or connectors. 

9 Kinematic Relations 

In this and subsequent sections we work with an individual 
element unless otherwise noted. The element volume is V and 
the element surface is S: Sd U S, U S,. The v subvector con­
tains nv element-connector degrees-of-freedom, whereas q and 
a contain nq and na internal freedoms, respectively. We shall 
assume that nq > nu. 

The first matrix equation (the discrete compatibility equa­
tion) in (39) can be interpreted as the dislocation-energy 
balance statement 
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4-7( f f , e" -e" ) , , - a 7 ' (P r q-L 7 ' v ) K = 0. (41) 

Setting 7 = 0 and observing that a is arbitrary, (41) forces the 
kinematic constraint 

P r q = I / v (42) 

to be satisfied. The same relation emerges if 7 ^ 0 but the ele­
ment displacements are forced to obey 

(ff,e"-eff)I/ = 0 (43) 

as an optimality condition which says that the work of the 
strain error over the assumed stress field vanishes for arbitrary 
element motions. The constraint (42) plays a key role in subse­
quent derivations. An immediate consequence is that the first 
matrix equation in (39) reduces to the equivalent of (43), 
namely 7a7" ( - C a + Q rq) = 0, thus, if 7 ^ 0, 

a = C - ' Q r q , o r a = C" 1 L r v i f P = Q. (44) 

Next, suppose that q and v are connected by the linear 
algebraic relations 

v = Gq, (45) 

q = Hv, (46) 

where G is a n, X nq transformation matrix and H is a nq x 
nv transformation matrix. The determination of these 
matrices and their connecting relationships is discussed later. 
Using (45)-(46) the constraint (42) may be stated in two ways: 

P r = L r G, P 'H = I 7 . (47) 

Elimination of a and q in (39) through (44)-(46), with account 
taken of the second of (47), yields the external stiffness equa­
tions 

Kv = f, (48) 

in which 

K = 7 [ L C - ' Q r H + H 7 ' Q C - 1 L r - L C - 1 I / ] 

+ ( l - 7 ) H r K „ H , f = f„ + H % . (49) 

If P = Q, system (40) reduces to (48) but with 

K = T LC- 1 L 7 ' + (1-7)H7 'K„H. (50) 

10 Internal Field Decomposition 

To gain further insight into the structure of the element 
stiffness equations (48) and eventually link up with the free 
formulation, we proceed to decompose both internal element 
fields as follows. 

Stress Decomposition. The assumed stress field, a, is 
decomposed into a mean value, a, and a deviator: 

a=a+ah = ar +Ahah, (51) 

in which 

ff=(a)„/MA*)K = 0, (52) 
where v = (1)K denotes the element volume measure. The 
second relation in (52) is obtained by integrating (51) over V 
and noting that &h is arbitrary. 

Internal Displacement Decomposition. Next, the u 
assumption is decomposed into rigid body, constant strain, 
and higher-order displacements: 

u = N rq r + Ncqc + N/,q,,. (53) 

Applying the strain operator D = 1/2 (V + VT) to u we get 
the associated strain field: 

e" = DN rq r + DNcqc + DN.q, = Brqr + Bcqc + B;,q„. (54) 

But B r = DNr vanishes because N r contains only rigid body 
modes. We are also free to select Bc = DNC to be the identity 
matrix I if the generalized coordinates qc are identified with 
the mean (volume-averaged) strain values e". Consequently, 
(54) simplifies to 

e" = e"+e£ = e" + B,,q,,, (55) 

in which 

qc = e" = (e")v/v, (BA)K = 0. (56) 

Equation Partitioning. Assume that all elastic moduli in E 
are constant over the element. The degree-of-freedom parti­
tion 

" a " 

-; 

^h^ 

•< q = «; 
f q r ] 

e" 

.fl/, _ 
induces the following partition of the general element equa­
tions (39) 

4 

" a " 

a/, 

qr 

e" 

In 

. v , 

f = 1 

" 0 " 

0 

i* 
> 

f 
*qc 

tqh 

L f„ J 

where 

C„ = ( A l E - ' A , ) , , , Q, = (BT
hAh)v, Kqll = (BjEB„)v, 

P* = [Nj„] s ,x =/",<:,/!, Vhx = [NT
xAhn]s,x = r,c,h, 

L=[Vf l s , LA = [V rA„„]s, f „ = (N*b)„, x = r,c,h. (59) 

Integral Transformations. Application of the divergence 
theorem to the work of the mean stress on e" yields 

(<j,eu) v = (<r,e» + B„q„) v = va r e" + a T(Bh) vqh = vaTtu 

= [on Ms = K„N r q r + Nce" + N„q„]s 

= a r(P,q r + Pce" + P*q*). (60) 

Hence, 

P r = 0 , P c = uI, P „ = 0 . (61) 

A similar analysis of the stress-deviator work (ah, e")v does 
not yield simple forms for the Yhx matrices unless ah is 
divergence-free, in which case 

P v = 0,PA c = 0 , P M = QA. (62) 

Hence, P = Q as claimed in Section 7. Inserting (61)-(62) into 
(58) yields the partitioned form of (40): 

-yvF,-1 

0 

- P r 

7 y I - P c 

" P * 

L 

0 

-7C/ , 

""P/I7-

_ P f i c 

T Q A - P * * 

U 

* r 

— VT 

rhr 

0 

0 

0 

0 

yvl - P J 
— PT 

0 

( l - 7 ) u E 

0 

0 

-n 
yQl-K, 

0 

0 

( 1 - 7 ) K , A 

0 

LT 

T T 

•*-7i 

0 

0 

0 

0 
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-YdE" 1 

0 

0 

- ( 1 - Y M 

0 

L 

0 

-yCh 

0 

0 

- ( 1 - 7 ) Q „ 

L» 

0 

0 

0 

0 

0 

0 

- ( 1 - 7 ) ! * 

0 

0 

( I -Y)«E 

0 

0 

0 

- ( I -T)QJT 

0 

0 

(1-7)K,* 

0 

L 

V 
0 

0 

0 

0 

< 

r ~°" 
*h 

Qr 

e" 

Q/, 

. v . 

r = i 

r o ^ 
0 

V 
f 

tqh 

l f„ j 

(63) 

Orthogonality Conditions. If the higher-order stresses are 
divergence free so that P = Q, the relations (47) partition as 

0 vl 0 

0 0 QJ T T 

0 Vl 

0 0 

[Gr Gc Gh], 

o 1 

or 
Ft, 

H* 

r i / i 

T r 
(64) 

(65) 

whence the relations 

LrGr = 0, LrGc = uI, L rG„=0, LT=vUc> 

LjGr = 0, LJGC=0, LJGA=QJ, LJT=Qj[HA. 
The first four were obtained through other means by Bergan 
(1980) and Bergan and Nygard (1984), who called them the 
force orthogonality conditions on account of the physical in­
terpretation of L as a "boundary nodal force lumping" 
matrix in the free formulation studied next. 

If the higher-order stresses are not divergence-free, the last 
four of (65) are replaced by 

LIG, 
T r _ p r 

hr' 
T 
hr' 

E/,Gc-PAc, LhGh-Ph (66) 

11 The Free Formulation 
The free formulation of Bergan and NygSrd (1984) was 
originally conceived as an incompatible finite element 
displacement model that passes a cancelling-tractions version 
of the patch test which Bergan and Hanssen (1975) called the 
individual patch test. Here the formulation is reinterpreted in 
the context of the hybrid principle (19). The assumptions that 
lead to the FF are listed in the Introduction and will be studied 
in further detail. 

Constant Internal Stress. The internal stress field is con­
stant. Consequently, there are no a,, parameters, reducing (63) 
to 

-YtfE-' 0 

0 0 

( l -Y)uI 0 

0 0 

L 0 

- ( l - T ) f l 

0 

(l-Y)t>E 

0 

0 

(1-

0 

0 

0 

- 7 ) K , A 

0 

V 

0 

0 

0 

0 

-

r 
a 

Qr 

e" 

q* 

. y 

lqh 

(67) 

Invertible G. Matrix G in (45) is constructed by nodal col­
location, that is, by evaluating the expansion u = Nq at the ele­
ment boundary nodes. This establishes the transformation 

r*r 
v = Gq=[GrGc G„U 

Ah 

(68) 

According to the assumptions listed in the Introduction, 
matrix G is square and nonsingular so inverting (68) we get 
q = G1=Ftv or 

q = 

qr] 
e~" 

q*. 

" H r " 

Hc 

. H * . 

v = 

H r 

vlLT 

. HJ 

(69) 

The FF Stiffness Equations. Eliminating a and q from 
(67) yields the FF stiffness equations 

Kv=[K6 + (l-Y)K/l]v = f, (70) 
where 

K ^ ^ ' L E - ' I / , KA=HJK,AHA, 

f = fv + Hjfqr + v~lUqc + Hhfqh. (71) 
In the free formulation, Kb and Kh receive the name basic and 
higher-order stiffness matrices, respectively. A 1/2 scaling of 
Kh derived from energy-balancing studies was recommended 
by Bergan and Felippa (1985) for a plane-stress element. This 
corresponds to taking 7= 1/2. But in general the value of 7 
can be expected to be dependent on the type and geometry of 
the element. 

As Kb is rank-deficient (except for the simplex elements) 
choosing 7=1 , which corresponds to the ^-generalized 
Hellinger-Reissner functional (17), is not admissible. 

12 The Extended Free Formulation 

In the extended free formation (EFF) the number of internal 
displacement freedoms, «? = dim(q), is allowed to exceed the 
number of nodal displacement connectors nv = dim(v). We can 
establish the relation (68) as before, but matrix G will now be 
rectangular and cannot be directly inverted. One way of cir­
cumventing this difficulty is to retain nq-nv = dim(a^) higher-
order stress modes; an alternative procedure is discussed in 
Section 13. The stress modes are assumed to be divergence-
free so (62) holds. The available relations are 

v = Gq, C,,ah = L^v = Qjq„, 
which can be combined to form the matrix system 

Gr Gc 

0 0 ch-
lQl 

qr 

e~" 
q* 

(72) 

(73) 
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The matrix on the right side is square, and invertible if G, C,,, 
and Qh have full rank. Solving for q and eliminating aA one 
obtains 

q = 

' q r ^ 

qc 

. q * J 

Hr 0 

Hc 0 

_HA 3h 

Hr 

Hc 

_ HA'+JACA"'QJ 

I a*. 

v = 

h 
Hr 

Hc 

HA 

V, (74) 

where H/ and JA result from the inversion process. Since HA 

Gh + Jh C "̂' QT = I, we can express HA as 

HA=Hj| + I-H{|GA. (75) 
Having H available, replacing into (48)-(50) we obtain the 
EFF stiffness equations 

Kv=[K6 + K M + ( l - 7 ) K J v = f, (76) 
where Kb, Kh, and f are the same as in (71), and 

KM=LACA-'L/. (77) 
Is 7 = 1 now admissible? If Kft + Kbh has correct rank, yes! 
Curiously enough, if the body force field b vanishes and 7 = 
1, (76) are precisely the stiffness equations for the original 
equilibrium-stress-assumed hybrid elements of Pian (1964), 
which can, of course, be constructed without any internal 
displacement assumptions. 

13 Hierarchical Connector Augmentation 

An alternative approach to building an invertible transfor­
mation such as (73) consists of augmenting v with nq-nv con­
nector degrees-of-freedom collected in subvector \x. These 
must be selected to give a square transformation of the form 

(78) 

If this approach is followed, it is important to choose \x in 
hierarchical fashion so that the expanded G has the structure 
just shown. In other words, \x must not be "excited" by rigid 
body or constant strain motions. Otherwise the interelement 
compatibility of boundary displacements is generally violated 
for such motions, and the patch test discussed in the Appendix 
fails. 

Inversion of (78) provides the H matrix. The FF stiffness 
equations (70) can be constructed with the strain-energy con­
tribution from vx flowing to the higher-order stiffness Kh. 
Finally, the \x freedoms can be statically condensed. 

Which EFF approach is better? The decision seems to be 
element-dependent. The choice primarily hinges on whether it 
is easier to choose divergence-free stress modes than hierar­
chical connectors while preserving element invariance. If both 
approaches appear equally feasible, there is not presently 
enough experience to decide which one is preferable. 

14 Concluding Remarks 

The qualifier free in "free formulation" was meant to em­
phasize "freedom from conformity requirements" that are a 
pervasive part of the conventional displacement formulation, 
and the possibility of constructing the basic and higher-order 
stiffness contributions through largely independent assump­
tions. But when the FF is studied from a variational stand-

Gr Gc Gh 

0 0 Gx 

-

dr 

e" 

.q* 

point, several constraints become immediately apparent. The 
extended FF releases the most troublesome one at the cost of 
buying more complicated stress assumptions, or additional 
hierarchical connectors. So it is fair to state that the admirable 
goal of absolute freedom has not yet been attained. 

The development of the EFF as reported here was motivated 
by difficulties encountered in the construction of the following 
elements: 

3-Node Plane Stress Triangle with Nodal Rotations. 
Similar to the element constructed by Bergan and Felippa 
(1985), but with a fully quadratic internal displacement field. 
Thus, n„ = 9, nq = 12 and three additional self-equilibrating 
stress fields are needed. 

4-Node Tetrahedron with Nodal Rotations. The extension 
of the previous element to three dimensions has nv = 12, nq = 
18 and six additional stress fields are needed. 

Assuming fully-quadratic internal displacement fields 
eliminates the higher-order mode selection difficulties dis­
cussed by Bergan and Felippa (1985). Progress in the deriva­
tion of these elements will be reported in subsequent papers. 
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A P P E N D I X A 

The Cancelling-Traction Patch Test 

It is instructive to study whether this element class passes the 
patch test for an arbitrary y. To investigate this question we 
use the sketch of Fig. 1 and view the subvolumes V+ and V~ 
as two elements connected along S, with an external traction 
boundary S,. Both elements are in a state of constant stress a0. 
The prescribed surface tractions are [t = ff0„]s and the body 
forces b vanish. 

First, take (63) to be the governing discrete equations for the 
two-element assembly. The only nonzero forces are f„ = 
[Vrt]S(. The key observation is that 

L=[V„n , = [V„7]s. (79) 

because the integral over S; vanishes as (V+ =V_)S. on ac­
count of the interface compatibility conditions stated in Sec­
tion 8, and n + = — n ~. Now, for any 7 it can be verified that 
the solution of (63) is that demanded by the patch test, namely 
a = <r0 = a", a,, =0, qr = arbitrary, 

e"=E~1ff0, q,,=0, v = L ra0 + Grqr. (80) 
In checking this assertion one finds that the following rela­
tions, listed in (65), must be satisfied: 

L'Gr = 0, LrGc = vl, UGC = 0, LhGr = 0. (81) 
If instead we take the more general equations (59), verification 
of the solution (81) demands that 

Pf = 0,Pc = uI,PA = 0,P& = UG r , 
P£ = LJGC,PJTA=LJGA. (82) 

The first three follow from the divergence theorem as shown 
in (60). But the last three, listed in (66), are a consequence of 
the kinematic constraint (43), which is thus directly correlated 
to satisfaction of the patch test. 

As noted by Fraeijs de Veubeke (1973), the physical mean­
ing of this form of the patch test is that the interface virtual 
work is zero when the element patch is in a constant stress 
state. 
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A Boundary Integral Equation 
Formulation in Derivative 
Unknowns for Two-Dimensional 
Potential Problems 
A boundary integral equation called Derivative BIE is developed for two-
dimensional potential problems in terms of tangential and normal derivatives of the 
potential on the boundary, by integrating by parts the Cauchy formula. The poten­
tial values on the boundary can be calculated by integration after the solution is ob­
tained. The primary unknowns in this formulation can be of direct interest in a 
shape design sensitivity analysis where the tangential derivatives of the potential are 
also required. The method is applied to several test problems, and the results show 
better accuracy than those by the conventional boundary element method, not only 
for the derivatives of the potential but also for the potential itself. 

Introduction 
One of the most popular and earlier applications of the 

boundary element method (BEM) is found in the potential 
problems governed by the Laplace equation such as potential 
flow and heat conduction. Generally the unknown variables in 
the boundary integral equation (BIE) consist of two kinds. 
One is the potential on the Neumann part, and the other is its 
normal derivative on the Dirichlet part. In this conventional 
formulation, both the potential and its normal derivative are 
approximated by the same interpolation function, despite they 
are different in smoothness. The solution thus obtained on the 
boundary, however, is known to be usually more accurate 
than those by a classical finite element method (FEM) with 
similar meshes. Specifically, as for the flux on the boundary 
the BEM solves it directly, while in the FEM it is calculated by 
a numerical differentiation of the potential and an extrapola­
tion to the boundary, which might be a source of poor 
accuracy. 

There is a class of problems in which the tangential 
derivative information of the potential on the boundary is as 
equally important as its normal derivative, such as in the free 
boundary value problems (Liggett and Liu, 1982) and shape 
design sensitivity analyses (Kwak and Choi, 1987). This is 
more obvious if we look into the plane elasticity problems 
where the critical stress occurs usually on the boundary. It is 
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often expressed in terms of the von Mises stress, which 
depends not only on the tractions, but also on the tangential 
derivative of the displacements (Banerjee and Butterfield, 
1981). 

In the conventional BEM, tangential derivative of the 
potential on the boundary is calculated by a numerical dif­
ferentiation after the primary solution is obtained. This pro­
cess, however, degrades the accuracy by an order as compared 
to that of the original potential. One obvious way to alleviate 
this problem is to employ higher-order interpolation functions 
for the potential. Another method is to use a new formulation 
that was developed in this paper. In this approach, the tangen­
tial derivative of the potential is taken as an unknown variable 
instead of the potential itself, such that both the tangential 
and normal derivatives are the primary unknowns on the 
boundary. Once we get the boundary solutions, the potential 
value can be obtained by an integration of its tangential 
derivative along the boundary, which is numerically more ad­
vantageous than a differentiation. 

There are a few papers which consider the tangential 
derivatives, although they are somewhat different from ours, 
either in the method of derivation or in the usage. 

Athanasiadis (1985) formulated a BIE for the derivatives of 
the potential on the boundary, in an attempt to derive many 
different kinds of integral equations in the heat conduction 
problem. However, he ended up by adding a stronger singular 
kernel in his equation than that of the conventional one, which 
was not desirable. Katz (1982) used a tangential derivative 
term, but it was introduced only as a means for a better 
calculation of interior values, especially for points close to the 
boundary. The boundary solution from the conventional 
BEM was still used. Recently, Ghosh et al. (1986) included the 
tangential derivatives of displacement as unknowns in their 
elasticity formulation, which was brought to our attention on­
ly in the last stage of this writing. The resulting formula con­
notes an idea fairly similar to ours, even though we deal with 
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u = u on T, 

P = P on Tp 

Fig. 1 Definition of potential problem 

two-dimensional potential problems and the method of 
derivation is different. 

In this paper, a systematic development of the new BIE, 
called derivative BIE, is presented for two-dimensional poten­
tial problems. The derivation is based on integration by parts 
of the Cauchy formula in the complex variable theory. In the 
following, the conventional BIE is first reviewed in complex 
variable theory, before our new BIE is formulated. The ad­
vantage over the conventional boundary elements will then be 
presented illustrating some numerical examples. 

Conventional BIE From Complex Variable Theory 

The most usual way for the formulation of the classical BIE 
has been to apply Green's formula for the potential, introduc­
ing a suitable fundamental solution. Of special importance, 
however, is the fact that the well-known Cauchy integral for­
mula for complex analytic function is a generalized expression 
of the conventional BIE for the real potential in the complex 
domain (Carrier et al., 1966). 

Let 4> (z) be an analytic function in a simply-connected com­
plex domain fi with a simply-closed boundary T. Then <j>(z) 
can be written in terms of two real variable functions such that 

4> = u(x,y)+iw(x,y), 

where z = x + iy, i = yf(~-

z€fi (1) 

1), u is a potential function to be 
sought, and w is a conjugate function which satisfies the 
Cauchy-Riemann equations 

du dw du dw 
(2) dx dx by dy 

It is noted that u and w are harmonic and satisfy the Laplace 
equation. Then the Cauchy integral formula states that (Car­
rier et al., 1966) 

1 4>(z) 

2iri Jr z-z0 
dz-

fMz0), z0eQ 

a0(z o) , z 0 er (3) 

0, z0€ outside T 

where a denotes the interior angle at ZQ on the boundary divid­
ed by 2ir, which will be one half if the boundary is smooth. 

The complex expressions of equation (3) can now be written 
in terms of their real and imaginary parts to obtain a pair of 
integral equations for u and w, which are similar to the con­
ventional BIE: 

au(x0) = 

aw(x0) = 

Ivr Jr (. 

2ir Jr I 

d d -) 
w — In r + u In rids 

as dn ) 

In r—u l n r ] ds 

(4) 

(5) 
2-ir Jv L dn ds 

where x0 is on V, and r= I x — x01. These equations have cou­
pled expressions with respect to the potential u and its con­
jugate w, hence, two equations may be solved simultaneously 
for both u and w. However, what we need now is the BIE for 

Branch cut 

(a) (b) 

Fig. 2 Multivaluedness of complex logarithm function; (a) when the 
point z0 is within the domain, (b) when the point z0 is on the boundary 

the potential u only, which can be done by integrating by parts 
the first one in the right-hand side of equation (4) and utilizing 
the Cauchy-Riemann relations for the (n, s) coordinates. Then 
the desired BIE is obtained as, 

<(x0) = j (/?(x)G(x,x0)-H(x)F(x,x0))efe, x0eT (6) 

where G and F denote the fundamental solution and its 
derivative, respectively, given by 

1 
G(x,x0)= - ^ f - l n l x - x 0 l , 

2ir 

F(x,x0) = — G ( x , x0) 
dn 

(7) 

and p = bu/dn denotes the flux on the boundary. 
In a well-posed problem, only the value of u or p is pre­

scribed at each boundary point as shown in Fig. 1, i.e., 

u = ii onT„ 

p=p o n r „ 
(8) 

and Tp denote the Dirichlet and the Nemann boun-where T„ 
dary, respectively, and r „ U r p = r . If we discretize equation 
(6) approximating the boundary and the variables u and p with 
suitable shape functions and apply the resulting equation at 
each collocation point, a system of equations is obtained, 
which determines the remaining unknowns u and p on their 
respective boundary. Although the potential u and its flux p 
have a different smoothness requirements, the same shape 
function is taken for both u andp in most boundary elements. 
If the values for the tangential derivative of u on the boundary 
are needed, they are calculated by a numerical differentiation 
after the solution is obtained, which yields a result one order 
less smoother than u or p. 

Formulation of Derivative BIE 

Consider first a simply-connected domain. The derivative 
BIE is then developed starting from an integration by parts of 
Cauchy's formula (3), to obtain 

1 

2-iri 
j r l n ( z -« 0 )* 'U)« fe = 

<MZ(,)-4>(Zo)> Zn€fi 

0, z0eT and outside T 
(9) 

where 4>' (z)=d<j>/dz is the derivative of 0 in complex sense, 
and zb is a point of intersection on T, by a branch cut 
originating at z0 in 0 and passing to infinity, as shown in Fig. 
2(a). This is due to the multivaluedness of complex 
logarithmic function, which has appeared as a result of the in­
tegration by parts. Especially when z0 is on T, care should be 
taken to the direction of the branch cut for equation (9) to 
hold at z0 on T, such that the cut should not cross any point on 
the boundary except the point itself as shown in Fig. 2(b). 
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To now derive the derivative BIE, the complex expressions 
are rewritten in terms of the real and imaginary parts, utilizing 
the following relations 

ln(z-z 0 ) = In lx -x 0 l +z'0(x-xo) (10) 

<t>' (z)dz = 
d<l> 

Is" ds 
( du dw \ ' du 

v ds 

' du 

+ i 

+ i 

dw ' 

ds i 

du > 

ds 

/ du . du \ 

= {q+ip)ds 

ds 

(11) 

where the symbol 6 denotes the angle between the vector x - x0 

and a reference direction which corresponds to that of the 
branch cut. In equation (11), q = du/ds denotes the tangential 
derivative of u on the boundary. Substitute equations (10) and 
(11) into equation (9) when z0 is on T, and take the real and 
imaginary parts, respectively, from the resulting equation. 
Then a pair of boundary integral equations are obtained for p 
and q: 

L (G(x,x0)/?(x) + H(x,x0)q(x)}ds = 0, x0eT (12) 

\rlH(x,x0)p(x)-G(x,x0)q(x)}ds = 0, x0eT (13) 

where //denotes the conjugate of the fundamental solution G, 
given by 

i / ( x , x 0 )= - -—- 0(x-x o ) . 
2ir 

(14) 

Note here that if the integration by parts on the boundary were 
applied directly to the conventional BIE of the potential 
problem, only equation (12) could be obtained. 

It is interesting to note that unlike equations (4) and (5), the 
two equations just derived are expressed in terms of the poten­
tial u, or actually its derivatives only. That is, there appears no 
conjugate function w in equations (12) and (13). This implies 
that the two real integral equations hold simultaneously for 
the derivatives of u at each point of the boundary. Therefore, 
one can use either equation (12) or (13) at his convenience at 
any collocation point x0, provided that certain continuity of 
the potential and single valuedness are satisfied, as will be 
discussed later. 

It is further observed that the kernel H has no singular 
behavior which stabilizes the integration process and removes 
the necessity for special treatment. However, when the boun­
dary element equations are made from equation (12) or (13), 
the elements of H are found to be all of similar order in 
magnitude, possibly leading to a poor behavior of matrix, as 
experienced in a test when only equation (12) was used. This 
problem, however, can be solved by suitably selecting equa­
tions out of (12) and (13) such that G-term—which shows 
diagonally dominant behavior—takes place in the diagonal of 
the main matrix. This is possible by applying (12) on the 
Dirichlet part, and by applying (13) on the Neumann part, 
respectively. Thus, one finally obtains the derivative BIE for q 
and p suitable for a numerical calculation as 

I G(x,x0)p(x)ds = - j r H(x,x0)q(x)ds, x0eT? 

1 G(x,x0)q(x)ds= \H(x,x0)p(x)ds, x 0 er p 

y (is) 

where T? corresponds to T„, hence, TgUTp=T. 
Now the boundary conditions (8) can be rewritten as 

q = q onT ? 

p=p o n r p 

(16) 

where q is obtained by differentiating u along Tu. A 
distinguishing feature of the derivative BIE is that 
homogeneous boundary conditions are encountered, since all 
the variables consist of the derivatives of u. A typical example 
is a heat conduction problem with zero flux and constant 
temperature in each boundary, as shown in the examples in 
this paper. For these problems, the generated equations will 
obviously be homogeneous, yielding a trivial solution for p 
and q unless the coefficient of unknowns is a singular 
operator. Hence, to ensure a nontrivial unique solution some 
auxiliary conditions relating given information on the poten­
tial w need be imposed. Assuming that the potential is con­
tinuous throughout the boundary, the relation between u and 
q is utilized for this purpose as follows: 

qds = Au = u2~Ui (17) 

where w, and u2 denote the prescribed values of the potential 
at the starting and ending points of the Neumann boundary 
Vp, where q is unknown. This condition is to be imposed for 
every segment of Tp. 

Now, equation (15) should be solved under constraint (17). 
The classical Lagrange multiplier method (Hildebrand, 1965) 
can be efficiently used. As in the conventional BIE, equation 
(15) is discretized and reordered for the unknowns to obtain 

= \b 
G w 

Hpq 

"•IP 

GPP . 

M 
_ < 7 / ^ 

_ H 9 ? 

-~GPQ 

~GQP 

UPP -

( * u 
(18) 

where pgand qp are the remaining unknowns on their respec­
tive boundary, and the vector b simply represents the resulting 
values of the second matrix operation. Note here that while in 
the conventional BEM only the columns between F and G are 
exchanged (Banerjee and Butterfield, 1981), both the row and 
column are exchanged in (18), so that the diagonal terms are 
always G. Next, the constraint (17) becomes, after 
discretization, 

cTqp = d. (19) 

Introducing the Lagrange multiplier X for constraint (19), the 
complete system of equations is obtained as 

- H „ 

0 

GPP 

0" 

c 

0 

-
~p<T 

QP 

> « J 

- == -

C ~~\ 

b 

Id] 
(20) 

Once the solutions for p and q are obtained from this equa­
tion, the potential u will be calculated, if necessary, by in­
tegrating q along the boundary. 

Conjugate Fundamental Solution 

As was discussed in the previous section, one should 
evaluate carefully the integration involving the conjugate fun­
damental solution H because of its multivaluedness. It has the 
following form 

/ (x o )=J r 0(x- •x0)o{x)ds, x0er (21) 

where a denotes either/) or q as shown in equation (15), and 
the integration over x is done along the contour V 
counterclockwise starting from x0. 
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The angle 0(x-xo) can be measured from any reference 
direction, but the change in the reference direction brings into 
an additional term 

> = 6 ° l ° ds (22) 

where d0 is the magnitude of the angular change of the 
reference direction at x0. Unless the integral in equation (22) 
vanishes, 60 should be carried on as additional unknowns in 
the formulated BIE (15). The developed BIE, however, holds 
independently of d0, if there is no net flux or circulation, 
which means that the integral in equation (22) vanishes iden­
tically. When a isp, the integral denotes the total flux over the 
whole boundary. When a is q it is the circulation, and no cir­
culation means that the potential u should be single-valued 
and continuous over the whole boundary. In the BIE 
developed here, this condition can be satisfied by the condi­
tion (17), which is imposed on q, assuming u is continuous. 
However, for problems with nonzero circulation, the formula­
tion should be appropriately modified. 

In the following no circulation and no net flux will be 
assumed, so 60 does not appear. The reference direction can 
then be chosen arbitrarily, say, in the outward normal at x0 on 
the boundary. The angle 6 is measured counterclockwise with 
respect to this direction, and does not undergo jump as x 
traverses the boundary. Then, for the geometries shown in 
Fig. 3, the angle is added by 2n on the thicker curve part of the 
boundary, which allows 6 to go beyond the range between 0 
and 2TT, varying continuously throughout the boundary except 
at x0 itself (Jaswon and Symm, 1977). Hence, the whole do­
main can be considered as a single-valued branch. This can be 
thought of as a kind of analytic continuation applied to 0. 

Multiply-Connected Domain 
Unlike the conventional BIE, the derivative BIE just 

described needs a slight modification for a multiply-connected 
domain because of the multivaluedness of conjugate fun­
damental solution H. 

Consider a multiply-connected domain as shown in Fig. 4, 
where T', i= 1, 2, . . . n denote inner holes and V denotes the 

n 

outer boundary. Let r = Er 'Ur° . Following the usual treat­
ment, the problem can be considered as simply-connected by 
introducing an arbitrary cut C from each inner hole to a com­
mon point on the outer boundary. Then, the integration by 
parts of Cauchy's formula (3) gives 

1 
2TT/' 

^ln(z-z0)4>' (z)dz 

"0, z0er° 

</>U0)-<Mz;),Zoer''./ = l ,2 n 

where z' and z° are the end points of the cut C on F and F°, 
respectively. Note that the integration on the inner boundary 
V is done in the clockwise direction. When z0 is on T° the 
equation (23) is identical to (9) of the simply-connected one, 
which bears no further difficulty. On the other hand, when z0 
is on r ' , the difference of complex potential between z' and z° 
appears on the right-hand side of equation (23) because of 
multivaluedness of logarithmic function. Therefore, the equa­
tions when x0 is on the inner boundary T' should be modified 
accordingly as follows: 

j G(x,xQ)p(x)ds + \j^H(x,x0)q(x)ds=ud, x0erj, 

j r G(x,x0)q(x)ds- ^H(x,x0)p{x)ds = -wd, x06rj, 

where T'g and T'p denote the Dirichlet and the Neumann sub-

(24) 

Fig. 3 Measurement of the angle 0 in conjugate fundamental solution 
for a simply-closed boundary 

Fig. 4 Mutiply-connected domain 

boundaries of inner boundary r", with rj,Urj, = r ' , and u'd 
and w'd denote changes of u and w from those at x' to x° on the 
cut C, respectively. 

Since the cut is arbitrary, one can choose the end points of 
the cut to belong to a segment of the Dirichlet boundary where 
the potential is prescribed; otherwise, u'd will not appear 
because T'q = <z> in equation (24). Then u'd becomes known; 
hence, there is actually one more unknown w'd, requiring an 
additional equation for each inner boundary. As in the simply-
connected case, the following relation between q and u must 
be imposed for every segment of the Neumann boundary: 

q ds = AuJ (25) 

where AuJ denotes the prescribed difference of u between the 
starting and the ending point of the jth Neumann boundary 
patch Tp., These equations satisfy the condition for unique­
ness and also determine w'd. Therefore, the complete solution 
is obtained by solving equations (24) and (25) simultaneously. 
It is noted that the T-integrals in equation (24) are performed 
over a single-valued branch, while there is a jump in argument 
across the cut and at x0. 

(23) Numerical Implementation 
Numerical implementation of the present formulation is 

essentially the same as the conventional one—by introducing 
suitable boundary elements and integration. However, 
because of the argument measurement and the end points of 
the cuts introduced, additional bookkeeping is necessary. Fur­
thermore, the resulting matrix has a somewhat different shape 
from that in the usual BEM. The block matrix in bold letters 
in equation (20) can be singular, although the whole matrix is 
not. This may add some numerical difficulty, which has not, 
as yet, been looked at in this paper. 

As in the conventional BEM, the numerical treatment of the 
corner points should be made with care, and needs more 
study. In the conventional boundary elements, three 
variables—the potential and its two derivatives in each normal 
direction on the corner—are defined on the corner node, 
where two out of three are prescribed, making the solution 
possible for the remaining one (Banerjee and Butterfield, 
1981). However, in the present case four variables—two 
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Table 1 Results for Problem 2 at selected points 

Exact 
Solution 

Conv. QUA 

LIN 
Deriv. 

QUA 

Potential 
u at J? 

.5850 

.5854 

.5875 

.5849 

A 

1.443 

1.408 

1.463 

1.437 

Tangential Derivative 
q along AB 

E 

.9618 

.9414 

.9556 

.9623 

B 

.7214 

.7094 

.6854 

.7209 

Flux p 
B 

.7214 

.7156 

.7410 

.7222 

along BC 
F 

.7214 

.7200 

.7168 

.7215 

Total 
Flux 

.000 

•76(-2) 

.28( - l ) 

.63(-3) 

11 = 1/2 11 = 2/3 

11 =0 

1 = - 1 

(a) (b) 

Fig. 5 Partially discontinuous elements; (a) linear element, (b) 
quadratic element. Symbol " o " denotes the geometric node and sym­
bol " x " denotes the collocation point. 

Fig. 7 Heat conduction in an annular cylinder 

« . / = • 

du du 
dn ds 

Fig. 6 Heat conduction in a rectangle; (a) problem definition, (b) solu­
tion by conventional BEM, and (c) solution by derivative BEM 

derivatives in each tangential and normal direction—are de­
fined, and still only two are known on the corner, which 
makes the equation indeterminate. To avoid this problem, 
partially discontinuous elements (Patterson and Sheikh, 1984) 
can be introduced, as shown in Fig. 5, which is to locate a col­
location point near the corner instead of on the corner. 
Another approach, which has been suggested by one of the 
referees, is to enforce the continuity of Vw at a corner and to 
use the equation 

Example Applications 
Four examples are presented to illustrate the use of the 

derivative BEM, which consider only the simply-connected 
domain. For each problem, constant, linear, and quadratic 
elements are tested, and the results are compared to analytic 
solutions when possible and those by the conventional boun­
dary elements otherwise. Also, the total flux, which should be 
theoretically zero, is calculated for each problem to check the 
solution quality. 

Throughout the following results, potential values by the 
present method are one-order smoother than the solutions p 
and q, and the corner values of p and q are the extrapolated 
values obtained from the partially-discontinuous elements. 

Problem 1: Heat Conduction in a Rectangle. The boun­
dary of this problem is discretized using 16 nodes with boun­
dary conditions, as shown in Fig. 6(a), which has a linearly-
varying solution for the temperature in the x direction. Com­
puted results using constant elements are given in Fig. 6(b) and 
6(c) for the conventional and present method, respectively. In 
the conventional methods, q can not be calculated, since u is 
constant on each element. Figure 6(c) shows that the results 
match the exact solution, and u varies linearly, while/? and q 
are constant on each element. From these observations, some 
nature of the present method can be clearly understood. 

Problem 2: Heat Conduction in an Annular 
Cylinder. An annular cylinder is subjected to different con­
stant temperatures on the inner and outer boundaries. Because 
of its symmetry only one quarter is considered, with the 
geometry and the boundary conditions as given in Fig. 7. The 
results at some selected points as well as the total flux are given 
in Table 1, which shows that the present method gives better 
accuracy than the conventional one for both p and q values. 
Note in this table that the tangential derivatives by quadratic 
elements of conventional BEM are averaged values of 
numerical differentiation of the solution for u between each 
adjacent elements. 
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Table 2 Results for Problem 3 at selected points 

Conv. QUA 
(refined) 

Conv. QUA 

LIN 
Deriv. 

QUA 

Conv. QUA 
(refined) 

Jaswon 
and Symm 

LIN 
Conv. 

QUA 

LIN 
Deriv. 

QUA 

Potential 
. u at F 

.5874 

.5875 

.5915 

.5874 

B 

.6667 

.6667 

.6672 

.6665 

.6665 

.6665 

Tangential Derivative 
q along DE 

E F D 

2.210 

2.180 

2.255 

2.210 

Table 3 

1.762 

1.740 

1.758 

1.764 

1.303 

1.292 

1.296 

1.303 

Flux p along AE 
A G E 

.0013 

.0135 

- .051 

- .007 

1.553 

1.549 

1.565 

1.547 

Results for Problem 4 at selected points 

Potential 
C 

.9008 

.9009 

.9025 

.9003 

.9003 

.9009 

H 

.5496 

.5495 

.5513 

.5496 

.5492 

.5499 

G 

.2948 

— 

.2937 

.2966 

.2949 

.2949 

FluXjB 

— 

: 

2.216 

2.216 

2.216 

2.212 

/ 
.5787 

— 

.5810 

.5783 

.5772 

.5774 

Total 
Flux 

.42(-6) 

.16(-3) 

• 51(-2) 

.14(-3) 

Total 
Flux 

• 12(-4) 

— 

. l l ( - l ) 

.93(-3) 

.37(-3) 

.37(-3) 

i p = o 3 

Fig. 8 Potential flow past a cylinder in a channel 
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Fig. 9 Potential problem with reentrant corner 

Problem 3: Potential Flow Past a Cylinder in a Chan­
nel. Consider a flow past a cylinder located between two flat 
plates. The potential u in this problem actually denotes the 
stream function. With properly specified boundary condi­
tions, only one quarter of the domain is considered, and 32 
nodes are used for this geometry as shown in Fig. 8. As this 
problem has no analytical solution, the accuracies of the 
derivative BEM are compared with a solution obtained from a 
conventional quadratic element model which is four times 

0.2 0.4 0.6 0.8 

Distance along AB 

Fig. 10 Tangential derivative ot the potential along AB in Fig. 9 

denser than the test model here. The results at some selected 
points are given in Table 2. While the values for potential and 
flux show similar accuracy in both methods, the tangential 
derivatives show excellent accuracy compared to the conven­
tional ones. 

Problem 4: Potential Problem With Reentrant Cor­
ner. The geometry and the boundary conditions treated are 
shown in Fig. 9, where 28 nodes are used for discretization. 
This problem has a reentrant corner, which gives rise to a 
singularity for the derivatives at point B. As in the previous 
problem, the results from a four times more refined model by 
the conventional BEM are used as a reference of comparison. 
The results are also compared with those obtained by Jaswon 
and Symm (1977), where this problem is solved by a conven­
tional method taking into special account the singularity at B. 
The values of the potential and the flux at some selected points 
are given in Table 3, in which better accuracy by the present 
method is observed for the potential, and also seen is the good 
agreement with those given by Jaswon and Symm (1977). The 
tangential derivatives are shown in Fig. 10. The singular 
behavior at B is better approximated by the present method 
with both linear and quadratic elements than the conventional 
quadratic element model. 
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Summary and Discussions 
A new boundary integral equation, called derivative BIE, is 

developed for two-dimensional potential problems by in­
tegrating by parts the Cauchy formula and employing tangen­
tial and normal derivatives of the potential on the boundary as 
the primary unknown variables. This formulation has several 
advantages over the conventional method in that the tangen­
tial derivative along the boundary is obtained directly from the 
generated equations, and the potential value is calculated 
afterwards by integrating the solution obtained, which can im­
prove the accuracy of the derivatives as well as the potential 
itself. In the developed BIE, a new kernel called conjugate 
fundamental solution is introduced, which is regular, but a 
careful treatment is needed because of its multivaluedness. To 
ensure uniqueness of the solution an auxiliary condition is 
necessary, relating the unknown derivatives to the prescribed 
potential information. The expression is simple when the 
potential is assumed continuous throughout the boundary. 
General problems with multivalued or discontinuous poten­
tial, such as the flow with nonzero circulation, can also be 
treated with some modifications. Multiply-connected domains 
can be treated as well but with additional terms in the formula­
tion. Extra bookkeeping efforts for the computational im­
plementation may be necessary as compared to the conven­
tional method. Although not studied yet, the method, being 
general in nature, can be applied advantageously to many im­
portant applications, especially when accuracy of the tangen­
tial derivatives is crucial such as in a shape design sensitivity 
analysis. 

Four examples are presented to illustrate the behavior of the 
solutions. Comparisons with the conventional method show 
that the present method has provided better accuracy not only 
for the potential but also for the flux values. In particular, for 
the problem with a reentrant corner where a singularity exists, 
the present method shows significantly better distribution of 

the derivative, even with the rather coarse linear element 
model. 
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Wrinkling of Pressurized 
Membranes 

1 Introduction 
Real membranes often exhibit wrinkled regions, which are 

not predicted by membrane theory in its usual form. The con­
figuration of the wrinkled region is controlled by the small 
bending stiffness of the material. In membrane theory, as 
distinct from the theory of plates and shells, this bending stiff­
ness is treated as zero, so the theory cannot give the details of 
the deformation in a wrinkled region. 

The onset of wrinkling is associated with the appearance of 
compressive stresses in membrane solutions. Since states with 
compressive stress are unstable (Steigmann, 1986), such solu­
tions are not physically meaningful. To obtain a solution with 
no compressive stress without resort to plate theory, tension 
field theory can be used (Wagner, 1929; Reissner, 1938; Kon-
do et al., 1955). However, particularly when a membrane is 
only partly wrinkled, it is usually not simple to decide which 
theory to use in a given part of the membrane. 

It has recently been shown (Pipkin, 1986) that tension field 
theory can be incorporated into ordinary membrane theory 
simply by replacing the strain energy function by a suitable 
relaxed energy density, and then proceeding as usual with the 
equations for finite elastic deformations. In wrinkled regions, 
the relaxed energy density represents the average energy per 
unit initial area over a region containing many wrinkles. The 
stress-strain relation obtained from a relaxed energy function 
gives stresses that are never compressive, but in states of strain 
for which wrinkling is indicated, one principal stress compo­
nent is zero and the theory reproduces all of the main assump­
tions of tension field theory. 

A solution within this theory gives only the average defor­
mation in a wrinkled region, with nothing to indicate the 
detailed structure of the wrinkles. The designation of a par­
ticular region as wrinkled can be deferred until after the solu­
tion has been obtained, but this final step is necessary for 
proper physical interpretation of the mathematical result. 

In the present paper we outline the theory of finite elastic 
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deformations of isotropic membranes, subject to edge loads 
and normal pressure. Here we consider only membranes that 
are planar in the stress-free reference state, or that are initially 
developable surfaces, such as cylinders and cones. Kinematics 
are discussed in Section 2, and the stress-strain relations and 
equilibrium equations are outlined in Section 3. In Section 4 
we describe the main features of a relaxed energy density, and 
in particular we give the kinematic criterion by which a given 
state of deformation can be classified as wrinkled or not. 

Within the theory, a wrinkled region is simply defined as a 
region in which the stress is uniaxial at each point. In such 
regions the deformation has some special features, which we 
describe in Section 5. In particular, the two fundamental equa­
tions for the tension direction and the corresponding stretch, 
which we have derived elsewhere (Steigmann and Pipkin) for 
the special case of no normal pressure, remain valid for in­
flated membranes. 

The special features of the deformation in a wrinkled region 
can be used to construct solutions when the approach by or­
dinary elasticity theory might be difficult, as we have shown 
elsewhere (Steigmann and Pipkin). In the present paper, 
however, we make no use of these special features. We solve 
two problems without any reference to tension field theory, 
and then identify certain regions of the deformed membrane 
as wrinkled. 

The problem in Section 6 concerns an infinite strip that is 
sheared and subjected to a uniform pressure. The deformation 
is controllable in this case. That is, the deformation can be 
specified in advance, and the resulting stress field is in 
equilibrium regardless of the form of the strain energy func­
tion. For materials that are incompressible in bulk, we show 
that the deformation represents a wrinkled state whenever the 
amount of shear exceeds a certain definite function of the cur­
vature. This explicit criterion is valid for all isotropic, incom­
pressible materials. 

In Section 7 we consider the inflation of a semi-infinite tube 
that is tied off at one end. The solution is easily obtained by 
Kydoniefs' method (Kydoniefs, 1969). We then show that near 
the tied-off end, the solution represents a wrinkled state. The 
shape of the membrane in the wrinkled region is described by a 
specific function whose form is independent of material prop­
erties; such properties enter only through a certain scale 
factor. 

2 Kinematics and Notation 
We consider deformations of a membrane that occupies 
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some region of the xx, x2 plane in its reference state. Let 
e,(/= 1, 2, 3) be unit vectors in the coordinate directions. Then 
the reference position of a particle is x = jc„e„, where summa­
tion over the range a = 1, 2 is implied. In a deformation of the 
membrane, the particle initially at x goes to the place r = r,-e/) 

where summation over the range /= 1, 2, 3 is implied. The gra­
dient V is the two-dimensional operator 

V=ead/dxa. (1) 

The deformation gradient F, defined by dr = ¥*dx, is defined 
equally well in terms of its transpose F< by 

F ' = v r = ea(3/ajfe)r/®e1-. (2) 

We use dyadic notation, in which a ® b is the tensor whose ij-
component is (a(x)b)y = a-,bj. 

By an extension of the polar decomposition theorem 
(Pipkin, 1986), the deformation gradient can also be expressed 
in terms of principal directions and principal stretches as 

F ' = Vr = Av®u + MV*(x)u*. (3) 

Here v and v* are orthogonal unit vectors in the xlt x2 plane, 
while u and u* are orthogonal unit vectors tangential to the 
deformed surface. The principal stretches X and JX are non-
negative by definition. 

We use the strain tensor g defined by 

g = F . F ' = ( V r ) ' . ( V r ) 

= A2u(x)u-tVu*(g)u*. (4) 

We also use the unit tensor 8 on the deformed surface, which 
can be defined in terms of u and u* by 

5 = u<g)u + u*(g)u\ (5) 

Let /and / b e the isotropic strain invariants defined by 

/ = X ^ = (detg)1/2 (6) 

and 

/=X + /* = (trg + 2/ ) 1 / 2 . (7) 

Finally, let n be a unit vector normal to the deformed surface, 

n = uxu*. (8) 

3 Stress and Equilibrium 

We consider isotropic elastic membranes, for which there is 
a strain energy W per unit initial area that can be expressed as 
a symmetric function of the stretches X and JX. W can equally 
well be expressed as a function of the symmetric invariants / 
and / . Let/-! and/ 2 be the principal forces, 

fl=dW/d\,f2=dW/dli. (9) 

These are the normal forces that must be applied to a unit 
square of material to stretch it into a rectangle of dimensions X 
and ix. The stresses a1 and a2, which are the forces per unit 
current length in the deformed state, are 

<J1=fi/lX,<J2=f2/\. (10) 

Let T be the engineering stress, given by 

T=/ ,u(g)v+/ 2u*®v*. (11) 

Then in the deformed state, the force across an element that 
had length ds and rightward normal v in the undeformed state 
is 

T.vds=fln(\'vds)+f2u*(y*'vds). (12) 

Let a be the ordinary stress, which measures force per unit cur­
rent length in the deformed configuration: 

a=( / 1 /^ )u®u+( / 2 /X)u*(g)u* . (13) 

This is related to T by 

<r==/-'T.F' ) (14) 

where / a n d F ' are defined by (6) and (3). By using (4) and (5), 
it can be shown that 

tr = ( W,/IJ)g+ ( Wj/I+ Wj)h, (15) 

where 

W, = d W/dl and W} = d W/BJ. (16) 

We consider the equilibrium of a membrane loaded by a 
pressurepn per unit of deformed area. We note that / i n (6) is 
the deformed area per unit initial area. Then equilibrium of an 
arbitrary part of the membrane requires that 

T-pds+ I \pnJdXidx2 = 0, (17) 

in which the integrals are taken over an arbitrary part of the 
initial domain and over its perimeter. By using the divergence 
theorem and the arbitrariness of the region, we obtain the 
pointwise equilibrium equation 

V T ' + p / n = 0. (18) 

4 The Relaxed Energy Density 

Real membranes have some small bending stiffness, which 
is neglected when membrane theory is used. The deformation 
of a real membrane may exhibit a wrinkled region, in which 
the size and configuration of the wrinkles is determined by the 
bending stiffness. Membrane theory, in which the stiffness is 
zero, cannot predict the details of such a deformation. 
However, the mean deformation and stress in a wrinkled 
region can be predicted from ordinary membrane theory if the 
strain energy function is replaced by a suitable relaxed energy 
density (Pipkin, 1986). The stress derived from a relaxed 
energy density is never compressive, and the kind of instability 
that would be produced by compressive stress is taken into ac­
count automatically. 

For X > 1, let w (X) be the smallest value of the stretch /x such 
t h a t / 2 > 0 when fi>w(X). We call w(X) the natural width in 
simple tension. For fx — ve(X), the material is in a state of sim­
ple tension with 

fi = 0, / i =/i[X, w(X)] =/(X)(say). (19) 

For example, for any material that is incompressible in bulk, 
the stretch of the membrane in the thickness direction is 1/Xji, 
and in simple tension this is equal to /*, so 

w(X) = X"1/2. (20) 

The force/(X) is proportional to the force that would be re­
quired to stretch a string of the material to X times its initial 
length. 

For fi<w(X) (with X>1), where the given strain energy 
function might yield a compressive stress f2 < 0, the relaxed 
energy density is defined to be equal to its value at the natural 
width, 

W(X,ix) = W[Kw(\)](X>l, ix^w(\)). (21) 

Because of the symmetry of W with respect to X and fx, similar­
ly 

W(k,ti) = W{w(ix),ix\(lx>\,\^w(v)). (22) 

When both X and JX are less than unity, the given strain energy 
function might well predict both / , < 0 and / 2 < 0 . In such 
cases the relaxed energy density is defined to be equal to 
W{ 1,1), which we take to be zero. 

W(\,fi) = 0(\^l, ix^l). (23) 

From these properties of the relaxed energy density it 
follows that the principal forces satisfy 

/ , > 0 , / 2 > 0 i f /*>w(X)andX>w(/x), (24) 

/ , = / ( X ) , / 2 = 0 i f X > l a n d ^ w ( X ) (25) 
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/ i = 0 , / 2 =/(/*) if M > 1 andXSw(X) (26) 

/ , = / 2 = 0if X ^ l a n d / x ^ l . (27) 

5 Tension Field Theory 

When a relaxed energy density is used, ordinary membrane 
theory incorporates tension field theory automatically. The 
stress and deformation in a tension field have special features 
that may facilitate the process of solution in some problems, 
although these features need not be used explicitly. 

We say that a region of a deformed membrane in which 
ix. < w (X) is wrinkled, even though the deformation predicted 
by the theory will generally be perfectly smooth. In such a 
region the stress takes the form 

T=/(X)u®v, (28) 

and the force across every arc is parallel to u: 

T-vds=f(\)u(yvds). (29) 

For arcs parallel to v in the initial domain, v-e = 0, and no 
force is exerted across such an arc. The curves defined by the 
direction field v are the stress trajectories. Since / > 0 (when 
X> 1), the force is purely tensile. The deformation carries the 
stress trajectories onto the curves with tangent u on the 
deformed surface. These curves are the tension lines. 

In a wrinkled region, the equilibrium equation (18) reduces 
to the form 

V - C / V ) u + / ( W ) u + p / n = 0. (30) 

Since both n and v Vu are orthogonal to u, this implies that 

V-C/v) = 0 (31) 

/ ( v v ) u = - p / n . (32) 

The former result expresses the fact that the amount of force 
channeled between two stress trajectories is constant along 
their length. 

Let d/ds be the derivative with respective to arc length along 
a tension line. In terms of this arc length the stretch X is v Vs, 
and since J=\p, (32) can be written as 

(f/ix)du/ds=-pn. (33) 

Here///* is the tension (per unit deformed length) in a tension 
line. 

Because the change in u along a tension line is purely in the 
normal direction, each tension line is a geodesic on the 
deformed surface (Zak, 1982). It is useful to parameterize the 
deformed surface by a system of geodesic coordinates (Struik, 
1950). Let \p be a parameter that numbers the tension lines. On 
the deformed surface, select some curve that is orthogonal to 
the tension line at each point. Let <t> be the distance of an ar­
bitrary point from this base curve, measured along the 
geodesic that passes through that point. Then the curves 
4> = constant are geodesic parallels, and each of these curves is 
orthogonal to the geodesies (Struik, 1950). With position on 
the deformed surface given as a function of </> and \j/, we have 

dr/d$ = u, dr/d\j/ = nm*{sa.y), (34) 

where u* is the second principal direction, orthogonal to u. 
The deformation is specified by giving </> and \p as functions 

of x. The deformation gradient is then 

V r = V</>®dr/d<£+ Vi/<®dr/di/<. (35) 

With (34), comparison with (3) shows that 

Xv= V<£and/iV* = ff2Vi/<, (36) 
where m is the magnitude of dr/d\p. 

From (31) and (36) we obtain two fundamental equations 
for X and v, 

V | / (X)v] = 0, VX(Xv) = 0. (37) 

These were derived for the special case p = 0 elsewhere 

(Steigmann and Pipkin). They can be reduced to a single 
second-order equation for 4> by using (36). Alternatively, \j/ 
can be chosen so as to represent a stress potential, 

/ ( X ) v = V ^ x e 3 , (38) 

and (37) then gives a second-order equation for i/-. The curves 
4> = constant and i/< = constant are orthogonal in the initial do­
main as well as on the deformed surface, when they are treated 
as material lines. 

The preceding results are of use in solving some problems. 
For the examples in Sections 6 and 7, however, we do not use 
any of these results explicitly. We merely solve the given 
problem and then, after the fact, identify certain states as 
wrinkled. 

6 Example: Sheared and Pressurized Strip 

As an example, consider a strip that initially occupies the 
region - o o < x < o o , -H<y<H (here x = xx and y = x2). We 
consider a deformation in which the strip is sheared parallel to 
its length and subjected to a uniform pressure on one side. The 
deformation has the form 

r(x,y) = (x+Ky)ei +Ri(6) -e3i?cos0o , (39) 

where 

i(0) = e3cos0 + e2sin0, 0 = coy, 0O = o>H. (40) 

Here K is the amount of shear. The deformed membrane is 
cylindrical, with radius of curvature R. The parameter co is 
determined by the requirement that the edges y = ± 7 / have no 
displacement in they or z directions: 

uH=arcsin(H/R). (41) 

The deformation gradient is 

Vr = (e!+Ke2)®e,+i?coe2®j(0), (42) 

where j(0) = i'(0): 

j (0)=-e 3 s in0 + e2cos0. (43) 

The vector j(0) is tangential to a parallel of latitude on the 
cylinder. The unit tensor on the deformed surface can be 
represented as 

5 = e,®e!+j(0)®j(0). (44) 

From (4), with (42), the strain g is 

g = (l+K2)e1®e,+KJ?co(e1®j+j®e1) + CRa>)2j®j. (45) 

Then, from (6) and (7), the invariants I and J are 

/ = [ K 2 + ( 1 + £ C O ) 2 ] , / 2 , J=ROO. (46) 

From the stress-strain relation (15), with (44) to (46), the 
shearing stress is 

e , . f f . j = ( » y / ) K , (47) 

and the x-component of the equilibrium equation is satisfied 
because this is independent of y. The hoop stress j»<r»j is also 
constant, so the j component of the equilibrium equation is 
satisfied. The normal component of the equilibrium equation 
gives the pressure required to support the deformation: 

PR=j.a.i=(W,/I)(Ru+\)+Wj. (48) 

We have verified that the specified deformation is an 
equilibrium configuration. However, for an arbitrary form of 
W, it might well be the case that one of the principal stress 
components is negative, so that the given state of deformation 
is unstable. When Wis a relaxed energy density, compressive 
stress cannot occur, but one of the principal stresses may be 
zero for some deformations. 

To determine whether or not the given deformation 
represents a wrinkled state, it is necessary to calculate the 
larger and smaller principal stretches X and /*. Then, if 
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(x<vf(X), the given deformation represents a wrinkled state. 
Let us use the form w(X) = X~1/2 that applies to all incom­
pressible materials. Then the wrinkling criterion is n2\< 1, or 
lxJ< 1, since /=X/x. The stretches X and /x are the larger and 
smaller roots of the equation 

x2~Ix + J=0. (49) 

From this, the stretch n is easily determined. Then a rather 
lengthy algebraic manipulation brings the condition pJ< 1 in­
to the form 

K 2 > ( 1 + / - 2 ) ( 7 2 - 1 ) 2 . (50) 

Here, J=Rw, with o> defined in terms of R by (41). The family 
of deformations is parameterized by the amount of shear K 
and the curvature \/R. The wrinkling criterion (50), which is 
valid for all isotropic incompressible materials, compares the 
amount of shear K to a certain function of the curvature. We 
note that J^ 1 in all cases, with / = 1 only when there is no 
pressure. 

When the wrinkling criterion (50) is satisfied, we do not ex­
pect to observe a deformation of the form (39) experimentally. 
Instead, we expect to see a deformation like (39) with a 
periodic wave superposed on it. The principal direction u 
defines the direction parallel to the wave crests. Because u is 
an eigenvector of g, it is easily determined from (45). With 

u = e, cos a+j(0)sin a, (51) 

the angle a is given by 

t a n Q ! = ( Q + / 2 - l - / c 2 V 2 j K , (52) 

where Q is the positive root of 

Q2 = (1 + K2 + J2)2-4J2. (53) 

The distance between crests of the wave should depend on the 
bending stiffness of the material, and membrane theory gives 
no information about this. 

7 Example: Pressurized Tube 

Now consider a membrane that initially has the form of a 
circular cylinder of radius R and length L, with L large in com­
parison to R. The location of a particle on the undeformed 
cylinder is specified by its cylindrical coordinates (R,0,z). 
Because the cylinder is developable into the plane, the general 
remarks in Sections 2 to 5 are all applicable, with x, = R6 and 
x2=z. 

We consider certain axisymmetric deformations without 
twist, in which the particle initially at (6,z) goes to the place 

r = r(«)i(fl)+f(«)k, (54) 

where i(0) and k are unit vectors in the radial and axial direc­
tions. The element of arc length along the deformed meridian 
is defined by 

ds2 = dr2 + df. (55) 

The principal stretches are 

\ = ds/dz,fi = r/R. (56) 

The principal directions corresponding to the stretch X are 
v = k and 

u = kcos7 + i(0)sinY, (57) 

where 

sin^ = dr/ds. • (58) 

We treat the tube as semi-infinite, in the region 0 < z < ° ° . 
The end z = 0 is contracted to zero radius, r(0) — 0, and sealed 
so that the tube can contain an internal pressure. If the infla­
tion pressure is only moderate, for large z the tube can ap­
proach a uniform cylindrical state with constant stretches \ t 

and /tj. The radius of the deformed cylinder in this limiting 

state is rx =RfX\. Equilibrium requires prx to be equal to the 
hoop stress/2/A, so 

PR=f2(\i,Hl)/\llxl. (59) 

For equilibrium under no externally-imposed force, the 
total force across a plane f= constant must be zero, so 

2irRf1 cos7 -pnr2 = 0. (60) 

Thus, 

cosy=pRix1/2fl, (61) 

where we have replaced r by the dimensionless radius ix - r/R. 
For z— 0°, Y approaches zero and thus 

pR = 2f,(\uixl)/^
2. (62) 

We regard /u,, as given. Then \ t is determined from the 
equation obtained by eliminating p from (59) and (62), which 
is equivalent to 2ox = a2. Then the boundary conditions to be 
used are 

/•(0) = f(0) = 0, /•-/?/*, and f - X j Z a s z - o o . (63) 

Let//(X,/x) be defined by 

H{\,n)=>flQi,ii)-W(\,vL). (64) 
Equilibrium requires / / t o be constant (Pipkin, 1968). Thus, 

H(\,ix)=H(\1,ixl). (65) 

We are following the procedure explained by Kydoniefs 
(1969). From (65) we obtain X as a function of /*. (It is easy to 
show that d\/dfj, is finite along a curve H= constant if 
d/,/dX>0, so a single-valued locus \ = \(fi) is obtained.) The 
function X(pt) is substituted into (61), withp given by (59) or 
(62). Then (61) gives COSY a s a function of p. With (55), (56), 
and (58), the various unknowns can then be found by integra­
tion. In particular, the shape of the deformed tube is given by 

f/R=j'ctn T(/*')</,*'• (66) 

We remark that this procedure fails if the expression (61) 
for COSY ' s greater than unity at stretches near the state X], nt, 
and we state without proof that this is the case when the 
uniform state \ l t [ix is unstable, and only then. Stability has 
been discussed by Corneliussen and Shield (1961) and by 
Haughton and Ogden (1979). When X[ and JXX are only 
moderately greater than unity, the uniform cylindrical state is 
stable, and Kydoniefs' method is valid. 

Now, let us consider the possibility that /i<w(X) in some 
region, so that the deformation is wrinkled there. Because 
/A = 0 at z = 0, the membrane is certainly wrinkled near the end 
z = 0. By setting ^ = 0 in (65) we obtain an equation for the 
stretch X0 in the wrinkled region, 

//(Xo,0) = / / (X, ,m)- (67) 

Because H is independent of fi for n<w(X), the stretch X is 
constant at the value X0 throughout the wrinkled region. In 
fact, for axisymmetric deformations of cylinders, X is always 
constant in wrinkled regions (Steigmann and Pipkin). 

With X0 known, we evaluate the corresponding natural 
width w (X0). Then the deformation is wrinkled in that part of 
the end region for which the dimensionless radius [i is less than 
w(X0). 

Because X is constant and / , is independent of fi in a wrin­
kled region, then/j is constant at the value/(X0). Let P be the 
constant defined by 

P2=pR/2f(\0). (68) 

Then from (61), 

ctn7 = ( P A 0 2 / [ 1 - (/V)4]1/2. (69) 

It follows that the shape (66) is given by 

P{/R=F(Pr/R), (70) 
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where Fix) is the function defined by the integral 

F(x)= V t2(l-t4)-l/2dt. (71) 

For small x, F(x) is given by 
F{x) = (l/3)x3 + (l/14)x7 + (3/88)x" + . . . . (72) 

It is interesting that the end shape (70) depends onp and the 
properties of the material only through the scale factor P/R. 
Assuming that the interior of a sausage is approximately a 
fluid under uniform pressure, the function F defines the shape 
of the end of a sausage. This is the shape in the region where 
the sausage skin is wrinkled, near the place where it is tied off. 
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Simultaneous Optimization of 
Beams and Their Elastic 
Foundations for Minimum 
Compliance 
Nonuniform beams on nonuniform elastic foundations are considered. The beams 
have sandwich cross-sections with cores of negligible stiffness and are subjected to a 
uniformly distributed load. The total volume of the beam and the total stiffness of 
the foundation (which may include elastic supports) are specified. Both the cross-
sectional area of the beam and the stiffness distribution of the foundation are design 
functions. They are chosen to minimize the compliance [or, equivalently, the area 
displaced by the beam deflection function). The calculus of variations is used to 
derive optimality conditions, and results are obtained for cantilevers and pinned-
pinned beams. Several types of solutions are found, involving a single elastic sup­
port or a region of uniform foundation bordered at internal locations by elastic sup­
ports. In comparison to a reference uniform beam with uniform foundation, the 
decrease in compliance is significant. 

Introduction 
Optimization of beams attached to elastic foundations has 

received some attention in the past. Typically, a uniform foun­
dation is specified and the variation of the beam cross-section 
is optimized (e.g., Plaut, Johnson, and Olhoff, 1986). In six 
recent papers, however, the foundation has been optimized, 
rather than the beam. Szelag and Mroz (1979) minimized the 
total foundation stiffness for a specified fundamental fre­
quency of free vibrations. In Taylor and Bends0e (1984), a 
beam was displaced downwards and the foundation stiffness 
distribution was chosen to minimize the maximum pressure. 

Dems, Plaut, Banach, and Johnson (1987) considered a 
foundation with piecewise-constant stiffness and minimized a 
measure of the beam deflection. In Plaut (1987), the com­
pliance (i.e., the work done by the load) was minimized, and 
the optimal solutions involved elastic supports and regions of 
uniform foundation. In addition to beams, circular plates also 
were treated. Finally, optimal elastic foundations for max­
imum buckling load were determined in Shin, Haftka, and 
Plaut (1988) and Shin, Haftka, Watson, and Plaut (1988). 

In the present paper, both the distribution of beam material 
and the distribution of foundation stiffness are optimized. A 
cantilever and a pinned-pinned beam with sandwich cross-
sections are considered. The total volume of the beam and the 
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total stiffness of the foundation are specified. A uniformly 
distributed load is applied, and the compliance is minimized. 
(For this loading, the compliance is proportional to the area 
displaced by the beam in the vertical plane.) Optimality condi­
tions are derived using the calculus of variations, and optimal 
solutions are obtained for several values of minimum cross-
sectional area and a range of values of total foundation 
stiffness. 

Formulation 

Consider an elastic beam of length L which has a sandwich 
cross-section. The face sheets have varying thickness and their 
cross-sectional area is denoted Af(X) where 0<X<L. The 
mass and stiffness of the core are neglected. Let Au and Elu 
represent the face-sheet area and the bending stiffness of a 
reference uniform beam which has the same total volume. The 
beam is attached to an elastic foundation of the Winkler type 
with varying stiffness coefficient K(X). Elastic supports with 
stiffnesses C, at locations X=L: may be included in the foun­
dation. A downward, uniformly distributed load q is applied 
to the beam, and the resulting downward deflection is denoted 
W{X). 

The analysis is carried out in terms of the nondimensional 
quantities 

x^X/L, ot(x) = Af(xL)/Au, k(x) = L*K(xL)/(Elu), 

c,=L3C,/(£/„), a,=L,/L, w(x) = El,tW{xL)/(LAq) (1) 

where 0<x< l (see Fig. 1). Then the equilibrium equation is 
given by 
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{a ) Cantilever (b) Pinned - pinned 

Fig. 1 Geometry of beams in nondimensional terms 

\a{x)w" (x)] " + k(x)w(x) = 1 (2) 

(Plaut, Johnson, and Olhoff, 1986; Plaut, 1987). At x = ah if 
0<«,< 1, the functions w, w', and w" are continuous, while 

W(a, - ) -w-(f l , + ) = c/w(«/). 
The constraint of given total volume is 

\ a(x)dx = 1. 

(3) 

(4) 

The specified (nondimensional) total foundation stiffness is 
denoted KT, so that 

\[k{x)dx+Ylci=KT (5) 

where n is the number of elastic supports. Additional con­
straints are given by 

u(x)>um, k(x)>0, c,>0, «,<«,+ i (6) 

where am is a minimum value for the (nondimensional) area. 
Also, k(x) turns out to be continuous except at x = at. 

The design variables are a(x), k(x), ch and «,, and the objec­
tive function to be minimized is the compliance G defined by 

G= f w(x)dx (7) 
Jo 

where w(x)>0 for the beams to be analyzed. The following 
augmented functional G is constructed: 

? = wdx+ \ \[-{otw")" -kw+\]dx 

+ n([ kdx+J^Cj-K^+l P(-k + 62)dx 

+ E 7 , ( - c , + */
2) + A(jo

1«£fe-l) 

C i " - ' 

+ \oT(a-a,„-i,2)dx+ £ , vi{ai-ai+l+^2). 

(8) 

In equation (8), \(x), JX, j3(x), 7,, A, T(x), and v, are Lagrange 
multipliers, while 6(x), </>,, \l/(x), and i/-,- are slack variables. G 
is made stationary with respect to the design variables, 
Lagrange multipliers, and slack variables (Dems et al., 1987). 

For the beams to be treated here, the resulting equation and 
boundary conditions for X(x) are the same as those for w(x), so 
that \(x) = w(x). (This only occurs because the load is uniform 
and the objective function is given by equation (7).) Then the 
remaining stationary equations lead to the following optimal-
ity conditions, where A and ix are constants: 

[w"(.x)]2=Aifa(x)>am; (9) 

w2(x) = /xif/c(x)>0; (10) 

w2(ai) = li, w(a,)w' (a,) = 0 if c ;>0. (11) 

(a) Type I 

(b) Type I I 

Fig. 2 Types of optimal solutions for cantilever 

Optimal solutions are obtained with the use of equations 
(2)-(5), (9)-(ll), and boundary conditions on w(x). In the ex­
amples, A and /* are positive and w' (a,) = 0. When k(x) > 0, the 
deflection is constant (equation (10)), so that w"(x) = 0, and 
then equation (9) requires that a(x) = am. It follows from 
equation (2) that k(x) will be a constant. When a(x)>am, 
w" #0 (equation (9)) and w(x) is not constant. Then equation 
(10) requires that k(x) = 0, and it follows from equations (2) 
and (9) that a(x) will be a quadratic function. (If a(x) were not 
proportional to the cross-sectional moment of inertia, equa­
tion (9) would involve a(x) and the optimal variation of the 
area would not be quadratic.) 

Cantilever 

Consider the cantilever shown in Fig. 1(a). The boundary 
conditions are w = vf'=0 at x = 0 and aw" =(ctw")' =0 at 
x=\. If there is an elastic support with stiffness c at x= 1, the 
last of these conditions is replaced by (aw ")' = cw at x = 1 _ . 

Two types of optimal solutions are possible, as illustrated in 
Fig. 2. For sufficiently small values of the total foundation 
stiffness KT, Type I occurs, in which the area a is nonuniform 
(decreasing) in a region 0<x<d, a = am for d<x< 1, and the 
foundation consists of an elastic support at x = 1. As KT is in­
creased, w'(l) becomes zero and then Type II governs, in 
which a is nonuniform (decreasing) in a region 0<x<d, 
a = am for d<x< 1, an elastic support of stiffness c exists at 
some location x = a (d<a< 1), and there is a uniform founda­
tion with stiffness k0 for a<x<\. The governing equations 
can be solved analytically for w (x) and a(x), leading to a sixth-
order polynomial equation to be solved for d in the Type I 
solution, and four coupled polynomial equations involving d, 
a, c, and k0 in the Type II solution. 

Numerical results are presented in Fig. 3 and Table 1 for 
am =0.8, 0.6, 0.4, and 0.2. Points A, B, and C correspond to 
KT = 0, the transition from Type I optimal solutions to Type II 
solutions (marked by circles in Fig. 3), and KT = 5Q, respec­
tively. The maximum value of a, denoted amax, occurs at x= 0 
and is listed in Table 1. The last column in Table 1 compares 
the compliance associated with the optimal solution to that of 
a reference beam (Hetenyi, 1946) which has uniform cross-
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Fig. 3 Optimal values of d and a for cantilever, as a function of KT; 
« m =0 .8 , 0.6, 0.4, and 0.2 

section (with the same total volume) and a uniform founda­
tion (with the same total foundation stiffness). 

When KT = 0 (point A), only a(x) is a design variable. The 
value of d varies from 0.365 for am =0.8 to 0.695 for am =0.2, 
and the reduction in compliance ranges from 24.6 percent to 
40.5 percent. Point B occurs in the range 11.8<Ar<24.2 for 
the results presented, with the corresponding value of d vary­
ing from 0.236 for ce„, =0.8 to 0.500 for a,„ =0.2. With fur­
ther increase in KT, d decreases further and a also decreases. 
For these Type II solutions between B and C, the reduction in 
compliance is in the range 55.3-64.1 percent. 

In the Type II solutions, the optimal ratio c/KT is given by 

c/KT = (a-d)(a + 2d)/[3(a + d)-2(a2 + ad + d2)]. (12) 

At point C (KT = 50), this ratio has the values 0.707, 0.668, 
0.600, and 0.490 for am =0.8, 0.6, 0.4, and 0.2, respectively. 

Pinned-Pinned Beam 
In this section, the pinned-pinned beam of Fig. 1(b) is con­

sidered. The boundary conditions are w = aw" =0 at x=Q,\. 
Figure 4 depicts the types of optimal solutions which occur, 
with Type I governing for small values of KT, Type II for an 
intermediate range of KT, and Type III for large values of KT. 
The solutions are symmetric about x = 1/2. The area is at its 
minimum allowable value near the pinned ends and also, for 
Type II and Type III solutions, in a central region of the 
beam. In the first two types of solutions, the optimal founda­
tion is a central elastic support, while in Type III it is a 
uniform foundation about the center of the beam, bordered 
by elastic supports. 

As for the cantilever, one can obtain an analytical solution 
for the deflection w(x) and area a(x), with polynomial equa­
tions to be solved for the design variables: b in the Type I op­
timal solution, b and d in Type II, and b, d, a, c, and k0 in 
Type III. Optimal values of b, d, and a are plotted as a func­
tion of KT in Fig. 5 for the case am =0.8. Similar curves are 
found for other values of am. Numerical values are listed in 
Table 2 for am = 0.8, 0.6, 0.4, and 0.2. 

When KT = 0 (point A), the optimal value of b in Fig. 4(a) 
varies from 0.192 for am =0.8 to 0.035 for am =0.2, the value 
of a(l/2) varies from 1.29 to 1.49, and the reduction in com­
pliance is in the range 8.7-16.3 percent. As KT increases, b 
decreases and a( 1/2) decreases. The transition from a Type I 
to a Type II optimal solution occurs at point B, when a(l/2) 
has the value a,„. The beam then has a form as in Fig. 4 (b) but 

•Sg £J £ , yAy 

^ Q ^J 

c s 

L 

|»-b-» 

•» d » 

a > 

e* 

(c) Type I I I 

Fig. 4 Types of optimal solutions for pinned-pinned beam 
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Fig. 5 Optimal values of b, d, and a for pinned-pinned beam, as a func­
tion of KT; am =0.8 

with d= 1/2, i.e., no central uniform region. At point B, the 
optimal value of b is a root of the equation 

8amZ?3 - 12a,„b2 + 6(2-am)b-a„, =0. (13) 

The corresponding total foundation stiffness varies from 
AT = 73 for am =0.8 to KT= 166 for am =0.2. It is noted that 
these values of KT are beyond the KT range shown in Fig. 3 for 
the cantilever. 

From point B to point C, where the Type II solution of Fig. 
4 (b) governs, the values of b and d decrease as KT increases. 
The area function a(x) for b<x<d is quadratic and sym-
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metric about its center, x = {b + d)/2. Maximum values, amax, 
are listed in Table 2. 

As KT increases beyond point C in Table 2 (and in Fig. 5 for 
a m =0.8) , the Type III solution of Fig. 4(c) is optimal. The 
lengths b, d, and a all decrease as KT increases. The area is 
symmetric in the region 0<x<a, i.e., a — d = b and amax oc­
curs at x = a/2. 

The stiffness of the elastic supports in the Type III solutions 
satisfies the equation 

c/KT = a/[2(l-a]. (14) 

At point D, where #7- = 500, the ratio c/KT is 0.358, 0.364, 
0.367, and 0.370 for am =0.8, 0.6, 0.4, and 0.2, respectively. 
For the Type II and Type III solutions given in Table 2, the 
reduction in compliance is in the range 29.9-39.4 percent, in 
comparison with the reference beam. 

Concluding Remarks 

Beams attached to elastic foundations were considered in 
this paper. The distributions of beam material and foundation 
stiffness were optimized simultaneously, with total beam 
material and foundation stiffness specified. Cantilevers and 
pinned-pinned beams were treated. The beams had sandwich 
cross-sections with cores of negligible stiffness, and were sub­
jected to a uniformly distributed load. The compliance was 
minimized. 

Several types of optimal solutions were obtained, as il-

Table 1 Optimal values for cantilever 

Percent 
am Point d a KT araax decrease 

0.8 
0.8 
0.8 

0.6 
0.6 
0.6 

0.4 
0.4 
0.4 

0.2 
0.2 
0.2 

A 
B 
C 

A 
B 
C 

A 
B 
C 

A 
B 
C 

0.365 
0.236 
0.227 

0.500 
0.322 
0.305 

0.615 
0.401 
0.371 

0.695 
0.500 
0.442 

0.890 

0.880 

0.859 

0.822 

0 
24.2 
50.0 

0 
21.5 
50.0 

0 
17.5 
50.0 

0 
11.8 
50.0 

1.98 
2.62 
2.94 

2.40 
3.35 
3.93 

2.69 
3.81 
4.75 

2.89 
4.00 
5.51 

24.6 
58.8 
55.3 

34.0 
61.7 
58.1 

39.6 
63.4 
59.9 

40.5 
64.1 
60.8 

Table 2 Optimal values 

am Point b d 

0.8 A 0.192 — 
0.8 B 0.132 0.500 
0.8 C 0.096 0.404 
0.8 D 0.075 0.343 

0.6 A 0.123 — 
0.6 B 0.076 0.500 
0.6 C 0.061 0.439 
0.6 D 0.047 0.374 

0.4 A 0.074 — 
0.4 B 0.043 0.500 
0.4 C 0.037 0.463 
0.4 D 0.028 0.387 

0.2 A 0.035 — 
0.2 B 0.019 0.500 
0.2 C 0.017 0.483 
0.2 D 0.013 0.412 

lustrated in Figs. 2 and 4. The governing type depends on the 
minimum allowable cross-sectional area of the face sheets and 
the total foundation stiffness (relative to the beam stiffness). 
If the total foundation stiffness is sufficiently small, the op­
timal solution is a single elastic support; if it is sufficiently 
large, the optimal solution contains a region of uniform foun­
dation, bordered at internal locations by elastic supports. 
Where the foundation exists, the beam is uniform (with its 
minimum area). For the pinned-pinned beam, the optimal 
area distribution satisfies special symmetry properties. 

Even though the formulation allows the foundation to be 
nonuniform, the optimal solution does not involve a 
continuously-varying function k{x). Either k is zero, a positive 
constant k0, or a delta function (corresponding to an elastic 
support). This property is due to two factors, the uniform load 
and the objective function used in this study. The quadratic 
variation of the area when it is nonuniform is caused by these 
factors plus the assumption of a sandwich cross-section. 

In comparison to a reference beam with uniform cross-
section and uniform elastic foundation, the optimal solutions 
decrease the compliance significantly. Typical results are 
presented in the last column of Tables 1 and 2. The reduction 
in compliance for these cases is as high as 64.1 percent for can­
tilevers and 39.4 percent for pinned-pinned beams. 
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for pinned-pinned beam 

Percent 
a KT amax decrease 

— 0 1.29 8.7 
0.500 73 1.21 29.9 
0.500 200 1.29 37.0 
0.417 500 1.36 37.0 

— 0 1.40 12.7 
0.500 108 1.31 34.0 
0.500 202 1.39 37.8 
0.421 500 1.51 38.0 

0 1.47 15.0 
0.500 138 1.38 36.1 
0.500 201 1.45 38.2 
0.423 500 1.62 38.8 

— 0 1.49 16.3 
0.500 166 1.45 37.4 
0.500 197 1.49 38.7 
0.425 500 1.73 39.4 
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The Buckling of Thin-Walled 
Open-Profile Bars 

mOrriS UjalVO ff,e theory of buckling for thin-walled open-profile bars is criticized. Its several 
Columbus, Ohio 43221 derivations are faulted for violating statics, using a variational theorem approxi­

mately, using an incorrect variational statement, and/or using an inconsistent fil­
ament representation of the bar. Significantly, the theory yields buckling loads that 
contradict engineering expectations. A theory to replace it with general equations 
for computing buckling loads is presented. A problem solved under the old and new 
theories shows how torsional buckling is viewed under the new. 

Introduction 
H. Wagner (1929) laid down several concepts from which a 

general theory for thin-walled open-profile bars has grown. 
Some are known to be incorrect, others endure. A Wagner 
concept that endures, though it is not correct, is the notion 
that longitudinal stresses can induce torsional moment on nor­
mal sections of a deformed bar. The reasoning which attempts 
to justify what is called the Wagner effect and which is based 
on equilibrium considerations views the bar as if it were a 
bundle of longitudinal elements acting, to an extent, indepen­
dently of each other. Such a conceptualization is inconsistent 
with the model used to define the bar's other characteristics. 
Concerning this, Lenz and Vielsack (Lenz, 1980) conclude that 
". . .the assumptions and results of the theory of torsional 
buckling based on a filament model cannot be brought into 
conformity with the assumptions and results which a theory 
based on the principles of modern continuum theory suggests.'' 
While this conclusion is reached through an examination of a 
thin-walled tube, the reasoning applies as well to other sections. 
In general, equilibrium method derivations in which Wagner 
effect terms appear are deficient for not identifying the free 
body with which torsional equilibrium is expressed and/or 
violating statical principles (Ojalvo, 1987). 

Variational method derivations in which Wagner effect terms 
appear fare no better. Some fail because the underlying the­
orem on which the derivation must be based (the theorem of 
stationary potential energy) is misused: Components of a 
finite strain tensor are used in the strain energy expression 
when infinitesimal strain expressions are clearly called for by 
the theorem (Ojalvo, 1982, 1987). Kappus (1937) and F. Bleich 
(1952) use the inconsistent multifilament model to determine 
the potential of external longitudinal tractions that act at the 
ends of a bar. For their analysis the ends of a filament move 
towards one another because of the sag resulting from its 
transverse displacements. The potential of the end tractions is 
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the integral over an end face of the product of the relative 
movement for the ends of a filament and the end traction. At 
best the procedure is approximate. It yields different potentials 
for different distributions of the end tractions even when their 
statical resultants (be they centroidal forces, couples, or both) 
are the same (H. Bleich, 1956; Ojalvo, 1981). It will be shown 
that potentials do not depend on a particular distribution of 
end tractions when a single model for the bar is adhered to 
for all phases of the derivation. 

Other derivations which have produced the conventional 
results for buckling equations (Goto et al., 1985; Hasegawa 
et al., 1985, Nishino et al., 1973) must be questioned for their 
use of Washizu's virtual work principle (theorem) and/or his 
principle (theorem) of stationary potential energy for finite 
displacements (Washizu, 1968, equations (3.49) and (3.68)). 
The proofs offered for these theorems depend on equilibrium 
equations (ibid, equations (3.22), (3.23)) that have no basis in 
a conventional understanding of statics: Quantities called 
pseudo stresses are determined for faces of elementary par­
allelepipeds of the material in the deformed state with a La-
grangian representation. That a deformed body's geometry 
can be expressed with coordinates of the undeformed state is 
not in dispute. What is objected to is a failure to use actual 
stresses acting on a defined parallelepiped for the equilibrium 
equations. 

Cywinski and others (1986, 1982, 1971) have determined 
torsional buckling loads for tapered /-shaped columns with 
the established theory which accepts the Wagner hypothesis. 
The constant depth columns achieve taper with a gradual de­
crease of flange widths from a midlength maximum to a min­
imum at the ends. Torsional buckling loads were compared 
with those of columns that were similar except that their flange 
widths were uniform for the column's entire length. The nat­
ural expectation is that the uniform cross-section column yields 
the higher buckling load when cross-sections are the same at 
midlength. Surprisingly, the opposite was found. Lind (1973) 
performed additional computations to resolve the paradox but 
only succeeded in confirming that the conventional theory 
predicts substantially higher buckling loads for the tapered 
columns. Thus, once again the conventional theory is found 
wanting. 
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A new theory with equations for buckling is presented next. 
It does not accept the validity of the Wagner effect and differs 
in one other important way from the conventional theory. Its 
derivation follows a discussion of the theorem of stationary 
potential energy. 

The Theorem and Its Application to Buckling Theory 
The following with caveats serves us as a statement of the 

theorem of stationary potential energy: The first variation 
of the potential is zero for a body in static equilibrium (Fung, 
1965, pp. 284-288). The statement contemplates a domain in 
space occupied by a body. The variation of potential is in 
consequence of an arbitrary continuous displacement field that 
satisfies the body's physical constraints, both external and 
internal. It is required that suitable potential functions exist 
for external loads, body forces, and internal stresses. The last 
often limits the use of the theorem to bodies that have not 
previously suffered large displacements. 

Buckling is said to occur when distortions of a new type 
appear in a bar that has already been deformed by loads or 
support movements. Thus a bar that is subject to only lon­
gitudinal contraction before buckling acquires flexural and, 
possibly, torsional distortion when buckling begins. 

The analysis for buckling considers the bar in its buckled 
configuration and, because the buckled bar is in equilibrium, 
the theorem of stationary potential energy applies. Variations 
of the potential, however, can be the result of only variations 
of the buckling distortions because buckling occurs without a 
change in the pre-buckling distortions. The foregoing allows 
a bar's potential to be determined from the unstressed state 
as a datum or from the loaded but as yet unbuckled state. We 
follow Bleich (1952) and make the latter state the datum. 

The Bar 

The particular longitudinal line with which a bar is modeled 
is crucial to the analysis for buckling. Each point of the line 
represents a transverse cross-section (profile) of the bar. The 
average lateral movement of a profile of the undeformed bar 
is the lateral movement of the corresponding point of the line. 
Similarly, the profile's average longitudinal movement is the 
longitudinal movement of the corresponding point of the line. 

The extentional strains for the line are the average extentional 
strains for the corresponding profiles. Planes intersecting the 
line at right angles are called normal planes. The direction of 
the line is what the theory assumes for the longitudinal direction 
of the deflected bar at the corresponding profile. 

The line assumes importance when the theorem of stationary 
potential energy is used for the derivation of buckling equations 
because, as will become obvious, different lines result in dif­
ferent expressions for the potential of external and body forces. 
For equilibrium derivations the line defines the orientation of 
normal planes. These are bounding surfaces for bar lengths 
that are considered as free bodies for the analysis. The torsion 
equilibrium condition is expressed for an axis that is normal 
to a normal plane and it is thus that the choice of line impacts 
on the derived buckling equations for equilibrium method 
derivations (Ojalvo, 1981). 

We use the line of centroids to model a bar. Adopting the 
line of shear centers without, at the same time, adopting the 
dubious Wagner hypothesis leads to at least one anom­
aly: Namely, that a monosymmetric I-beam with uniform 
moment buckles at the same value of the moment irrespective 
of whether the larger or the smaller flange is in compression 
(Ojalvo, 1987). All derivations that reach the conventional 
equations for buckling use the sheer center line for the modeling 
of the bar and either explicitly assume the validity of the Wag­
ner hypothesis or do something of a questionable nature to 
insure the appearance of Wagner effect terms in the final 
results. 

Uniform Compression 
Point c (Fig. 1) locates the centroid of a thin-walled bar's 

profile. Principal centroidal axes x and y serve as a global 
coordinate system to which transverse displacements and the 
location of points on a profile are referred. S(x0, y0) locates 
the shear center, Ix and Iy are principal centroidal moments of 
inertia, and Iw is the warping torsion constant of a profile. All 
points of a profile may move laterally when a bar deforms 
(Fig. 2). Because the displacements of a buckled bar are as­
sumed small and profiles are assumed not to distort in their 
own planes, one may represent lateral movement for the points 
of a profile as though the profile is embedded in a rigid normal 
plane that is translated parallel to the x and y axes and then 

Nomenclature 

A = profile area 
a = distance on y axis to 

point of transverse load 
application 

c = point locating centroid 
of a profile 

E = Youngs modulus 
Ix< Iy = profile area moments of 

inertia about x and y 
axes 

G = shear modulus of elastic­
ity 

Iw = warping torsion constant 
for a profile 

J = St. Venant torsion con­
stant for a profile 

L = length of a bar 
P = compressive end load 

acting on a bar 
p = transverse distributed 

load 
P = total potential 

ra 

S 

U 
u, v 

uc, vc 

v, vu v2 

Vy 

w 

wc 

x,y 

Xoi yo 

z 

= distance between c and S 
on a profile 

= a point locating the shear 
center of a profile 

= strain energy 
= shear center displace­

ments in the x and y di­
rections 

= centroid displacements in 
the x and y directions 

= external and body force 
load potentials 

= bar shear in the y direc­
tion 

= displacement in the z di­
rection 

= average profile displace­
ment in the z direction 

= centroidal principal axes 
of a profile 

= x and y coordinates of S 
= longitudinal axis and co­

ordinate 

i,i) = 

(') = 

/„ = 

Pe = 
t = 
a = 

My = 

a deflection angle, see 
Fig. 6(6) 
a small rotation of the 
profile about a longitudi­
nal axis 
principal centroidal axes 
of a profile in a normal 
plane of the deflected 
bar 
designates differentiation 
with respect to z 
a quantity equal to 2c? -
y0 

polar moment of inertia 
of a profile about its 
shear center 
torsional buckling load 
profile wall thickness 
a traction in the z direc­
tion acting on an end 
face of a bar 
internal bar moment 
about the x axis 
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Fig. 1 Profile 

rotated through a small angle about an axis that is perpen­
dicular to it. Let 8 = 8 (z) be the rotation where z is a coordinate 
of the line of centroids of the undeformed bar. The displace­
ments of c parallel to the x and y axes are uc and vc. Those of 
S are u and v. The principal axes of the profile for a normal 
plane of the deformed bar are £ and i? (Fig. 2). Displacements 
u, v, uc, and vc are related according to 

uc = u + ya6 (la) 

and 
vc = v - x0 6. (lb) 

Let the load consist of a distribution of tractions a in the z 
direction acting on an end face of the bar at z = 0 and let the 
bar be restrained longitudinally at its opposite end z = L. The 
resultant of the load is a compressive force P acting through 
the centroid of the end face. 

P = - \A a dA (2) 

where the integral is over the profile area A. 
A nonzero bimoment on an end face signifies a boundary 

condition in 8 that is not homogeneous. The bimoment is 
j a oi dA where co is the principal double-sectorial area coor­
dinate of a location on the profile. Since boundary condition 
equations in 6 must be homogeneous for a buckling problem, 
\ a oi dA = 0 is a restriction on permissible distributions of 
a. Additional restrictions \ a x dA = \ a y dA = 0 apply 
because P intersects c both before and after buckling. 

The load potential measured from the loaded but not yet 
buckled bar is 

V = L, a w dA (3) 

where w expresses longitudinal displacements of the end profile 
for a small buckling deformation of the bar and a = a{x,y). 
Displacement w is (Vlasov, 1961) 

w = wc - u'x - v'y - 8'oi (4) 

where wc is the average longitudinal displacement of a profile 
and a prime, (')> indicates a differentiation with respect to z. 
The potential of loads a is seen to be 

V = -Pwc (5) 

after substitution from equation (4) is made in equation (3) 
and cognizance is taken of equation (2) and the above three 
restrictions on the distribution of a. wc as used in equation (5) 
is also the distance by which end profiles approach each other 
along the z axis when a bar buckles. It is also the distance by 
which the ends of the centroid line approach each other. The 
relative movement is due entirely to sag displacements uc and 
vc. Extentional strain of the centroid line plays no part because 
that type of distortion is of a type that occurs in the bar prior 
to buckling. 

It can be shown that wc is given by 

Wc = \ [I l(w/)2 + (vc')
2]dz (6) 

Fig. 2 Deflected profile 

provided terms smaller by two or more degrees of magnitude 
than (uc')

2 or (vc')
2 are discarded. After uc' and vc' are ex­

pressed with u', v', and 6' in accordance with equations (1), 
one has for wc 

wc = ^ {0
L[("')2 + OO2 + {r0f(8'Y 

+ 28' (y0u' - x0v')] dz (7) 

where r\ = x\ + yl is the square of the distance between the 
centroid and shear center of a profile. Using displacements of 
the shear center in place of displacements of the centroid in 
the expression for wc is a matter of convenience. The use of 
u and v for dependent variables leads to simpler expression 
for the strain energy. uc and vc continue to define the transverse 
displacements of the bar. 

The strain energy U for the distortions of the displacement 
field associated with buckling is (Bleich, 1952) 

U = \ J0 [EIy(u"Y + EIx(v"Y 

+ GJ(0')2 + £4 (0 ")2] dz (8) 

where E is Young's modulus, G is the modulus of elasticity in 
shear, and / i s the St. yenant torsion constant for the profile. 

The total potential P is the sum of U and V and obtained 
with equations (5), (7), and (8). The first variation of the 
functional P, 5P, is equal to zero in accordance with the the­
orem of stationary potential energy. It leads to three Eulerian 
differential equations 

EIyu"" + Pu" + Py08" = 0 (9a) 

EIxv"" + Pv" - PxD6" = 0 (9b) 

EIJ"" + [P(r0)
2 - GJ]d" + Py0u" - Px0v" = 0 (9c) 

with which the buckling of uniformly compressed bars is 
studied. 

Equations (9) are not new, having been previously derived 
with an equilibrium method derivation (Ojalvo, 1981). The 
present demonstrates that equilibrium and variational method 
derivations yield identical results if the idealization for the bar 
is the same in both. It can not be otherwise for both rest on 
the same principles of statics, geometric continuity, and ma­
terial behavior. 

The old theory which uses the Wagner hypothesis and defines 
normal planes with the shear center line yields equations that 
differ in only one respect from equations 9: Where r2 occurs 
in equations (9c) one finds in the old theory a term which is 
the square of the profile area's radius of gyration about the 
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Fig. 3 Monosymmetric profile 

shear center (Timoshenko, 1961). Solutions based on the equa­
tions are profoundly influenced by the difference. 

Bars With a Longitudinal Plane of Symmetry 
Transverse loads are applied to a bar in its y-z plane of 

symmetry (Fig. 3). End loads which may also act on the bar 
have resultants which, at least until buckling occurs, are in the 
y-z plane. The bar's flexural stiffness about its x axis is large 
compared to its flexural stiffness about its y axis so that pre-
buckling curvature about the x axis may be ignored, and buck­
ling without curvature about that axis may be presumed. As 
a consequence, the strain energy of the virtual buckling dis­
tortions is (Bleich, 1952) 

U = 2 J° 
[EIy(u"f + GJ(6')2 + EIw(6")2]dz. (10) 

The potential of a centroidal longitudinal load is determined 
separately from the potential of end moments about the x axis 
and transverse loads: 

(a) Potential of Centroidal Longitudinal Load. The shear 
center line for the buckled bar has a curvature component v " 
in the y-z plane even though there is no flexural distortion 
about the £ axis (the displaced x axis) of profiles, v" is due 
entirely to twist distortion and flexure about the if axes. One 
may substitute u " for curvature about the ij axis because 6 is 
small (Fig. 4) and then it is seen that v" is very nearly d'U". 
Evidently, v" is of a higher order (smaller by a degree of 
magnitude) than u" and, because of it, v' is of a higher order 
than u'. Thus, the term including (i>')2 in equation (7) may 
be eliminated. Taking this and the fact that x0 = 0 into con­
sideration causes the potential Vx derived from equations (5) 
and (7) to be 

2 Jo [("')2 + <X)2(0')2 + 2y06' u']dz. (11) 

(b) End Moments and Transverse Loads Potential. 
Transverse loads p are at first assumed to act at the centroid 
line. A modification introduced later accounts for a positioning 
of p above or below the centroid. The virtual work theorem 

Fig. 4 Deflected monosymmetric profile 

JMx+dMx 

Vy+dVy 

Fig. 5 Element dz 

is used to facilitate the determination of the potential of these 
loads. See Ojalvo (1961) for a statement of the theorem in the 
form in which it is used. The loaded but as yet not buckled 
bar is the traction field contemplated by the theorem and the 
displacement field contemplated is that which characterizes 
buckling. 

An element of the unbuckled bar is represented by a length 
dz of the centroid line (Fig. 5). It is in equilibrium under 
moments Mx, shears Vy, and loads p = p(z). Mx and Vy are 
components of the internal stress resultant on normal planes 
as determined from a linear analysis which assumes an un-
deflected bar in its establishment of the equilibrium conditions. 

The displacement field characterizing buckling produces rigid 
body motion for the element dz, curvature u " + y0d" of the 
centroid line about the -q axis, and twist 0' about a longitudinal 
axis through S. By the virtual work theorem, the work of the 
forces and moments of Fig. 5, for all elements and in conse­
quence of the buckling displacements, is equal to the work of 
the end moments and transverse loads on the bar for the same 
displacements. V2, the potential of these moments and loads, 
is the negative of this work. Work as used here is a scalar 
product which should not be confused with energy stored within 
an elastic body as the result of gradually applied loads. 

The traction field of Fig. 5 does no work for the rigid body 
motion of dz because the forces and moments are in static 
equilibrium. Forces Vy do no work because transverse shear 
distortions do not occur in the displacement field. Only mo­
ments Mx do work, and this in consequence of the rotations 
of the end faces of element dz about axes parallel to the global 
x axis. 

Curvature u" + y06" causes a relative rotation (u" + y0 
6")dz of the planes bounding element dz. The relative rotation 
about the r) axis (Fig. 4) has a component -d(u" + ya 6")dz 
about the x axis. Twist 8' about a longitudinal axis through 
S produces additional curvature of the line of centroids in the 
y-z plane (Figs. 6(a), (b)). The increment of longitudinal ro­
tation for the bounding planes of the element produces a rel-
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iyo(0'dz)2 

a=iy o (0 ' ) 2 dz 

Fig. 6 Curvature induced by Iwist distortion 

ative displacement of the centroids in the t\ direction of 
Viy0(d'dz)2. The line of centroids is depicted (Fig. 6(b)) as a 
string of elements dz with slope discontinuities a where they 
join. The representation of the centroid line in this manner 
facilitates understanding how twist affects curvature in the 
y-z plane without introducing further approximation to the 
the derivation. The normal to a segment is represented by a 
perpendicular in the y-z plane at its right end. Relative dis­
placement Viy0(6' dz)1 between the ends is shown as a distance 
parallel to the normal for the preceding segment. Deflection 
angles a are Viy0(6')2 dz so that curvature of the centroid line 
about the x axis resulting from twist is - Viy0(6')2. 

The curvature of the centroid line about the x axis from 
both distortions is -\6{u" + y06") + V2y0(d')2]. By the virtual 
work theorem, the work of the loads is 

- \aMx[B(u" + y0(6") + Viy0(.e'f] dz. 

Before writing the expression for V2 we note that the potential 
is increased by Jo Vip a ff2 dz when p is distributed on a line 
with y coordinate a (Fig. 3). With this, 

-t' [MM"" + y» 0") 

+ '/iyo(0')2] + 'Apod2) dz. 
The total potential found by adding U (equation (10), V{ 

and V2 is 

(12) 

£ ViEIJu")2 + V1EIJ6")2 - ViP(u')2 

+ Vi[GJ - P(y0)
2 + Mxy0](6')2 + Mx 6 u" 

- Py06'u' + Mjfi 6" + Vipa 62} dz. (13) 

The Eulerian equations used for the determination of buck­
ling loads and mode shapes for bars with a plane of symmetry 
are obtained from the condition &P = 0. These are, after Vy 

is substituted for Mx and —p for Mx , 

EIyu"" +Pu" + (Mx + Py0)6" + 2Vy6' 

H 2d 2d -i 
7 
2d 

3S 

.Wj 

2d 

A 

1 = Constant Wall 
Thickness 

A= l2 td 
J =413d 
I x=I y= I3.5 td3 

I0= 27 id3 

T = 3. tri3 

Fig. 7 Cruciform 

x-* -

id 

2d 
-Vo 

i d 

A = 3td 
J =t3d 
Viktd3 

Ia rO 
a 

y0 

Id 
Id 

Fig. 8 T section 

and 

EI„d"" + [P(y0)
2 - GJ + MxyaW" + Vyy0d' 

-p(y0 - a}8 + [Py0 + Mx] u" = 0 . (14*) 

Equation (146) differs considerably from what would be 
obtained with the old theory. 

Example 

The torsional buckling load of a column of length L whose 
profile is a flanged cruciform is required. The profile has a 
constant thickness / which is sufficiently small compared to 
its other dimensions so that quantities multiplied by t raised 
to the power three may be ignored in the computation of section 
properties Ix, Iy, and Ia (Fig. 7). 

The torsional buckling equation under the theory using the 
Wagner hypothesis is (Bleich, 1952) 

EIa 6" P-? - GJ 
A 

= 0 (15) 

where I0 is the shear center polar moment of inertia of the 
profile area. For boundary conditions 6 = 6" = 0 at z equal 
to zero and L the buckled form is defined by a half sine wave 
variation of 6 and the buckling load Pe is 

P„ = V- I GJ + EL ^ ) = ^ G 5 + J ! E £ / « P . (16) ,,=f(cj,E,4) = 

-pB = 0 (14a) 

Buckling of a purely torsional nature is never indicated by 
the new theory. If, however, the cruciform column is perceived 
as four T columns and the 7s were to buckle simultaneously 
in a lateral-torsional mode with a common longitudinal axis 
of enforced rotation, the effect would be the same as a pure 
torsional buckling of the cruciform. The new theory permits 
a determination of the buckling load for one such T (Fig. 8). 
The enforced axis of rotation intersects its profile at the toe 
of the stem. 

Equations (14) (and equations (9), for the matter) may not 
be used when there is an enforced axis of rotation. Such axes 
impose conditions which must be reflected in the total potential 
before the Eulerian equations are determined. Their effect is 
to reduce the number of dependent variables. For the T bar 
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considered (Fig. 8), the imposed conditions u = —2dd,u' 
= - 2 d 6', and u " = - 2 d 6" are used to eliminate u from 
equation (13). For uniform compression/? and Mx are absent 
so that P for the bar considered reduces to 

\o [(fir- + EL {2d}2) (6"Y 

+ {GJ - Pa2){6')2] dz (17) 

where a = 2d — y0. The buckling equation for the T bar 
obtained from 8P = 0 is 

( £ 4 + EIy [2d]2) 6"" + {Pa2 - GJ) 6" = 0. (18) 

The buckling load obtained with equation (18) is !4P9 where 
Pg is the buckling load for the cruciform. With boundary 
conditions 6 = 6" = 0 at z equal to zero and L and with the 
section properties as tabulated in Fig. 8, four times the buckling 
load for the T is found to be 

GJ + (EIa + EIy [2d]2) — 

9 fi 3 ir2 

-G- + -~EtcP. 
Ad 4L2 (19) 

Buckling loads for the example under the old and the pro­
posed theories are in the ratio of 64 to 81. Such discrepancy 
indicates a need for experimental verification. Before pro­
ceeding too far in this direction, however, it is essential that 
thought be given to the nature of buckling and failure. 

A buckling load comes from the solution of a mathematical 
eigenvalue problem. The equations of the problem are obtained 
with an idealization of the actual bar. Thus, the idealization 
assumes infinitesimal displacements, a profile which retains its 
shape, the absence of shear strains in the bar's middle surface, 
and that St. Venant torsion theory applies even when the tor­
sion is not uniform. It is therefore not remarkable that tests 
do not yield what can be clearly identified as buckling loads. 
At best they indicate a load range where small load increments 
begin to produce large displacement increments. 

Failure load, on the other hand, is clearly identified in a 
test. It is a load which is of paramount interest to designers 
of machines and structures. 

The study of buckling is justified by the hope that correlation 
exists between failure load and buckling load. Such correlation 
is generally acknowledged for columns that fail by excessive 
bending. Correlation is less certain for columns which fail with 
substantial torsional deformation and for beam columns and 
beams loaded in a plane of symmetry. This is largely due to 
the lack of a great deal of experimental information in this 
area. Nevertheless, experimental failure loads for columns and 
one beam column have been assembled and comparisons made 
with buckling loads (Ojalvo, 1983). These indicate that a better 
correlation is obtained with the proposed theory of buckling. 
Under the old theory some loads are greater while others are 
smaller than the failure load. Buckling loads computed with 
the proposed theory were always higher than the corresponding 
experimental failure loads. Discrepancies with the proposed 
theory averaged 6 percent and were as much as 14 percent. 
With the old theory failure loads were, on the average, 7 percent 
higher than the buckling load, and in one instance the failure 
load was 20 percent higher. 

Conclusions 

A bar buckling theory should, whenever possible, show con­
sistency in its idealization of the bar. The multifilament model 
used for the Wagner effect is inconsistent with the single fil­
ament model used elsewhere by the theory. 

It seems evident that buckling must be defined before it may 
be examined mathematically. Our definition is couched in terms 
of the onset of new types of distortions. 

The virtual work theorem can be useful in the sometimes 
difficult task of evaluating the potential of the loads for a 
variational derivation of the buckling equations. 
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Cantilever Rod in Cross 
Wind 
A thin elastic rod is held at one end in a strong cross wind. The nonlinear large 
deformation equations are formulated and solved by perturbation and numerical in­
tegration. The problem is governed by a nondimensional parameter K representing 
the relative importance of aerodynamic drag to flexural rigidity. For large K, 
phenomena such as nonuniqueness, instability, and hysteresis may occur. 

Introduction 

The study of the behavior of thin elastic rods in cross wind 
is important in the design of antennas on roof tops and mov­
ing vehicles. Due to the interaction of fluid mechanics and 
elasticity, literature on the flexible rod has been scarce. The 
drag of inclined rigid circular cylinders was experimentally 
documented by several researchers (Hoerner, 1958). The drag 
of a long curved cylinder may be estimated by integrating the 
drag coefficients of element inclined straight cylinders. The 
method has been applied successfully on ocean cables (McCor-
mick, 1973), where weight is important but the flexural rigid­
ity can be ignored. For antennas in a strong cross wind studied 
in this paper, the problem is substantially different since flex­
ural rigidity and aerodynamic drag dominate while the effect 
of self-weight can be ignored. 

Formulation 

Consider a thin cantilever in cross wind shown in Fig. 1(a). 
The cantilever is relatively inextensible, has uniform proper­
ties, and one end is fixed at an angle a with the uniform flow. 
Let s' be the arc length from origin, L be the rod length and 6 
be the local angle of inclination. For an elemental length ds' 
(Fig. 1(b)), the free stream velocity gives rise to a normal drag 
per length qn and a tangential drag per length q,. The horizon­
tal force X' acting on the elemental length is then 

{L 
X' = \ , (-q„smd-q,cos8)ds'. (1) 

Similarly, the vertical force is 

Y' = \ , (q„cosd — q,sm8)ds'. 

A balance of local moment m on ds' gives 

dm=X' sindds' - Y' cosdds'. 

(2) 

(3) 
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If the rod is thin enough, the local moment is proportional to 
the local curvature (elastica model, see Frisch-Fay, 1962) 

dd 
m=EI (4) 

as' 

where EI is the flexural rigidity. 
Now, qn and qt are complicated functions of cylinder cross-

section, free stream velocity V, angle 9, and Reynolds number. 
Experiments on rigid inclined circular cylinders (Hoerner, 
1958) support the cross-flow principle, that for high, sub-
critical Reynolds numbers the net steady resistance is the sum 
of the resistance due to the normal component of the free 
stream, and that in turn is due to the tangential component. 
Thus 

qn=cn—PUn\Un\D 

q,=ct—pUt\Ut\D 

(5) 

(6) 

where p is the fluid density, D is the diameter, C„ and C, are 
drag coefficients in directions normal and tangential to the 
cylinder, and U„ = U sin 0, Ut = U cos 0. Experiments also 
show C„ and C, are approximately constant at high subcritical 
Reynolds numbers (McCormick, 1973; Schlichting, 1979). 

Normalize the arc length by L, the forces by EI/L2, and 
drop the primes. Equations (l)-(4) yield 

(7) X= -K\ (sin2 0 Isin 01 + A cos2 0 I cos 9\)ds 

Y=K\ sin 0 cos 0( Isin 01-XI cos 01 )dy 

d16 
--X sin 0-Y cos d. ds2 

(8) 

(9) 

Here X = C,/C„ is usually small and K= C„pDL3 IP-/2EI is an 

Fig. 1 (a) The coordinate system and (b) forces on an elemental length 
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important nondimensional parameter signifying the relative 
importance of drag due to velocity and resistance due to rigid­
ity. Equations (7) and (8) in, differential form are 

dX 
- = isT(sin 2(? tsin 01 +X cos2 611 cos 01) (10) ds 

dY 

~ds 

X2 = (~ J~ + ^ g- ) s i n a l s in a lk* ( 2 9 ) 

: (-L S
T + ~ r )sin a lsin a \kA (30) 

24 

c 6 c 5 

- = Ksmd cos 0(XI cos 01 - I sin 01). 

The boundary conditions are 

* ( i )=y ( i )= 
dd 

~dT 
(1) = 0, 0(0) = a. 

(11) 

(12) 

/ s6 s5 s4 s2 3 \ . 

X lsin a I cos a[sin a sgn(sin ct) + 

, -, , ,, / s6 s5 s4 s3 s \ 
. a I -Xlcos a l ] + I + 7T + ̂ r ) 

V 180 30 12 12 20 / 
After d(s) is found, the configuration of the rod (x, y) is ob­
tained by integrating 

dx 
- = C0S i 

dy 
= sin0, x(0)=y(0) = Q. (13) 

ds ds 

Perturbation Solution for Small K 

Small K implies relatively high flexural rigidity. We expect 
the rod to be almost straight. Let K= e « 1 and we expand 

0= a + e0[ + e202 + 0(e3) 

X= eX{ + e2X2 + 0(e3) 

Y= ey 1 +e 2 F 2 +0(e 3 ) . 

The first-order terms of equations (9)-(12) are 

ds2 = X{ sin a — Yl cos a 

(14) 

(15) 

(16) 

(17) 

+ lsin a I - , 

X Xsin a cos a lsin a cos a I. 

The force experienced at the origin is 
k 

-X= tky + e2 sin a lsin a I —p + 0(e3) 
8 

k 
- Y= ek2 + e2 sin a lsin a I — + 0 (e3). 

8 

The moment at the origin, normalized by EI/L, is 

dd ... re 

~2 

(31) 

(32) 

(33) 

dd r 
M=—— (0) = sin a lsin a I -

ds I 

+ e2 cosa 

40 
[3 sin a sgn(sin a) 

+ 3 lsin a I -Xlcos a l ] + 0(e3)|. (34) 

dX, 

~ds~ 
= sin2 a I sin al + X cos2 a I cos al = kl (18) The tip angle a t s = 1 is 

ds 
sin a cos a(X Icos a I - lsin a I) = k2. 

The solutions subjected to 

dOt 
(D = 0,(0 = 0 

xx = *, (5-1), y ,= k2(s-i) 

c 3 c 3 

(19) 

(20) 

(21) 

0(l) = a + sin a lsin al -

19 
+ e3 cos oi-—-— [sin a sgn(sin a) 

3 -) 
+ lsin al - — Xlcos a l ] + 0(e3)!. (35) 

The configuration of the rod is described by the Cartesian 
coordinates 

' i • 

sD s 
~~6 2 2 

The proper expansion for the absolute values of sin 0 and cos 0 
is 

where sgn denotes the sign of the argument. The second-order 
equations are 

cfe2 

+ — ) sin a I sin a l . (22) x= 1 cos 0 ds= s cos a 

( s4 s3 s2 \ 
1 10 (e2) 

24 6 4 / 

y= \ sin 0 ds = s sin a 

inal(-2T-4+T-)+0(e2)-

(36) 

I sin 01 = I sin a I +tdx cos a sgn(sin a )+ . . . (23) 

I cos 01 = I cos a I - e0j sin a sgn(cos a) + . . . (24) 

4- e cos a sin a lsin (37) 

ds2 •= X2 sin a— Y2 cos a + 6i(Xx cos a + Y, sin a) (25) 

dX2 „ , dY2 n , 
-0, /c3 , — - - = 6{k4 

ds ' J & 

where 

it3 = sin a cos a [sin a sgn(sin a) 

— X cos a sgn(cos a) + 2 lsin a I - 2X Icos a I ] (27) 

k4 = cos 2a[X Icos a I - lsin a I ] 

- s in a cos a[X sin a sgn(cos a) + cos a sgn(sin a)]. (28) 

The solution is 

(26) Numerical Integration of the a = 0 Case 

For large K the nonlinear equations (9) - (13) can only be in­
tegrated numerically. Owing to the boundary conditions, it is 
more convenient to change the independent variable to 
r = 1-5. Thus, the equations are 

d16 
Xsin 6-Ycos 0 (38) 

dX 

IF 

dr2 

= -K(sin2 0lsin 01 +X cos2 0lcos 01) (39) 
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Fig. 2 End angle as a function of K for a = 0: X = Q.1 Fig. 4 End angle as a function of K; A = 0.014 and various a. Dashed 
lines are from equation (35). 

FG 

Fig. 3 Configurations for a = 0, X = 0.014. A: K = 9.2; B: K = 20, C: K = 50, 
D: K = 20, E: K = 50. The states correspond to those shown in Fig. 2. D 
and E are unstable. 

dY 
~dr 

= -Ksm 0cos 0(Xlcos 01 - Isin 0) 

a t r = 0 X=Y= 
dd 
dr 

= 0. 

(40) 

(41) 

For given K, X we guess 0 at r = 0 and integrate equations 
(38)-(41) as an initial value problem by the Runge-Kutta-
Fehlberg algorithm. The integration terminates at r= 1 where 
we check whether 0 = a. If not, the initial guess is adjusted. 

Figure 2 shows the end angle 0(1) plotted against K for a = 0 
or when the cantilever rod is pointing towards the wind. The 
solutions are the trivial (straight) solution 0(1) = 0 and the 
curve ED ABC. The value of X for circular rods is less than 
0.02 and the solution curve is indistinguishable from the X = 0 
curve. For 0<i(f<9.2 there is only one solution, the trivial 
one. When K is large, say ^=20, three solutions at states 
F,D,B are possible. Note that the nontrivial solutions do not 
bifurcate from the trivial solution. The analytic proof of non-
bifurcation is given in the Appendix. The graph of the mo­
ment at the base, 0'(O), show similar characteristics. Thus, 
small deformation theory and stability theory would not be 
able to predict such nonuniqueness. The phenomena is very 
different from a tip-loaded Ruler column which has a pitch­
fork bifurcation. 

Now let us look at the stability of the nonunique solutions at 
large K. Since the trivial solution does not bifurcate, it is stable 
to infinitesimal perturbations. The branch ADE has negative 
slope, i.e., the higher the velocity the lower the deformation 
and strain energy. We conclude this branch is unstable and can 
not be realized in practice. The branch ABC has positive slope 
and is thus stable. 

What would happen if the speed or K is gradually increased 
for a straight rod at a = 0? It will remain straight unless a large 
enough finite perturbation causes it to jump to a nontrivial 
branch. For example, suppose at K=20 a perturbation causes 
the rod to jump from State F to State D. Since State D is 
unstable, the rod instantly snaps through State A and settles at 

Fig. 5 Nonunique configurations at K = 12 for a = 5 deg. ® , (§), (5) 
are stables (2), (4) are unstable. The states corresponds to those in­
dicated in Fig. 4. 

State B. The branch BC will be followed as K is further in­
creased. As K is decreased from Stable B, the rod follows to 
the upper branch to State A K=9.2. Then there is a sudden 
snap back to straight configuration at State G and remain 
straight when K falls below 9.2. The hystersis loop would hap­
pen only if there is an energy input from State F to State D. At 
higher K, the required perturbation energy becomes smaller. 
Figure 3 shows the shape of the rod at various states. 

The Inclined Cantilever 
When a 5*0 or 180 deg, the undeformed rod is pointing at an 

angle to the free stream. For nonzero K, the rod will always be 
bent. Figure 4 shows the end angle 0(1) for X = 0.014 and 
various a. Changing the sign of a is equivalent to changing the 
sign of 0(1). Thus, negative a represents the case when the rod 
is bent with opposite curvature, i.e., to the other side. Let us 
study the case when a= ±5 deg. The solution is unique when 
0<#<8.8, three solutions (one unstable) when 8.8<#"<10, 
five solutions (two unstable) for \0<K< 18.4, and three solu­
tions (one unstable) for k> 18.4. The behavior of the slightly 
inclined rod (a = 5 deg) differs from the parallel rod with 
a = 0. As AT is increased from zero, the rod starts to bend 
following the curve HI. Then, even without an outside pertur­
bation, it snaps to State J and follows JM as the cross flow is 
further increased. When K decreases the path MJN snap RH is 
followed. Thus the rod has an natural hystersis loop. The 
states on the curve PQ (bent to the other side) does not happen 
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Fig. 6 Configurations lor a = 90 deg, X = 0.014; (6): K = 0, (7): K = 20, 
® : K = 50, ® K = 33.6, @ K = 50 

unless there is a large enough appropriate perturbation. The 
five equilibrium configurations for the same K = 12 is shown 
in Fig. 5. The natural hysteresis loop and jumps occur only for 
values of a between 0 deg and 15.79 deg. For larger angles the 
rod would bend smoothly. The configurations for a cantilever 
rod held perpendicular to the free stream are shown in Fig. 6. 
In general, the higher the angle a, the higher the minimum 
value of K for the rod to be able to bend to the other side. Our 
approximate solutions compare well with exact numerical 
results for low K. 

Our study, however, considers only in-phase deformations, 
out-of-plane perturbations, such as those due to vortex shed­
ding, would certainly cause the a negative states (or those bent 
to the other side) to be swept by the cross wind into the stable 
a positive states. Figure 7 shows the maximum normalized 
moment which occurs at the base of the cantilever rod. For 
clarity, only the most stable states are shown. Figure 8 shows 
the horizontal and vertical forces experienced at the base. 
Although the drag (-X) is always positive, the transverse 
force ( - Y) may be negative at low K and low a. 

Discussions and Conclusion 
For rough circular cylinders the value of \=C,/C„ is less 

than 0.02 (Hoerner 1958, McCormick 1973). This value is even 
smaller for smooth cylinders. Our computations show (e.g., 
Fig. 2) that X can be set to zero without much error for circular 
cylinders. However, X may be nonnegligible for laterally-
ridged or finned cylinders where the transverse drag may in­
crease several fold. 

Although the present analysis also applies to low K values, 
we note the Reynolds number should be kept high and sub-
critical (500-500,000) such that C„, C, are approximately 
constant. The importance of the nondimensional parameter K 
can not be over emphasized. For small K (7f<6.513), the rod 
is relatively stiff and the solution is unique. For large K the 
possible nonlinear phenomena of nonuniqueness, instability, 
and hysteresis jumps must be considered. 

For high, subcritical Reynolds numbers, oscillations due to 
alternate vortex shedding are always present (Blevins, 1977). 
Do these oscillations affect our results which are derived from 
steady, mean deformation equations? The answer is unlikely. 
Experimental investigations (Keefe, 1961, Schmidt, 1965) on 
the magnitude of the oscillatory forces on a rigid cylinder nor­
mal to free stream showed that order of the unsteady lift is of 
the same order of the steady drag and the order of the 
unsteady drag is much less than the order of the steady drag. 
Now, lift is out of the plane of elastic deformation and 
therefore would not affect our basic equations. Furthermore, 
this unsteady lift rapidly decrease in magnitude as the local 
angle 8 deviates from 90 deg. On the other hand, the unsteady 
drag is in the plane of the elastic deformation. However, its 
magnitude is orders smaller, and therefore would not ap­
preciably affect the deformation. Assuming no resonance 

0*1 1 1 1 1 1 
O 10 20 30 40 50 

K 

Fig. 7 Maximum moment (at the base) for the most stable states; 
dashed lines are from equation (34) 

Fig. 8 Forces at the base for the most stable states; horizon­
tal force, vertical force 

modes are excited, our results should be accurate. We hope 
this paper will elicit some experimental research on the in­
teresting flexible cantilever. 
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A P P E N D I X 

Bifurcation Study of the a = 0 Case 
When a = 0, equations (9)-(12) show 0 = 0 is a solution. We 

shall study the possibility of bifurcation from this state. For 
8< < 1, the equations linearize to 

cPB 
^ T = XB-Y (42) 

ds 

dY 
= KX6. (44) 

ds 
Integration of equations (43) and (44) and using the boundary 
conditions give 
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X = KK(s~\), Y=K\\ dds. (45) 

Substitute into equation (42) and differentiate once yield 

tfd dd 
— K\(l-s) — ^ = 0. cfe3 ~~"v~ " ' ds 

The general solution is the Airy functions 

ds 

(46) 

(47) 

where /i= {Kk)w\l -s). But equations (12), (42) show 

" < ! ) = * * - ( 1 ) = 0. (48) 
ds ds1 

Due to uniqueness of an initial value problem, equation (47) 
gives identically 

dd 

ds 
-=0. (49) 

Since 0(0) = 0, the only solution is d(s) =0, and therefore no 
bifurcation. 

Buckling of beams without the usual pitchfork bifurcation 
also occur in other instances, for example the heavy horizontal 
beam (Wang, 1984). 
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Elastoplastic Buckling of Annular 
Plates in Pure Shear1 

A linear buckling analysis is presented for annular elastoplastic plates under shear 
loads. The standard plate buckling equations are used in conjunction with the small 
strain J2 flow and deformation theories of plasticity. The main numerical finding is 
that deformation theory predicts critical loads which are considerably below the 
predictions obtained with the flow theory. Furthermore, comparison with ex­
perimental data for different metals shows a good agreement with the deformation 
theory results over a wide range of geometries. The limiting buckling problem of a 
long narrow panel under shear stresses is treated separately. This problem admits an 
exact solution and it is shown that the critical loads for the panel are approached 
asymtotically by the annular plate results. Contact is made with earlier studies on the 
buckling of elastic-orthotropic and elastoplastic shear panels. 

1 Introduction 
A common method for determining the stress-strain 

response of metal plates is based on the in-plane torsion test of 
annular plates. However, the applicability of that test is 
limited by the phenomenon of out-of-plane buckling when the 
external torsion moment reaches a critical value. 

In this paper we present an elastoplastic buckling analysis of 
the annular plate in pure shear. The study is within the usual 
framework of plate buckling theory and small strain plasticity. 
Material behavior is modeled by the J2 flow and deformation 
theories of plasticity with arbitrary hardening characteristics. 

The governing equations are given in the next section where 
we derive the homogeneous fourth-order partial differential 
equation for the normal velocity at buckling. This equation is 
supplemented by four homogeneous boundary conditions, for 
either clamped or simply-supported edges. The resulting eigen­
value problem is examined in Section 3 via a separation of 
variables solution which leads to an ordinary differential 
equation for the radial profile of the normal velocity. A finite 
difference scheme is employed to determine the buckling loads 
(smallest eigenvalues) for a few representative materials. For 
thin plates our numerical results agree with the elastic buckling 
analysis of Dean (1924). In the elastoplastic range there is a 
difference between the predictions obtained from the two 
plasticity models. As expected, deformation theory gives 
critical loads which are considerably below the flow theory 
results. That difference increases as the plate becomes thicker 
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and can be very wide—up to an order of magitude—in the 
deep plastic range. 

A detailed comparison with recent experimental data ob­
tained by Bauer (1987, 1988) is shown in Section 4. Bauer's 
tests were made with clamped annular plates over a wide range 
of geometries and for three different metals. The main finding 
here is that while deformation theory predictions for the 
buckling loads are in good agreement with measured results, 
the flow theory predictions considerably overestimate the 
values of the experimental critical stresses. That observation 
highlights the so-called "plastic buckling paradox" (Hutchin­
son, 1974). It is likely that initial imperfections will lower the 
maximum load predictions of the flow theory, but 
engineering-wise, one can use the deformation theory results 
of the bifurcation loads for all practical purposes. 

Finally, in Section 5, we investigate the limiting buckling 
problem of a narrow shear panel. Here we obtain an exact 
analytical solution for the bifurcation modes, and the 
associated eigenvalues follow from simple transcendental 
equations. Sample calculations for the buckling loads reveal a 
picture which is very similar to the annular plate 
results: Flow theory predictions are considerably higher than 
the deformation theory predictions. We also show that the 
results for the annular plate approach asymptotically the 
critical eigenvalues obtained for the narrow panel. 

The paper concludes by exploiting a formal correspondence 
between our elastoplastic analysis and the study by Durban 
and Stavsky (1982) on the shear buckling of elastic-
orthotropic panels. That correspondence leads to useful 
aysmptotic approximations for the critical loads in the plastic 
region. A further confirmation of these simplified expressions 
is obtained from the recipe given by Stowell (1948) for assess­
ing the elastoplastic buckling stress of shear panels. 

2 Governing Equations 
An annular plate (Fig. 1(a)) with inner radius a, outer radius 

b, and constant thickness h is subjected to uniform shearing 
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I 

(b) 

Fig. 1 (a) Notation for the annular plate, (b) the limiting problem of i 
long narrow panel. The thickness for both problems is h. 

stresses along the boundaries. The state of stress within the 
plate is that of pure shear with the statically determined radial 
profile 

\h2 

Tre=- 24r2 (1) 

where X is a constant, r—the radial coordinate, and the factor 
of 24 has been introduced for convenience. 

The constitutive relations during buckling may be written as 

brr-Errtrr+ErOtet 

Trf =2Gr6€rg 

(2) 

(3) 

(4) 

where (orn bm, rre) are the stress rates, (e„, em, ert) are the 
strain rates, and (Err, E^, EM, Grt) are the instantaneous 
moduli of the material. 

Combining (2)-(4) with the standard plate buckling equa­
tion, and observing that the only active prebuckling stress 
component is (1), results in the differential equation 

\r(ErrKrr+EreKeg)]i„ {ErdKrr+EmKm)ir 

r r 

4 1 X 
+ - j - (rGr9Krt),r6 + -^ - (,E^K„+EMKM)M—^-Krt = ° (5) 

where the rates of curvature change (*„.> ",*. K»e) a r e 8 i v e n b v 

Krr = W, Krt "(?). (6) 

with w denoting the out-of-plane velocity at the onset of 
buckling. Equation (5) is supplemented by boundary condi­
tions which are either those of a clamped edge where 

(7) w = 0 w = 0 , 

or those of a simply-supported edge where 

Eu, 

-° w"+\-Er)—=0- (8) 

The instantaneous moduli in (2)-(4) are determined by the 
type of constitutive model employed in the analysis. Here we 

shall use the two small strain versions of the elastoplastic J2 

model. First we have the flow theory with 

fy = IGiij + \Edyikk - 3(G - GT) 
SjjSkltkl 

(9) 

where G, X£ are the usual elastic Lame constants, S# is the 
stress deviator, oe is the effective stress (in our problem <se = 
V3 Trt), and GT is the tangent shear modulus defined by 

where E is the elastic modulus and ET is the tangent modulus 
of the uniaxial stress-strain curve (and therefore a known 
function of the effective stress). The instantaneous moduli 
associated with (9) for the pure shear field are readily found as 

E _ vE 

\-v2 
Erf — 

\-vl 
Grf = G r = G( l —RT) 

(11) 

where 

tir — -
l - i ) 3 

i j r = ~rf (12) 

-(i=3, 
and v stands for Poisson's ratio. Inserting relation (11)-(12) in 
(5) and using definitions (6) gives the equation 

2(1 -v) r / w M \ 1 S 
V4w 

where 

Km,W(^).,=°<"> 
\-v2 

S = — — X. (14) 

A noteworthy observation here is that the moment-free condi­
tion (8) takes the usual elastic form 

w „ + v • 
w, = 0. (15) 

The second constitutive model employed in the present 
study is that of the J2 deformation theory whose rate form is 

°u = 2Gsey + \s8ijikk - 3(GS - GT) 
SySlcltkl 

where (Gs, \ ) are the secant moduli defined by 

Es . vsEs 
Gs=2(l+vs)

 s= {\ + vs){l-2Vs) 

v, is the secant Poisson ratio 

"'Hh"(-f-") EL 
E 

(16) 

(17) 

(18) 

and Es is the secant modulus of the uniaxial stress-strain 
curve. Notice that the secant shear modulus Gs is related to the 
secant modulus Es by an expression which resembles (10), 
namely 

G~G+ \E, EJ' 
(19) 

The instantaneous moduli obtained from the deformation 
theory follow as 

E„ = Em — -
1 

-=E, EH> = VSES G* = G(1-RT) (20) 

(the shear modulus Grt is identical with the one given by the 
flow theory). Substituting the moduli (20) in (5) and using the 
kinematical relations (6), we get the equation 
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The moment-free condition from (8) can now be rewritten as 

w 
wrr + vs-+ = 0. (22) 

r 

Thus, the buckling problem is governed by a partial dif­
ferential equation, (13) or (21), along the four homogeneous 
boundary conditions. That system has a nontrivial solution 
only for certain eigenvalues of the load parameter S (or X) and 
we wish to determine the smallest possible S = Scr which is 
identified with the buckling load. Unlike the analogous elastic 
buckling problem, equations (13) and (21) have coefficients 
(RT, Es, i>s) which vary along the radius in a way that depends 
on the particular stress-strain characteristics of the material. 

3 Solution and Examples 

Following the method of Durban and Stavsky (1982), we 
write the solution for the normal velocity at buckling as 

w = Re{0(7-)e""9) m integer. (23) 

Inserting (23) in the flow theory equation (13) results in the 
ordinary differential equation 

</>""+—(/>"'+ [2(1 -v)m2RT-\ -2m2] —z— 
r r 

+ [\+2ni1 + 2{\-v)m2(rR!r-RT)-imS\ - ~ 

+ [m4-4m2-2(l-v)m2(rR^—RT) + imS\ -^- = 0 (24) 

where the prime indicates differentiation with respect to r. 
Similarly, the deformation theory equation (21) is reduced to 

Es4>"" +— (rE's + EsW" +F2 - 1 - + (F.-imX) - ^ ~ 

+ (m2F0 + im\) -^- = 0 (25) 

where the radial functions F0, Ft, F2 are defined by 

F0 = -r2usEs"+r( -2rv's + 2vs + \)E's 

+ (-r2vs" +2r^-2vs-2 + m2)Es-4G(rR^ + 1 -RT) (26) 

Fx = r2 vsEs" + r(2rv^ - 2m2 vs - 1)4' 

+ (r2v^'-2m2rv's + 2m2vs + \)Es + 4m2G{rR'T+\ -RT) (27) 

F2 = r2E?+ (v, + 2)rE's - (2m2vs + 1)ES - 4 m 2 G ( 1 - R T ) . (28) 

The boundary conditions on function </> are now 

0 = 0 <t>'=0 (29) 

for a clamped edge and 

<j> = 0 4>"+v*-- = 0 (30) 
r 

for a simply-supported edge, where v* = v with the flow theory 
and v* = vs with the deformation theory. 

Equations (24)-(25), along with the proper boundary condi­
tions, can be solved by available numerical schemes based on 
the finite difference method. This procedure leads to a system 
of linear homogeneous equations with the requirement for 
vanishing of the system's determinant A at a nontrivial solu­
tion. The coefficients of that determinant are complex 
numbers but the roots (eigenvalues) of the determinant are 
real. The smallest root of A = 0 determines the critical eigen­
value Sa at which the plate will buckle. 

Sample calculations were performed for three materials 
represented by the Ramberg-Osgood relation 

where n, K are material constants. The radial profile of the ef­
fective stress follows from (1) and (14) as 

•--s-^X-f)'* 
Accordingly, the tangent and secant moduli become 

E I L 24(1 - v2) J V r ) -> 

E I L 24(1 -v2) J V r ) J 

All radial coefficients of equations (24)-(25) are therefore ex­
plicit functions of the radial coordinate r. 

The searching technique which has been used for.finding Sa 

is that of tracing the values of Re2 (A J + Im2 [A) for increas­
ing values of S until the smallest eigenvalue Smin is located with 
sufficient accuracy. This is done for given material constants, 
fixed geometry (h/a and b/a) and a chosen number m of cir­
cumferential waves. The procedure is then repeated with dif­
ferent wave numbers until the smallest (Scr) of the first eigen­
values (Smin) is determined. 

Figures 2(a)-2(b) show the variation of the critical eigen­
value Scr with the thickness ratio h/(b-a) for three metals. 
The uniaxial tension curve is described by (31) with the follow­
ing material constants: 

Buckling loads were computed for the radii ratio b/a-4.18, 
with the two J2 theories, and for clamped and simply-
supported plates. Comparison is made also with purely elastic 
buckling where (24) and (25) coincide with the equation, Dean 
(1924), 

< / > " " + — V -0.+2m2)~Xr- + {\ + 2m2-imS) -^r-
r rl r 

+ (m4~4m2 + imS)-^- = 0. (35) 
r 

Initially, for sufficiently thin plates, both theories predict the 
known linear elastic results: Scr = 88.3 for the clamped plate 
(Dean (1924)) and Scr = 52.7 for the simply-supported plate 
(Durban and Stavsky (1982)). For thicker plates, however, 
where buckling occurs in the elastoplastic range, there is a con­
siderable departure of the Scr versus h/(b-a) curves from the 
purely elastic values. The most striking finding that emerges 
from the curves displayed in Figs. 2{a)-2{b) is the increasing 

commercial aluminum: £=68700 MPa e = 0.3 A^l .27-10 1 0 n = 3.72 
AL2014T6: £=69000 MPa v = 0.33 iT=6.08-1031 n = 15.62 
STAISI4340: £=201000 MPa v = 0.28 # = 7 . 6 M 0 5 4 « = 27.6 

646 / Vol. 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t 
X --— FLOW THEORY 

w 
\ \ 

w 
w 

V 

COMMERCIAL 

ALUMINUM 

AL 2014 T6 

ST AISI 4 3 4 0 

DEFORMATION 
THEORY 

0.01 0 0 3 h 
b-o 

Fig. 2(a) Critical eigenvalues for clamped annular plates, b/a = 4.18 
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Fig. 2(b) Critical eigenvalues for simply-supported plates, b/a = 4.18 

difference, as the plate is getting thicker, in the prediction of 
Scr obtained from the two J2 theories. As expected, the defor­
mation theory gives lower eigenvalues than the flow theory, 
but the extent of the difference between the corresponding 
eigenvalues is not common in plastic buckling analysis. That 
difference appears to increase with the hardening parameter 
\/n. Similar results were obtained for the two cases of mixed 
boundary conditions with one edge clamped and the other 
simply-supported. The critical loads for these cases fall be­
tween the corresponding results of Figs. 2(a) and 2(b), and are 
somewhat higher when the inner boundary is clamped in com­
parison with a clamped outer boundary. The critical eigen­
values for thin plates, with mixed boundary conditions, were 
again found to be in agreement with the elastic analysis by 
Durban and Stavsky (1982). It is worth mentioning in this con­
text that the elastic buckling equation (35) admits an exact 
solution of the form </> ~ r" where a stands for the four roots 
of the characteristic equation associated with (35). Such a sim­
ple solution is not possible for the elastoplastic problem, since 
both (24) and (25) have radially varying coefficients. The only 
exception to this is the case of a linear-hardening material 
where ET is constant; the flow theory equation (24) is then of 
the Euler type and an exact solution, similar to that of (35), 
can be found. Note also that in the deep plastic range, where 

T]T< < 1, we have from (12) that RT^1 and the flow theory 
equation (24) then describes an elastic-orthotropic solid with 
nearly constant moduli. This explains the transition of the 
flow theory curves in Figs. 2(a)-2(b) to a constant asymptotic 
value of Scr. 

4 Comparison With Experimental Results 

We turn now to a comparison of the results of our 
theoretical analysis with the experimental data reported 
recently by Bauer (1987, 1988). In these tests several annular 
plates, with clamped boundaries, were subjected to in-plane 
torsion. The onset of buckling was determined by tracing the 
torsion-twist history and observing the formation of a buckl­
ing waves pattern. Critical loads were measured for a few 
metals over a wide range of geometries. 

Figures 3(a)-3(c) display the experimenal values for the 
critical torsion moment Mcr along with the corresponding 
theoretical predictions obtained from the two J2 theories. Also 
shown in Figs. 3(a)-3(c) is the background curve for purely 
elastic buckling (35). The critical torsion moment is related to 
our eigenvalue (14) by the expression 

vEh3 

M« = l2jmjS- (36) 

The stress-strain curves of the tension test for the metals used 
in the experiments can be described by (31) with the following 
constants (Lange and Bauer, 1987; Bauer 1987): 

CuZn36: 
AL 98.7W: 

E= 114400 MPa e = 0.33 A'=1.75«105 n = 
£=70000 MPa J> = 0 . 3 3 # = 8 . 9 5 . 1 0 " n-

ST 1403: £=210000 MPa 0.3 #=3.7.10 1 : 

;2.4 
;4.46 
4.9 

It is clearly seen from Figs. 3(a)-3(c) that the deformation 
theory predictions are generally in good agreement with the 
measured values for Mc r . Flow theory, by contrast, predicts 
buckling loads which are considerably above the experimental 
results. The difference between the critical torsion moments 
obtained from the two theories is emphasized more in Fig. 4 
which shows the ratio Mcr (theoretical)/Ma (experimental), 
for all three metals on a common scale. 

It is certainly possible that unavoidable initial imperfections 
will reduce the maximum load prediction obtained from the 
flow theory (Hutchinson, 1974). But from a purely practical 
point of view, the deformation theory analysis of the bifurca­
tion loads appears to be of sufficient reliability. The extent of 
the difference in the critical eigenvalues predicted by the two 
theories—for thick plates the ratio between the critical 
moments can reach an order of magnitude (Fig. 4)—provides 
a strong example of the "plastic buckling paradox." 

The discrepancy between the results for the critical loads, 
obtained from the flow and deformation theories reflects, of 
course, the corresponding difference in the magnitude of the 
instantaneous moduli. Indeed, while moduli (11) of the flow 
theory essentially retain their elastic values (except Gr6 which 
is the same in both theories), we find that the deformation 
theory moduli (20) are considerably below those of the flow 
theory (again, except Gr6). In the deep plastic range the ratio 
of moduli E-,j obtained from the two theories will be approx­
imately Es/E< < 1. A similar observation has been made in 
the analysis of elastoplastic buckling of the cruciform column 
(Hutchinson and Budiansksy, 1974). 

5 Buckling of a Long Strip in Pure Shear 

When the annular plate (Fig. 1(a)) becomes very narrow, 
with a—b, we may expect the critical load to approach that of 
a long strip (Fig. 1(b)) under uniform shear along the 
boundaries. The solution of the strip problem is fairly simple 
since, unlike the plate problem, the prebuckling field is 
homogeneous with rxy s T. The buckling equation is simply 
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Fig. 3(a) Critical torsion moment for CuZn36, clamped boundaries 
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h2 

12 lExxw,xxxx + 2(Exy + 2Gxy ) w ,xxy, + Eyy w ,yyyy\ 

- 2rwiXy = 0 (37) 

where (E^, Exy, Eyy, Gxy) are, with the usual notation, the in­
stantaneous moduli of the material. These moduli are here ex­
actly as in (11) for the flow theory, and as in (20) for the defor­
mation theory, except for the transformation of the (r, 8) 
directions to the (y, x) directions. 

The boundary conditions at the edges y- ±c are taken as 
either clamped or simply-supported and we write the solution 
of (37) in the form 

w = Re{f(y)e (38) 

where y is an unknown parameter. The boundary conditions 
can now be written as 

/ = 0 / ' = 0 at a clamped edge 

/ = 0 f" =0 at a simply-supported edge 

(39a) 

(19b) 

where here (and throughout this section) the prime denotes 
differentiation with respect to y. Inserting (38) in (37) we get 
the ordinary differential equation 

Eyyf"« -2(^f)2 (Exy + 2Gxy)f" 

<-J>*/' + (-f)
4^=o (40) 

where 

648/Vol. 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Mcr(THEORETICAL) 

Mcr (EXPERIMENTAL) 

I 8 r 

10 

x FLOW THEORY 

. DEFORMATION THEORY 

t i 
_j i 

O 20 4 0 60 80 100 120 140 160 
a -o 

h 

Fig. 4 The ratio Mcr (theoretical)/Mcr (experimental) for both theories, 
clamped boundaries 

- » ( • * - ) • 

X* = (41) 

Since the coefficients of (40) are homogeneous we can put the 
solution for/(>0 in the form 

/=£^«P(,--^) (42) 

where ap are the four roots of the characteristic equation 

Eyya* + 2y2{Exy + 2Gxy)a
2 + 7X*a + y4E„ = 0 (43) 

and Ap are the four integration constants. Compliance with 
the boundary conditions (39a) or (396) leads to a system of 
four algebraic equations for constants Ap. The requirement 
for a nontrivial solution of that system gives the eigenvalue 
equation for the critical load at which the strip will buckle. 

Calculations were made with a few metals (the same as those 
of Figs. 2(a)-2(b)) represented by relation (31). Since the effec­
tive stress is <re = V3~ T we find that the secant and tangent 
moduli are here given by 

Ej 

~E~ 

VJ X 4+-44H4-)] 3 (44a) 

The solution procedure is essentially the same as for the an­
nular plate problem, except that parameter y of (38) is here 
continuous. Results for the critical load parameter 

\-v2 

2E 
3(1-

(45) 

are shown in Figs. 5(a)-5(b) for three different metals. The 
behavior of S*t with increasing thickness is similar to what we 
have seen for the annular plate in Figs. 2{a)-2{b). In the elastic 
range, for thin panels, we recover the results of Southwell and 
Skan (1924): S*r = 22.18 for the clamped panel and S*r * 13.21 
for the simply-supported panel. In the plastic range S*r 
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Fig. 5(a) Critical eigenvalues for clamped panels 
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decreases with h/2c and there is again a considerable dif­
ference in the eigenvalues predicted by the two theories. 

Comparison of the critical stresses for the clamped annular 
plate and the clamped long panel is shown in Fig. 6 for two 
different materials. The eigenvalues for the annular plate 
represent in Fig. 6 the critical shear stress at the inner boun­
dary through the parameter 

2{\-v2) /b-a\ 
T =- •m Ta(.r = a). (46) 

The curves for the shear panel show the variation of S*r from 
(45) with the thickness ratio h/2c. In calculating the annular 
plate curves we have assumed that h/a is maintained constant 
so that rc r from (46) can be determined for every value of b/a. 
The variation of T„ with h/(b — d) is shown in Fig. 6 for 
decreasing values of b/a. It can be clearly seen that Tcr ap­
proaches asymptotically S*r as b/a~ 1 (implying that b — a~2c 
for the same thickness). Tct is always higher than S*r and the 
deformation theory curves are closer to the shear panel asymp­
totes in comparison with the flow theory and purely elastic 
curves. 

Since the instantaneous plastic moduli of the shear panel are 
homogeneous, it is possible to establish a formal cor-
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respondence with the buckling analysis of elastic orthotropic 
panels. That problem has been studied recently by Durban and 
Stavsky (1982), where references to earlier work can be found. 
Critical loads for the elastic orthotropic panel are presented 
through an eigenvalue k which, in the present notation and 
with E, yy~ is defined by 

V h > Exx 

The dependence of k on the material parameter 
F 

E = -
P'xy + 2(jxy 

(47) 

(48) 

is shown in Fig. 6 of Durban and Stavsky (1982) for the 
buckling of elastic orthotropic panels with various boundary 
conditions. These results can be made to fit to our problem 
(with E> 1) of plastic buckling, where the instantaneous 
moduli are load dependent, in the following way: Assuming 
a value for rcr, we find from (48) the associated value of E. 
The corresponding value of k is then obtained from Fig. 6 in 
Durban and Stavsky (1982), and (47) will determine the proper 
thickness ratio h/2c for the assumed critical stress rcr. Put dif­
ferently, we have from (45) and (47) the critical load 
parameter in the form 

-_(l-v2)k^L, (49) 

Sample calculations made by this method have shown a very 
good agreement with the curves of Figs. 5(a)-5(b) over the en­
tire elastoplastic range. Furthermore, simple and useful 
asymptotic approximations for the behavior of S*r in the 
plastic range can be deduced from the elastic-orthotropic 
curves. 

With the flow theory we get from (11)-(12), that in the 
plastic range, where RT~ 1, Gxy< <Exy. Hence, parameter E 
from (48) is nearly constant and equals E= \/v. Denoting the 
corresponding value of k by k(\/v), we find from (49) that 

SS=*(-f). (50) 

Thus, the flow theory results for S*r exhibit a transition from 
the linear elastic values to elastic-orthotropic values which re­
main constant in the plastic range. That phenomenon is con­
firmed by the curves of Figs. 5(a)-5(b) (see also Fig. 6), and 
the trend can be seen also from the annular plate results in 
Figs. 2{a)-2(b). For the three materials considered here we 
have the values of c = 0.3 for the commercial aluminum, 

y = 0.33 for AL 2014 T6, and i/ = 0.28 for ST AISI 4340. The 
corresponding values of k( \/v), as read from Fig. 6 in Durban 
and Stavsky (1982), are (17.3, 17.5, 17.2)2 for the clamped 
panel, and (9.80, 9.93, 9.63) for the simply-supported panel. 
These values agree with the asymptotic results for S*r in Figs. 
5(a)-5(b) to within less than a percent. 

With the deformation theory we find from (20), with the aid 
of (18), that in the plastic range, where vs« 1/2, E» l/ps~2, 
the critical eigenvalue follows from (49) as 

4(1 - v2) 
S*a = ' k(2) EL 

E 
(51) 

where k(2) is the elastic orthotropic value of k at E=2. In­
serting in (51) the power-law approximations of (44b) and us­
ing (45) gives the asymptotic approximation 

with 

* - * ' ->hs&-] (52) 

The elastic orthotropic values of k(2) are 18.6 for the clamped 
panel and 10.9 for the simply-supported panel. The values of 
coefficient B in the asymptotic approximation (52) for the 
three metals follow as (6.2.10"3 , 1.69-10-2, 1.81.10"2) for 
the clamped panel and (5.37-10^3, 1.63-10"2, 1.77.102) for 
the simply-supported panel. Comparison of (52) with the exact 
solution shows an excellent agreement (Figs. 5(a)-5(b)) in the 
plastic range. 

The elastoplastic buckling problem of shear panels has been 
investigated by Stowell (1948). Using a one term approxima­
tion for w, in conjunction with a minimum principle and the 
deformation theory, the critical load is determined by 

1 

sin20 
{2V/1 1 - -

1-c , 
sin224i 

+ 2/2[l + 2sin2</>- (1 - c 3 ) c o s 2 0 ] ] ^ - ( ^ ) * E, (53) 

where the wave angle 4> is found from the solution of the 
equation 

Numbers in brackets are for commercial aluminum, AL 2014 T6, and ST 
AISI 4340, respectively. 
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cos2</> = -
(3-c3) /2 

2V?\ 
(54) 

+ (3 + c3)/2 

• sin220 

Here c3 = (1 + ET/Es)/2 and (fltf2) are constants that depend 
on the boundary conditions. For clamped boundaries, 
/ , = 5 . 1 4 , f2 = \.2A, while for simply-supported boundaries, 
/ . = / 2 = l-

Now, for the Ramberg-Osgood materials (31) we have in the 
plastic range c3 « {n + \)/2n. The solution of (54) is then load-
independent, and for the three metals of Figs. 5(o)-5(£>) we 
find the shear angles <$> [rad] as (0.628, 0.621, 0.620) for the 
clamped panel, and (0.576, 0.564, 0.562) for the simply-
supported panel. Substituting these values of </> in (53), and us­
ing the power law approximation for Es, we recover again the 
asymptotic expansion (52) with identical power terms and vir­
tually the same values of coefficient B. Stowell (1948) has 
compared the theoretical predictions of (53)-(54) with the ex­
perimental measurements of Gerard (1948) on the buckling of 
24S-0 aluminum alloy shear panels. The agreement of the test 
data with the deformation theory predictions (53)-(54), over 
the range of thickness ratio 2c/h ~ 45 •*-103, reveals essentially 
the same picture as in Fig. 4 of the present paper. 
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Moderately Thick Angle-Ply 
Cylindrical Shells Under Internal 
Pressure 
Heretofore unavailable closed-form solutions are obtained for unbalanced sym­
metric as well as balanced unsymmetric angle-ply, moderately thick cylindrical shells 
subjected to axially varying (axisymmetric) internal pressure loading, under the 
framework of constant shear-angle theory (CST) or first-order shear deformation 
theory (FSDT), for any boundary condition. The solutions are obtained for four 
CST-based kinematic relations, which are extensions of the classical shell theories 
due to Donnell, Love-Timoshenko, Love-Riessner, and Sanders. The available CLT 
(classical lamination theory)-based solutions can be obtained from the present solu­
tions in the limiting case of the two transverse shear moduli tending to infinity. 
Numerical results have been presented for two layer and three layer angle-ply cylin­
drical shells with simply-supported edges and have been compared with the cor­
responding CLT-based analytical solutions and also the LCST (layerwise constant 
shear angle theory)-based finite element solutions. 

1 Introduction 

Laminated composite structures offer the advantage of high 
strength-to-weight and stiffness-to-weight ratios, corrosion 
resistance, fatigue (including sonic fatigue) life, and the 
possibility of optimum design through the variation of fiber 
orientation, stacking pattern and choice of fiber, and matrix 
materials (Calcote, 1969). Due to the low transverse shear 
moduli relative to the in-plane Young's moduli, the transverse 
shear deformation effects are more pronounced in laminated 
fiber-reinforced structures when compared to their isotropic 
counterparts under same loading. A number of analyses for 
laminated anisotropic shells, based on the classical lamination 
theory (CLT), which neglects transverse shear deformation 
altogether (Love's first approximation theory or Love-
Kirchhoff hypothesis) exist in the literature. Surveys of these 
analyses can be found in the works of Bert (1974a,b), 
Chaudhuri (1974, 1983) and Abu-Arja (1986). Dong et al. 
(1962) have formulated a theory of laminated anisotropic 
shell, which may be considered to be an extension of the work 
of Reissner and Stavsky (1961) on laminated anisotropic plates 
to Donnell's shallow shell theory. Cheng and Ho (1963) have 
presented a CLT-based analysis of laminated anisotropic 
cylindrical shells using Flugge's kinematic relations. Reuter 
(1972) has utilized Donnell's shallow shell theory in obtaining 
CLT-based analytical solutions for angle-ply cylindrical shells 
under the influence of uniform internal pressure and 
temperature. Balaraman et al. (1972) and Chaudhuri et al. 
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(1986) have obtained CLT-based closed-form solutions for an 
arbitrarily laminated cylindrical shell of finite length under 
uniform internal pressure, utilizing Love-Timoshenko's 
kinematic relations. The latter work also presents finite ele­
ment solutions, based on the LCST (layerwise constant shear-
angle theory, which assumes layerwise linear variation of the 
surface-parallel components of displacement), due to 
Chaudhuri (1983) and Seide and Chaudhuri (1987) for com­
parison. Bert and Reddy (1982) have presented exact solutions 
for bending under sinusoidal transverse loading of two-layer 
thin cylindrical shells of bimodulus material. Reddy (1984) has 
used the CST (constant shear-angle theory), also known as 
FSDT (first-order shear deformation theory), based on 
Mindlin-Reissner hypothesis, to present series solutions for 
cross-ply open shallow shells of cylindrical as well as doubly-
curved geometries utilizing Sanders' kinematic relations. 
Wilson and Orgill (1986) have studied parametrically the 
deformation behavior of uniformly-stressed orthotropic cylin­
drical shells. Hutchinson and El-Azhari (1986) have developed 
a series solution of the general three-dimensional equations of 
linear elasticity for studying vibrations of isotropic hollow cir­
cular cylindrical body with traction-free surfaces. A brief 
literature search reveals the nonexistence of exact solutions to 
the problem of closed lamianted shells of finite length, which 
incorporate either an approximate shear deformation theory 
(e.g., CST) or a three-dimensional elasticity theory into the 
formulation, even for such simple geometry as circular 
cylinder or such simple loading condition as uniform internal 
pressure. Recently, Abu-Arja and Chaudhuri (in review) have 
presented solutions for axisymmetric cross-ply cylindrical 
shells subjected to uniform internal pressure, under the 
framework of the CST. The purpose of the present study is to 
(a) obtain exact solutions for balanced unsymmetric as well as 
unbalanced symmetric angle-ply shear-flexible moderately 
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Fig. 1 Geometry of the cylindrical shell 

thick cylindrical shells, subjected to axially-varying internal 
pressure for arbitrary boundary conditions and (b) identify the 
nature of shear deformation behavior of these angle-ply shells 
by way of comparison with the available CLT-based analytical 
and LCST-based finite element solutions. 

2 Statement of the Problem 

The strain-displacement relations of a circular cylindrical 
shell (Fig. 1), subjected to axisymmetric loading are given by 
(Reddy, 1984) 

e, =£? + £*,; i2 = 4 + tl<2< i4 = e°\ 

e5=e°5; e6=eg + f/c6 (1) 

where, using d( . . . . )/dd = 0, because of axisymmetry 

ei="o,*; e°2 = w/R; e!| = <^-!>„/?; e°5 = w^x + 4>x; 

4 = vo,x> K{=<j>xy, K2 = 0 ; K6=4>etX + c0v0JR, 

(2) 

in which u0, v0 are the reference (middle) surface stretching, w 
is the transverse or radial displacement; <j>x, 4>e are the rota­
tions of the reference surface about 8- and x-coordinate axes, 
respectively. The x and ^-coordinates are equivalent to 1 and 
2-coordinates, respectively, and R is the mean radius of the 
cylinder. c0 is a constant and assumes the values of - 1 , 0, 
1/2, and 1 for extension of kinematic relations, based on 
Love's first approximation theory due to Donnell, Reissner, 
Sanders, and Timoshenko (Kraus, 1967 and Chaudhuri et al., 
1986), respectively, to the case of the CST. The equations of 
equilibrium for a circular, axisymmetric cylindrical shell sub­
jected to axially-varying internal pressure, p(x), are given by 
(Timoshenko and Woinowsky-Krieger, 1959) 

A ^ = 0; N^ + Qe/R^O; Ne/R-Qx,x=p(x); 

MX,X = QX\ Mxe_x = Qe; Nxe-Nex~Mex/R = 0; (3) 

where Nx,Ne, NSx, N^ are the stress resultants, Mx,Mg, Mx6, 
M

6x are moment resultants, and Qx, Qe are transverse shear 
forces, all per unit length. The stress resultants, moment 
resultants (stress couples), and transverse shear forces are ex­
pressed in terms of the reference surface strains and changes 
of curvatures and twist as follows: 

Nx = Auel+A^+A^el+BuKi+BuKj+BuKf, (4a) 

N„ = Al2e°l+A22e2
)+A26e

0
6+Bl2iil+B22K2+B26K6 (4b) 

Nrt = Al6e°i+A26e°2+A66e
Q

6+Bl6Kl+B26K2+B66K6 

+ (c0/K)(fl16e9 + B26e
0
2 + B66e°6 + D^ 

+ D26K2+D66K6) (4c) 

Nex = /l16e?+^26eS+/l66eg+B16K1-l-J?26K2+566K6 (4d) 

Mx = B l i e?+B 1 2e§+fl 1 6eg+Ai«i+A2«2+A6K6 (4e) 

Me = fl12e?+JB22e§+526eg+JD12K,+£>22/c2+Z>26«6 (4f) 

M6x = Ma=Bl6e
f{+B26el+BS64+Dl6Kl 

+ D26K2 + D66K6 (4g) 

Qx=A„e°,+A55e°5 (4A) 

Qe = KA4e°4+A45e°5 (4i) 

where Ay, By, and Dtj (ij= 1, 2, 6) are extensional, bending-
stretching coupling, and bending rigidities, respectively, while 
Ay (U = 4, 5) are transverse shear rigidities. 

3 Exact Solution of Balanced Unsymmetric Angle-Ply 
Cylindrical Shell 

Exact solution to the problem of a pressurized balanced un­
symmetric (for definition, see Reuter (1972)), angle-ply cylin­
drical shell is derived in this section for arbitrary boundary 
conditions. For this type of shells, 

Al6=A26=A,5=Bu=Bl2=B22 = B66=Dl6=D26=Q. (5) 

Substitution of equations (2), (4), and (5) into equations (3) 
will yield 

A11 «o,« + A12 WiX/R + (c0 + 1)£16 v0iXX/R 

+ Bi6QgiXX/AM = 0 (6a) 

Qe + c»B{iu0tXX + c0B26w,x/R-RBi6w:XXX + RBl6Qxxx/A55 

+ [(c0 + c2
0)D66/R + RA66]v0tXX + CoD^Q^/A^ = 0 (6b) 

A l2u0iX/R+A22w/R2 + (c0 + l)B26v0,x/R
2 

+ B26Qe,x/(RA4,)-QXtX=p(x) (6c) 

-Qx+B 16 Vo,xx - A 1 w,xxx + A 1 Qx,xx/A 55 = ° (6 c0 

- Qe + B16u0iXX + B26 W:X/R + (c0 + 1)2?66 v0iXX/R 

+ D66Qe,xx/Au = 0. (6e) 

Equation (6a), on integration, gives 

u0:X=-Al2w/(AuR)-(c0 + l)Bl6vOtX/(RAn) 

-Bi,QBtX/(AnAM) + Cx (1) 

where C, is an integration constant. Substitution of w0x, as 
given by equation (7) into equations (6b)-(6e), and then suc­
cessive elimination of v0, Qg, and Qx from the resulting four 
coupled ordinary differential equations (O.D.E.), will finally 
yield a decoupled seventh-order O.D.E in terms of w. This, on 
integration, will reduce to a sixth-order O.D.E. 

(AiD6 +A2D* +A3D
2 +AA)w = (A5D

4 +A6D
2 +A7)p(x) + C2 

(8) 
where the symbolic operator D" is defined by 

D"=d"/dx" (n = \, . . , 6) (9) 

and At (i= 1, . . , 7) are given by equations 041), while C2 is 
an integration constant. It is noteworthy that in the case of 
uniform internal pressure, p(x)=p0, the aforementioned 
seventh-order O.D.E. reduces a homogeneous O.D.E., which 
implies that the r.h.s. of equation (8) becomes merely an in­
tegration constant, C2. It is then evident that the solution, due 
to the uniform pressure, is a degenerate case of its counterpart 
due to axially-varying pressure loading, with C2=A7p0 + C2. 
The equation (8), on substitution of G13 = G23 — oo, reduces to 
its CLT-counterpart (Chaudhuri et al., 1986) which, for the 
case of uniform internal pressure, p0, is given by 

A\D6 +AZD* +A$D2 +At)w=A^p0 + C2 (10) 
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where Af(i = 2, 3, 4, 7) are as presented in equations 042). It 
may also be noted that 

A\= lim A^Q. 
G13 = G 2 3 - < » 

wc, the complementary solution of equation (8), is obtained 
by assuming w = e u , which yields the characteristic equation 

X6 + a,X4 + «2X
2 + a 3 = 0 (11) 

where 

ai=Ai+l/Al ( i = l , . . . 3 ) . (12) 

Considering \2 = m reduces equation (11) to a third-degree 
polynomial which can easily be solved (Korn and Korn, 1968), 

wc = < 

where au Pu yu mu and F are as given by equations (^43). 
Bj{i= 1, . . , 6) are integration constants and/ ;(x) are defined 
as follows: 

rs,cosh($,oc) + 5/+/sinh(*,-x) if /x, > 0 

Ux) = \ (14) 
lcB,cos($,x) + .B,+,sin(<I>,A:) if /x, < 0 ' 

with jx, (;'=!, 2, 3) being given by equations (̂ 44) and 
*, = VT^I. 

If p (x) is prescribed, wp, the particular integral of equation 
(8), can easily be obtained. For example, for the case 
P(.x)=p0, 

wp=A7p0 + C2. (15) 

Once the complete solution, w=wc + wp, is known, the re­
maining quantities, Qx, Qe, u0, and v0 can easily be obtained, 
which are as follows: 

Qx = hsw& + h6w:XXX + h1w,x (16a) 

Qs=JiW{5)+j2w:XXX+jiw:X (166) 

"o =J4W& +JsW,xxx +JeW,x +y'7Jw + (/s +J9Ci)x+ C3 (16c) 

H0 = &, w(5) + k2 wiXXX + k^wx + k4\w + (k5 + k6Ci)x+ C4 (16d) 

where C3 and C4 are integration constants, while /!,(*' = 5, 6, 
7 ) . Jt(i=l, • • , 9) and £,(/'= 1, . . , 6) are as given by equa­
tions (A 5). 

The ten integration constants, 5 , ( i = l , . . , 6) and 
Cj(i= 1, . . , 4), can be obtained by prescribing five boundary 
conditions at each of the ends {x = ±L/2) of the cylindrical 
shell. The five boundary conditions are chosen to be one 
member from each pair of the following equations 

(w,Qx) = (Mx,<t>x) = {Nx,u0) = (Nxe,v0) = (4>eMxe) = Q- (17) 

In the event the loading and the boundary conditions are sym­
metric, with respect to the central section of the cylinder, 

B2 = BA = B6 = C3 = C4 = 0 and the remaining five constants of 
integration are obtained from the prescribed boundary condi­
tion at one end only. 

4 Exact Solution of Unbalanced Symmetric Angle-Ply 
Cylindrical Shell 

Exact solution to the problem of a pressurized unbalanced 
symmetric (for definition, see Reuter (1972)) angle-ply cylin­
drical shell is derived in this section for arbitrary boundary 
conditions. For a symmetric angle-ply shell, 

.4 4 5 =0; B0 = 0 (/,/= 1,2,6). (18) 

Substitution of equations (2), (4), and (18) into equations 
(3) will yield 

AuUo,xx+A12WiX/R+Al6v0iXX = 0 (19a) 

Qe+RAl6u0tXX+A26wiX-c0Dl6w 
,xxx •*" C(P\iQx,xx'-^ii 

+ [c0(c0 + l)D66/R+RA66]i>0:XX + c0D66Qe:XX/A,4=0 (196) 

Antioj/R +A22w/R2 + A26v0yX/R = QXtX =p(x) (19c) 

-Qx-DuwtXXX+DnQXtXX/AS5 + (c0 + l)Di6v()tXX/R 

+ D16Q0:XX/Au = 0 (19d) 

- Qe -Dl6W:XXX+Dl6QX:XX/A55 +D66Qe,xx/A44 

(c0 + l)D66v0<xx/R = 0. (19e) 
The system of five coupled O.D.E.'s is solved following the 
procedure presented in the preceding section. The form of the 
resulting sixth-order O.D.E., in terms of w and its derivatives, 
is identical to its counterpart of the unsymmetric case. In the 
interest of brevity the details of the solution, which are 
available in Abu-Arja (1986), will not be presented here. 

5 Numerical Results 

Before obtaining numerical results for moderately thick 
angle-ply cylindrical shells, thin unidirectional (R/t= 100) 
shells of the same ply material and of otherwise the same 
geometry, were investigated. The three theories—CLT, CST, 
and LCST—predicted almost identical results. It is therefore 
presumed that any difference in the predictions of these three 
theories, in the case of moderately thick angle-ply shells, can 
be attributed to the effects of thickness and of varying fiber 
orientation from layer to layer. 

The present study investigates, as the first example, a two-
layer balanced unsymmetric cylindrical shell with fiber orien­
tations of the layers, —6/6. The layers are of equal thickness. 
The inner layer makes an angle, —6, negative sign implying 
clockwise sense with respect to the positive direction of the 
generator (x-axis). The length, L, of the cylindrical shell and 
Young's modulus, Ex, in the direction parallel to the fibers are 
5080 mm (200 in.) and 275.8 GPa (40x 106 psi), respectively. 

Blsinh(Plx)sm(alx) + B2smh((3lx)cos(a1x) + BiCOsh(Plx)cos(alx) + 

fi4cosh((31x)sin(a1x) + fi5COsh(71jc) + iS6sinh(71x) if F>0 and w, > 0 

Blsmh(l3lx)sm(aix) + B2smh(l3lx)cos(alx) + B3cosh(j3lx)cos(alx)+ (13) 

B4cosh(fi1x)sm(alx) + B5cos(y]x) + B6sin(jiX) if F > 0 and m, < 0 

£//<*> ifF<° 
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Fig. 2 Variation of displacement, w, along the axial direction of cylin­
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Fig. 3 Variation of u0 and v0 displacements along the axial direction of 
the cylindrical shell for - 4 5 deg/45 deg lamination 

The other geometric and material parameters are given in the 
nondimensional forms as follows: 

L/R = 20; R/t = 5 so that L/(Rt)W2 = 44.72 

£1 /£2 = 40;G12( = G13 = G23)/£2 = 0.5; 

v12( = vn = v2j) = 0.25. 

In the previous equation t is the wall thickness. E2 is the 
surface-parallel Young's modulus transverse to the fiber direc­
tion. G12, G13, and G23 denote surface-parallel and transverse 
shear moduli, respectively, while vxl c13, and i>23 are surface-
parallel and transverse major Poisson's ratios, respectively. 
The material properties assumed here are the same as those of 
Spilker et al. (1976). 

Although the procedure is applicable to an arbitrary choice 
of the admissible boundary conditions, as has been mentioned 
earlier, space limitation forces the present study to limit itself 
to only one type. The cylindrical shell is assumed to be simply-
supported with SSI type (Chaudhuri, et al., 1986) boundary 
conditions, which are given by 

w( ± L/2) = Mx{ ± L/2) = Nx( ± L/2) 

= Nxe{±L/2) = 4>e(±L/2) = 0. (20) 

Figure 2 shows the variation of displacement, w, along the 
axial direction of the cylinder for -15 deg/15 deg, -45 
deg/45 deg, and -75 deg/75 deg laminations. These plots 
compare the present CST solution with the CLT-based 
analytical and the LCST-based finite element solutions. It may 
be noted that the three solutions (CLT, CST, LCST) have the 
same displacement, w, in the central region, because of the 
predominance of membrane action in this region. However, 
the plots show disagreement among the three solutions in the 
edge region. The reason behind this is that the bending action 
predominates in this region, which brings into action the dif­
ferent transverse shear deformation effects approximated by 
zero, constant, and layerwise constant shear deformation 
theories. It may be noted that the difference between the CST 
and LCST solutions (Fig. 2), for the same thickness, first in­
creases as 6 increases and then decreases until the two solu­
tions become identical for 0 = 90 deg (Abu-Arja, 1986). Figure 
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Fig. 6 Axial variation of displacement, w, of three-layered 01—618) 
cylindrical shells for 0 = 15 deg, 45 deg, and 75 deg laminations 

3 shows the variation of w0 and v0 displacements along the ax­
ial direction of the cylinder for -45 deg/45 deg lamination. 
These plots show that the three solutions are the same in the 
membrane region, while they disagree in the edge region, due 
to transverse shear effects they approximate. The axial varia­
tion of longitudinal stresses, <JX, for -45 deg/45 deg lamina­
tion, is exhibited in Fig. 4. These plots show that ax is negligi­
ble in the central region, where the three solutions are almost 
equal. However, ax becomes significant in the edge region, 
where the aforementioned disagreements among the three 
solutions, are also observed. Figure 5 shows the axial variation 
of ae for the three solutions with -45 deg/45 deg lamination. 
It may be noted that the behavior of ag here is different from 
the behavior of ae for the cross-ply laminates (Abu-Arja and 
Chaudhuri, in review). While ae behaves like w for cross-ply 
laminates, ae behaves differently for -45 deg/45 deg because 
of bending-twisting coupling effect. 

The second example is a three-layer, unbalanced symmetric 
cylindrical shell with fiber orientations of the layers, 6/-6/6. 
The layers are of equal thickness. The length, radius, and 
thickness of the shell, and the material properties of a layer 
and the boundary conditions are identical to those of the two-
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Fig. 7 Variation of u0 and v0 along the axial direction of the cylindrical 
shell for 45 deg/-45 deg/45 deg lamination 

layer balanced unsymmetric shell. Figure 6 shows the axial 
variation of displacement, w, of the cylinder for 8 = 15 deg, 45 
deg, and 75 deg laminations. These plots compare the present 
CST solution with CLT and LCST solutions. As has been seen 
earlier, the three solutions have the same displacement, w, in 
the central region, while they disagree in the boundary region. 
The reasoning is the same as stated in the preceding 
paragraph. It is interesting to observe that the CST solution is 
closer to its CLT counterpart for symmetric lamination (Fig. 
6) than for antisymmetric lamination (Fig. 2). The reason 
behind this is that the shear angle changes drastically from 
layer to layer and that it changes twice for the symmetric 
lamination while it changes once for the antisymmetric 
lamination, for the laminates studied in this investigation. 
This variation can be accounted for by the LCST, while the 
CST considers only constant shear deformation through the 
entire thickness. Figure 7 shows the variation of w0 and v0 
along the axial direction of the cylinder for the three solutions, 
with 45 deg/-45 deg/45 deg lamination. These plots are 
similar to their counterparts for the anitsymmetric shell. Axial 
variation of the stresses, ax and a8, are exhibited in Figs. 8 and 
9, respectively. It is interesting to observe that the CST yields 
stresses, which are identical to those given by the CLT, while 
considerable disagreement between the CST-based analytical 
solution and the LCST-based finite element solution is observ­
ed. This has been observed in the case of unbalanced sym­
metric angle-ply plates by Chaudhuri and Seide (1987, to ap­
pear). This behavior is unlike the case of balanced unsym­
metric shell of identical thickness, where the CST solution is 
almost identical to its LCST counterpart, while considerable 
disagreement exists between the CST and the CLT. The reason 
behind this difference of behavior of the two types of lamina­
tions is the aforementioned change of shear angle from layer 
to layer and insensitivity of the CST to that change. 

6 Summary and Conclusions 

Heretofore unavailable closed-form solutions are presented 
for unbalanced symmetric and balanced unsymmetric angle-
ply cylindrical shells, subjected to axially-varying (axisym-
metric) internal pressure loading, under the framework of 
FSDT or CST, for arbitrary boundary conditions. A constant 
term c0, introduced in this paper, assumes the values of - 1 , 0 , 
1/2, and 1 for extension of classical theories, due to Donnell, 
Love-Reissner, Love-Sanders, and Love-Timoshenko, respec­
tively, to the CST. The currently available CLT-based solu­
tions can be easily obtained as a limiting case of the present 
solution with G13 = G23~co. Furthermore, it is interesting to 
observe that the decoupled O.D.E. in terms of w (resulting 
from the five coupled O.D.E.'s after successive elimination of 
"o> vo> Qe> a nd Qx) f° r t n e case of uniform internal pressure, 
p0, becomes a degenerate case of the same due to axially-
varying pressure, p(x). 

Numerical results using the CST have been presented for 
two-layer unbalanced symmetric and three-layer balanced un­
symmetric angle-ply cylindrical shells. Comparison of the 
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results with the CLT-based analytical and LCST-based finite 
element solutions suggests that, while they agree in the central 
(membrane) region, as expected, some disagreement among 
them has been observed in the edge (bending) region, due to 
the varying degrees of shear deformation effects approx­
imated by the different theories inherent in these solutions. 
Furthermore, comparison of the stresses for the two types of 
angle-ply shells of identical thickness indicate different types 
of shear deformation behavior in these two shells. For the 
thickness and fiber orientations considered in the present in­
vestigation, the present CST-based solution in the case of the 
balanced unsymmetric shell is almost identical to its LCST 
counterpart while exhibiting disagreement with the corre­
sponding CLT-based solution, whereas in the case of the 
unbalanced symmetric shell investigated, the CST and CLT 
solutions are identical, while considerable disagreement is 
observed with the corresponding LCST solution. This suggests 
that while the former case exhibits nearly constant transverse 
shear deformation through the laminate thickness, significant 
layerwise variation of this shear deformation occurs in the lat­
ter case, to which the CST is totally insensitive and the LCST 
is one of the viable alternatives to the three-dimensional 
elasticity theory. Solutions presented herein should serve as 
bench mark results for future comparisons. 
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A P P E N D I X 

Definitions of Certain Constants Referred to in the 
Test: 

y4 1=e 4e 9e 5 -e ,e 8e 9 ; A2 = ele6el0-eie2 

+ e3e9e5 + eAe6 - e2e5el0 - e ^ e , - e8e9; 

^3 = - e i e m + e6ew - e 7 e 2 - e4 + e3e6 -e 7 e 9 ; 

AA= - e 1 0 - e 3 ; 

A5 = (e2e5c5+ele9cl-ele6c5-e5e9b2)/b1; A6 = (elcl 

+ e2c{ +e{e5-e6c5 -e 6 b 2 ) /b 7 ; A-, = (c5 + b2)/b-, 

where 

el=bA-b2bi/b1\ e2 = b3+b2/b1\ e3 = bl-b2b6/b1; 

e4 = b5; e5=-Bl6bg/b1; e6 = c3 + B16/b7; 

^=-B16b6/b7; e8 = c2; e9 = e5 /67 ; ew = cA-b(lc5/b1 

b3 = RB{6/A5i; b, = c0D66/Au - c0fi?6/(XH/l44); 

b5=-RBl6; b6=A22/R
2~A2

2/(R
2An); 

b1 = (c0 + l)[B26/R
2-A12B]6/(R

2Au)]; 

bs=B26/RAu- Al2Bl6/(RAnAu); 

b9=Al2/R; Ci=Bl6; c2=-Dn; c3=Du/AS5; 

c4 = bsA44; 

cs = (co+i)[fl«/*-fli^n)l; c6 = vc 0 (Ai) 
A*2=Dn-[AnB

2
6]/[Au(A66 + 4D66/R

2)-4B2
6/R

2]; 

A*3 = [4AnBl6B26-4Al2B
2
6]/[Au(A66R

2+4D66) 

-4B2
6/R

2] 

A*4=A22/R
2 - [A2

l2(R
2A66 +4D66) - 8Al2Bl6B26 

+ 4AnB
2
6]/[An(A66R* + 4D66R

2)-4B2
6R

2] 

Aij =1.0 (A 2) 

Hx = -a\/l + a2\ # 2 = 2 [ a 1 / 3 ] 3 - a 1 « 2 / 3 + «3; 

F=[Hl/3]i + [H2/2]2; 

H3 = [-H2/2 + VF]v>; H4 = [-H2/2-y[F]v>; 

mx = H3+H4-ax/1; 

m2,3 = [-(H3 + H4)/2-o,/3] ±i[(H3 -H4)/2\[3] = r±is; 

«i = [ ( - ' - + V/-2+52)/2]' / l; / ^ [ ( r + V r ^ T s 2 " ) / ^ ; 

7 i = V l w , l (A3) 

with 

b, = -c0B16Al2/(AnR) + c0B20/R; b2=RA66 

-c0(c0 + l)[B2
6/(RAu)-D66/R]; 

M i = 2 V - # , 7 3 cos(a2/3); 

JU2I3 = - 2 \ f ~ H ! / 3 cos(a2 /3±60 deg) 

where 

hs-

h-,--

ht-

Je = 

Ji~-

k2 = 

k3-

k5 = 

where 

gr-

£4 = 

#7 = 

h2 = 

h = 
k7 = 

cos(a2) = / / 2 / ( 2V- ( i / , / 3 ) 3 ) 

---h2gs/hs; h6= - \h2 (g5 h, + g6) + g1 + h3gs\hi; 

= -[/!3(g5 /! ,+g6) + g s]/ /!8 ; 

••hiigshi+gf,)-!; ji=e9hlh5; j 2 = e9hlh6 + e9h2; 

-e9hlh1+e9h3 +e10; 

--h5/bn = bj^/bj; j5 = h6/b-, = bj^b-,; 

-- h-,/^ = bJi/b^, y7 = - b6/b7 

'-Po/b-,; jg=-b9/b1; kl=k1j4 + ksjl; 

: K7J5 + kill > 

•kjje + kji; k4 = k1j1-An/(AnR); 

• KlJs; *6 = *7./9 + ^ > 

(A 4) 

e,e9; g2 = e2+e9; g3=e,e1 0 + e4; 
e 3 + e l 0 ; gs=e5e9; g6 = e6; 

e5eio + e8; g 8 =e 7 ; hl = \/h4\ 

{-Sigi+gigiV{h4g{)\ 

( - gggi + g$gA)/{h4gi; h4=g6-g5g2/gl; 

-(c0 + l)Bl6/(RAn); k,= -Bi6/(AnA44). (A 5) 
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Active Parameter Control of 
Nonlinear Vibrating Structures 
A simple, yet efficient method is presented for the on-line vibration control of 
nonlinear, multidegree-of-freedom systems responding to arbitrary dynamic en­
vironments. The procedure uses nonlinear auxiliary mass dampers with adjustable 
motion-limiting stops located at selected positions throughout a given nonlinear 
system. A mathematical model of the system to be controlled is not needed for im­
plementing the control algorithm. The degree of the primary structure oscillation 
near each vibration damper determines the damper's actively-controlled gap size and 
activation time. By using control energy to adjust the damper parameters instead of 
directly attenuating the motion of the primary system, a significant improvement is 
achieved in the total amount of energy expended to accomplish a given level of 
vibration control. In a related paper, the direct method of Lyapunov is used to 
establish that the response of the controlled nonlinear primary structure is Lagrange 
stable. Numerical simulation studies of several example systems, as well as an ex­
perimental study with a mechanical model, demonstrate the feasibility, reliability, 
and robustness of the proposed semi-active control method. 

1 Introduction 
Analytical and experimental studies have shown that a class 

of nonlinear auxiliary mass dampers, known as impact 
dampers, may be more efficient than the conventional (linear) 
dynamic vibration neutralizers in attenuating the response of 
oscillating structures subjected to nonstationary, wide-band 
random excitation. The main factor for the effectiveness of 
properly designed impact dampers in limiting the vibrations of 
structures emanating from arbitrary dynamic environments is 
that the relatively small damping forces generated by the im­
pacting (auxiliary) mass introduces chaos in the primary 
system response by disorganizing the orderly process of 
amplitude buildup, thus significantly reducing the structural 
response. 

However, as in any passive device, even when the 
characteristics of a particular damper have been optimized for 
a given operating condition, its vibration damping efficiency is 
limited in handling wide-band excitations due to the inability 
of continuously adapting its governing characteristics to the 
evolving environment. This limitation of passive dampers is 
particularly pertinent in applications where not only the rms 
level of the response but also the peak levels of the primary 
structure response are of concern, as is the case in most struc-
tual applications. 

Motivated by the above discussion, the authors have 
developed and implemented two on-line active control 
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algorithms (henceforth referred to as Methods 1 and 2) that 
utilize pulse generators to emulate the action of optimally 
designed impact dampers, to suppress the vibrations of linear 
as well as nonlinear multidegree-of-freedom (MDOF) flexible 
structures responding to arbitrary dynamic environments 
(Masri et al., 1981, 1982). 

The aforementioned on-line control procedures have been 
shown to be quite effective in greatly reducing the rms 
response as well as the peak response of vibrating structures 
even when the excitation is nonstationary wide-band random. 
This significant improvement in efficiency is achieved because 
the active control algorithms under discussion are designed to 
maximize the influence of the control actuators either by (1) 
optimizing the relative magnitude of the control pulses 
(Method 1) or by (2) choosing the optimum time for applying 
the control forces (Method 2). Both methods assume the 
availability of an external energy source to produce the control 
pulses on demand. 

Since in many practical cases the amount of energy available 
for control purposes is limited, the present study explores an 
alternate pulse-control strategy that economizes the use of 
control energy. This is accomplished by devising an on-line 
control procedure that attempts to optimize the parameters of 
incorporated impact vibration dampers attached to different 
locations within the vibrating flexible structure. Instead of us­
ing mass-ejection techniques (or equivalent methods) to direct­
ly furnish the needed control forces, an internal mechanism of 
momentum transfer between the primary structure and the 
auxiliary masses is employed. It is shown that the trade off be­
tween vibration damping efficiency and control energy 
economy does not lead to a major deterioration in the overall 
vibration reduction of the primary system as compared to 
what can be achieved with fully active pulse-control methods. 
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Actuator i 

^ O x ( t ) d fcJ,X(t) 
Actuator i 

Fig. 1 Model of arbitrary, nonlinear MDOF system under directly ap­
plied dynamic loads p(t) and/or interface motions °x(t) that is provided 
with a number of active vibration controllers. Vectors ^x(t) and 2x(t) 
define the absolute displacements of the primary and secondary 
system, respectively. The mass of actuator number / is designated by 
2 m,. 

Section 2 of this paper formulates the problem and presents 
the semi-active control algorithm, Section 3 presents 
numerical simulation results to demonstrate the effectiveness 
of the proposed control strategy under a wide variety of situa­
tions, and Section 4 presents some experimental results with a 
mechanical model to demonstrate the feasibility of the pro­
cedure under laboratory conditions. A stability analysis of an 
idealized version of the semi-active device is available in the 
work of Karyeaclis and Caughey (1987). 

2 Formulation 

Consider the arbitrary, nonlinear multidegree-of-freedom 
system shown in Fig. 1 under directly applied dynamic loads 
p(t) = (pi, p2,...,p„)T a n d / o r support motions 
°x(0 = (°x,, °x2, . . . , °x„0)

T. The equation of motion for 
such a system can be expressed as 

Mn
lx + Cu

lx + Kn
lx + Ml0°x 

+ Cl0H + Kl0°x + fN(x,x,t) = p(t) (1) 

where 

'x(0 

°x(t) 

Mn.Cn.Ku 

= ('*!, lx2, • • • , lx„x)
T is the system 

displacement vector, 
= (°xu °x2 °xni)

T is the support 
displacement vector, 

= matrices, possibly function of time, 
each of order («, x nx), that charaterize 
the inertia, damping and stiffness 
forces associated with the nx system 
degrees-of-freedom, 

Ml0, C10, Kl0 = matrices, possibly function of time, 
e a c h of o r d e r (nxxn0), t h a t 
characterize the inertia, damping, and 
stiffness forces associated with the in­
terface motions, 

iN(x,x,f) = an «] column vector of nonlinear, non-
conservative forces involving lx(t) as 
well as ° x ( 0 . and 

p (t) = an «, column vector of directly applied 
forces. 

Assuming, without any loss of generality, that the system 
mass matrix is diagonal allows equation (1) to be expressed in 
the form 

X ' ^ + VX'x, °x, lx,°x)=piU); i = l , 2, . . . , « „ (2) 

where 

(4) 

x„ )T = auxiliary masses displace-

'm, is the mass associated with the system degree-of-
freedom /, and 
'/, is the "restoring force" associated with system DOF i 
arising from passive interactions. 

If the nonlinear system under consideration is now provided 
with a number (n2) of active vibration dampers distributed 
throughout the vibrating structure, then the n2 equations of 
motion of the involved DOFs will change from the form of 
equation (2) to 

' « / * , + ' /yO*. °x, >x, °i)-2fj{Zj. Zj)=Pj(t); 

j=\.2.....n2. (3) 

Additionally, the passive system's «, equations of motion will 
have to be augmented by n2 equations that govern the motion 
of the active vibration dampers: 

2mj2Xj + 2fj{Zj,Zj)=Pj(t); j=l,2, . . . , n2, 

where 
2x(t) = {2xu

2x2, . . 2 

ment vector, 
ZjU) = 2Xj(t) — xXj(t) is the displacement of damper 2mj 

relative to 1mj, 
2rrij = mass of auxiliary damper j , and 

2fj = interaction forces arising from the presence of 
damper j . 

It is seen from equations (1) through (4) that the following 
convention is followed in the choice of notation: left 
superscript (0) pertains to the nQ interface (support) DOFs, left 
superscript (1) pertains to the «, passive system DOFs, and left 
superscript (2) pertains to the n2 auxiliary mass dampers' 
DOFs. 

Consider now the class of nonlinear auxiliary dampers that 
resemble dynamic vibration neutralizers (DVN) with resilient 
motion-limiting stops. The performance of such devices under 
a variety of excitations is available in the work of Masri 
(1972). The influence of this class of devices on the primary 
system to which they are attached can be expressed as: 

2fj(Zj,Zj) =2mj2qj(Zj,Zj,J6y, j=l,2, . . . , n2. (5) 

where 2qj, the normalized force associated with damper 2m}, 
is given by 

2qj (Zj,Zj,J0) = gj (zj.dj) + fij (Zj.Zj.dj) + r} (Zj.ij). (6) 

and the three terms appearing on the right-hand side of equa­
tion (6) are: 

gj{Zj, dj) = nonlinear conservative force arising from 
the contact of damper 2rrij with its con­
straining (limiting) stops of characteristic 
dimension dj, 

hj(Zj.Zj.dj) = nonlinear nonconservative force arising 
from the contact of damper 2nij with its 
stops, and 

rj(Zj,Zj) = nonlinear nonconservative forces arising 
from the coupling mechanism between 
damper 2/M, and its attachment location 
ltrij when the motion-limiting stops are 
not engaged. 

To help interpret the various force terms appearing in the 
general damper representation of equation (6), consider the 
following special cases. 

2.1 Special Cases. 

Case (1); Dynamic Vibration Neutralizer (DVN): This 
widely used linear damper (also known as the ' 'vibration ab-
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sorber" or "Frahm damper") employs a linear elastic element 
and, quite often, a linear viscous damping element to couple 
the auxiliary mass to the oscillating structure. Thus, for this 
case 

2qj(Zj,Zj,J9)=J0iZj+J62Zj, (7) 

where 
J8] = stiffness coefficient of the coupling spring, and 
J62 = damping coefficient of the coupling dashpot. 

Comparing equation (7) to the general form of equation (6) 
yields 

*;(.) = 0, (8) 

hj{.) = 0, and (9) 

r,(.) = JdiZj+
je2Zj. (10) 

Case (2); Nonlinear Vibration Neutralizes In this class of 
dampers, the coupling element between '/«, and 1mj has 
nonlinear characteristics involving the stiffness and/or damp­
ing terms. For example, when polynomial-like nonlinearities 
exist, if the spring has hardening stiffness and the damping 
forces are a quadratic function of the relative velocity, the 
three generic components of the damper force appearing in 
equation (6) become: 

gj(-) = 0, (11) 

*/(•) = 0, (12) 

/•/•) = %Zj +%Zj+%zf +%i2 (13) 

Case (3); Impact Damper: In an ideal impact damper 
which is moving freely in a container with a stiff, resilient 
stops, the components of equation (6) assume the form 

«/(•) = ^i[Z/-sgn(«,y»3]«( \zj\-%), (14) 

hj(.)=J62ZjU(\Zj\-je3), (15) 

rj(.) = 0, (16) 

where 
J6l = stiffness of the slightly resilient damper stops, 
Jd2 = equivalent viscous damping coefficient involved 

during impacts, 
J03 = impact damper clearance, equal to one half of 

the total gap size in the passive damper, 
sgn(.) = indicates the algebraic sign of its argument, and 
u(.) = unit step function defined by: 

f l if a > 0 , 
u(a) = ] 

L 0 i f « < 0 . 

Notice that, in this case, no coupling exists between the col­
liding masses when the relative displacement of the auxiliary 
mass is less than the available gap; consequently, the coupling 
force /•_,•(.) is zero. 

Case (4); Nonlinear Vibration Neutralizer With Motion-
Limiting Stops: This device combines features of the con­
ventional DVN and the impact damper. In the terminology of 
equation (6), it is responsible for the following forces: 

g,(.) = Je][Zj-sgn(zj)
Je3)u( \zj\-Jd3), (17) 

hj(.) =Je2ZjU(\zj\-%), (18) 

rj(.) =Je4zJ+JeiZj, (19) 

where it is recognized that forces gj and hj are identical to the 
corresponding terms in Case (3), and force rj has the same 

form as in Case (1). Notice that, here, parameters J6{,
 J62 and 

i6i govern the performance of the damper in its nonlinear 
range of motion (i.e., when the available gap is exceeded), 
while parameters J64 and J65 determine the behavior of the 
damper within its linear range. 

2.2 Optimization Procedure. Consider again the 
nonlinear system whose oscillations are to be attenuated: 

^mi
1xi+

lfi=PiU); i=l,2, . . . , K i - « 2 . (20) 

1mJ
lXj + iZj + lfj-2fj=Pj(tV, 

y' = « , - « 2 + l, . . . , « ! , (21) 

2mk
2xk + 2fk=0; £=1 ,2 n2. (22) 

Let y(t), an nx column vector, denote a measure of the 
primary system response of interest. For example, if the struc­
tural deformations with respect to a moving base are of con­
cern, y(t) can be composed of a combination of the primary 
system relative displacements and velocities. On the other 
hand, if peak deformations are of interest, the entries in y can 
correspond to the maximum deformations of designated loca­
tions. Hence, the response of the dynamic system with 
dampers whose motion is governed by the (n i + n2) equations 
given in equation (20)-(22) can be expressed as: 

y(t)=yC626,. . . ,"26). (23) 

Let the cost function to be minimized be 

JC»,2e "26)= ['0 + 7°Pt yT(t)Wy(t)dt, (24) 
J'o 

where W is an arbitrary weighting matrix. 
In principle, the optimization task is now reduced to seeking 

the set of damper parameters which will minimize J over the 
response segment Topt. When this optimization is performed 
once "off-line" for the whole response record, the result is an 
optimized set of passive damper parameters. However, as 
mentioned in the introduction, passive dampers, even when 
optimally designed for a particular situation, may have limited 
effectiveness when operating under wide-band excitations. 

On the other hand, the continual optimization and adjust­
ment of the damper parameters (fully active control) requires 
the "on-line" solution of equation (24) and the continuous 
feedback of the results to the control actuators. This ap­
proach, while mathematically appealing, is not feasible for a 
variety of reasons, the leading one of which is the demanding 
analytical and computational effort required to determine (let 
alone adjust) the optimum damper parameters in a small frac­
tion of the structure time constant. 

This study presents a compromise solution of the two con­
trol options discussed above: (1) passive dampers initially 
optimized off-line, and (2) fully-active optimized dampers 
with continuous feedback control. The alternate option of this 
paper is to trade degraded optimization (i.e., open-loop, 
suboptimal control) for ease of implementation in real life 
engineering situations with actual hardware. 

The motivation behind the proposed control algorithm is 
the observed behavior of passive impact dampers configured 
in the form of dynamic vibration neutralizers with motion-
limiting stops. When one such passive damper is attached to 
an oscillating primary system undergoing transient excita­
tions, the auxiliary mass will sustain repetitive (possibly 
chaotic) impacts on different sides of its container. The 
number, location, and intensity of these irregular impacts is a 
highly nonlinear function of the system characteristics and the 
nature of the excitation. The ensuing plastic deformations, 
Coulomb friction, and momentum transfer between the two 
masses during collisions tend to reduce the vibrations of the 
primary system. 
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Fig. 2 Transient response of a linear SDOF system provided with a 
passive impact damper and subjected to swept-sine excitation. A 
representative segment of the primary system response between two 
consecutive impacts separated by a time period Topt is considered. The 
plotted curves show the variation of the indicated quantity with the gap 
size d, all other parameters remaining the same. The primary system 
ratio of critical damping is 0.05. The impact damper mass ratio is 0.10 
and its coefficient of restitution is e = 0.75. Notice that the time incre­
ment Topt varies with the gap size, (a) Momentum transfer between the 
colliding masses at the end of the observation time segment from (0 to 
'o + ropt! V>) Pe a k v a l u e °' t n e primary system displacement; and (c) 
RMS value of the primary system displacement. 

If the time of occurrence of one of these impacts is used to 
define a reference time t0, then the variation of the peak and 
rms levels of the primary system response with the gap size 
that governs the time of occurrence of the succeeding impact 
will be as indicated in Fig. 2. 

Since the predominant mechanism that governs the interac­
tion between xmi and 2mt is momentum transfer, it is 
reasonable to expect a strong dependence of the criterion func­
tion 7(.) on the discontinuity in the velocity of ' i , and/or 1xi 
during the impact process. This expectation is borne out by the 
results depicted in Fig. 2, where the value of the momentum 
transfer is superimposed on the graph of the constituents of 
7(.). 

It is thus clear that, at least for the example problem shown 
in Fig. 2, optimizing /(.) is practically identical to seeking an 
extremum value of the momentum transfer involved in the im­
pact process. For the class of problems under discussion, this 
condition is equivalent to having an impact occur when the 
primary system's velocity is at its peak value. 

2.3 Semi-Active Control Algorithm. The preceding 
discussion established the guidelines for a procedure to op­
timize the operation of semi-active impact dampers configured 
as mentioned above. To maximize the efficiency of an impact 
damper between two consecutive impacts, the gap size d 
should be adjusted so that the following conditions are 
satisfied: 

• For each damper mass 2mj, an impact is made to occur 
when the velocity of the corresponding primary system 
mass lifij has reached its peak value. This instant cor­
responds to the zero crossing of the corresponding 
primary system displacement. 

• The velocities of the various set(s) of two colliding masses 
must be opposite to each other at the time of impact. This 
condition insures that the impact process(es) will stabilize 
the motion of the primary system. 

On this basis, the following control algorithm for on-line 
implementation of the damping device(s) is proposed. The 
control strategy consists of detecting the displacement from 
the neutral position (absolute, or relative to a moving support) 

i 
(d) 

,(«») 
5.5 6.5 

Ti 

Fig. 3 Time history of a representative segment of the steady-state mo­
tion of a SDOF system, that is harmonically excited at resonance and 
provided with a semi-active impact damper having a mass ratio of 0.1. 
The time segment shown covers approximately two natural periods T1 
of the primary system. For clarity, the amplitude of all the plotted quan­
tities have been normalized, (a) Absolute displacements of the primary 
and secondary systems; (b) absolute velocity of the primary and sec­
ondary systems; (c) relative displacement and velocity between the 
primary and secondary systems; (d) nonlinear stiffness force; and (e) 
nonlinear damping force. 

zero crossings of the oscillating structure damper locations, 
and generating sets of impulsive control forces by inducing a 
collision between each of the auxiliary masses and their cor­
responding structure locations. The essential features of this 
approach can be summarized as follows: 

• Virtually no on-line information regarding the global 
dynamic system characteristics is needed. 

• Whether the primary system is linear or nonlinear has no 
bearing on the algorithm. 

• Monitoring of only the system relative displacements at 
the dampers' locations is required. 

• The on-line computation of the optimum clearance 
distances is reduced to a simple detection process. 

To illustrate the application of this approach, a represen­
tative segment of the motion of a linear SDOF oscillator being 
controlled by such a semi-active damper is shown in Fig. 3. 
The primary system is harmonically excited at resonance. 
These graphs represent the absolute and relative state variables 
of the system and the nonlinear conservative and noncon-
servative control functions, g and h. The amplitude of all time 
histories in this figure have been normalized to lie between 
-1.0 and + 1.0. The length of time segment shown is approx­
imately two natural periods. 

In Fig. 3(a), the solid line represents ixl(t), the absolute 
displacement of the primary system lmlt while the dashed line 
represents 
system 2m 
represent lxt (t), the absolute velocity of xmv and 2xl (t), the 
absolute velocity of 2mu respectively. The time histories of 

xu the absolute displacement of the secondary 
,. Similarly, in Fig. 3(b) the solid and dashed lines 
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Fig. 4 Swept-sine excitation ot a SDOF system with a variety of damp­
ing devices, (a) primary system response in the absence of any dampers; 
(b) excitation; (c) response with a passive impact damper; (d) relative 
displacement between the passive impact damper mass and the primary 
system; (e) response when using on-line pulse control; (f) pulse control 
forces; (g) response when using a semi-active impact damper; and (h) 
evolution of the gap size in the semi-active damper. 

the relative displacement Z\ 2x, - lx, and relative velocity 
„., - 2 i , - lxi are represented by the solid and dashed lines, 
respectively, in Fig. 3(c). The time history of the nonlinear 
stiffness force gi (t) generated by the contact of the oscillating 
mass 2/w, with its resilient "stops" is shown in Fig. 3(d). 
Similar results for the nonlinear damping force hl(t) arising 
during the impact process is shown in Fig. 3(e). As seen from 
these results, suitable control impacts are applied twice every 
fundamental period of the system. The total control energy ex­
erted on the structure during an impact is the sum of the areas 
under the g and h functions. 

The only significant disadvantage of this technique is the 
lack of consideration for possible hardware delays in the ac­
tivation of the impacting mechanism. Two possible provisions 
may be adopted to overcome this inadequacy: 

8 The first obvious choice is to design a high speed activa­
tion system with delays that are small when compared to 
the fundamental period of the structural system. 

• The alternative solution is to anticipate the system 
response and thus activate the impacting mechanism 
when the displacement of the structure has crossed a cer­
tain prescribed threshold level. 

3 Stability Analysis 
A stability analysis of the device under discussion has been 

performed and is available in the work of Karyeaclis and 
Caughey (1987). Using Lyapunov's approach it is shown that, 
under fairly permissive conditions, the response of a system 
provided with the SAID under discussion is bounded. 

4 Numerical Simulation 

The efficiency of the proposed control strategy is 
demonstrated by presenting numerical simulation results for 
several SDOF and MDOF models with diverse characteristics, 
subjected to deterministic and stochastic dynamic 
environments. 

Example (1): SDOF System Under Swept-Sine Excita­
tion. The results shown in Fig. 4 correspond to a linear, 
viscously damped SDOF system consisting of a mass xmx hav­
ing a ratio of critical damping f, =0.01, and initially at rest, 
that is subjected to swept-sine excitation F(t) given by 

F(t)=F0sin[Q(t)t]. (25) 

The time variation of the exciting frequency, fi, is of the form 

Q(t)=at + b. (26) 

If this linear system is subjected to a swept-sine excitation, 
shown in Fig. 4(b) of amplitude F0 that varies according to 
equation (26) between the frequency limits fi(0)/a>, =0.5 and 
Q(Ts)/ul = l.5 in sweep time Ts/T{=25, the transient 
response shown in Fig. 4(a) is obtained. 

Suppose now that the primary system under consideration is 
equipped with a conventional impact damper having an aux­
iliary mass ratio /* = 0.1. Assume that the damper stops are 
relatively stiff and have impact plastic deformation 
characteristics equivalent to a coefficient of restitution e = 0.8 
(within the range provided by hardened steel). Let the damper 
clearance ratio d* = [d/lxXm!a.] be optimized in accordance 
with the response characteristics of such nonlinear devices 
(Masri and Caughey, 1966) thus yielding an optimum 
clearance of d*pt =2.0. 

The normalized response of the primary system with an op­
timized passive impact damper (PID) will then be as shown in 
Fig. 4(c). Notice that, in this case, the peak amplitude is at­
tenuated by the factor =0.7 relative to the corresponding peak 
response in Fig. 4(a). It is seen in Fig. 4(d) that, due to the 
nature of the passive impact damper, the relative displacement 
between the colliding masses is constrained to remain within 
the fixed gap size of ±d/2. 

It is clear from the results shown in Fig. 4(c) that, while the 
optimized PID did attenuate the peak response to some extent, 
its efficiency was limited because it could not adapt to the 
transient nature of the primary system response. This problem 
can be easily remedied by using an active on-line pulse control 
procedure previously developed by the authors. When this 
control method is applied to the primary system under discus­
sion, it results in the response shown in Fig. 4(e). The control 
forces that are used here are governed by the following rule 
("active" viscous damping): 

Fc(t) = 
- V * i ( 0 , tQ<t<(ta + Td) 

0 otherwise 
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Fig. 5 Nonstationary random excitation oi a SDOF system with the 
same variety of damping devices used in Fig. (4). 

where t0 is the pulse initiation time and Td is the pulse 
duration. 

The time history of the control forces generated by the ac­
tuators that are using an external energy source are shown in 
Fig. 4(f). Notice that, due to the nature of this control 
algorithm, the actuation time of the pulse control forces coin­
cides with the primary system displacement zero crossings 
(equivalent to velocity peaks). In addition, the magnitude of 
the control force is changed once every one-half system period 
to maintain a value which is a constant factor of the primary 
system velocity. 

The attenuation in peak amplitude with the on-line pulse 
control is [1xlmax/

1xlmax] = 0.3, which is substantially better 
than what was achieved with the optimum passive dampers 
discussed above. Obviously, the cost of this added efficiency is 
the need to furnish an external energy source for the expen­
diture of the control energy. 

If a semi-active impact damper is now attached to the 
primary system under discussion, the response shown in Fig. 
4(g) is obtained. The auxiliary mass has the same ratio 
(iu = 0.10) used by the passive impact damper discussed 
previously, and the damper stops have the same coefficient of 
restitution as for the PID. The evolution of the adjustable 
stops is shown in Fig. 4(h). 

As might be expected, the efficiency of the SAID (a peak 
reduction factor in the ratio of « 0.4) is better than what was 
achieved by the optimized passive impact damper, but not as 
good as the active pulse-control procedure. A clear visual ex­
planation for the improved damping efficiency of the SAID is 
furnished by Fig. 4(h) where it is seen that the envelope of the 
optimum gap size, was being adapted to closely match that of 
the primary system response. Furthermore, the time-varying 
gap size caused the collisions between the oscillating masses to 
occur at a time when the interaction force 2/i(.) components 
had the most beneficial effect (as regarding motion attenua­
tion) on the primary system. Thus, 2/i> the combined force 
due to gi and huis seen to play the same role, and to have the 
same qualitative features, as the active control force Fc(t) 
shown in Fig. 4(f). 

Example (2): SDOF Under Nonstationary Random Excita­
tion. This case is similar to the one in Example (1) except 
that the disturbance is a wide-band nonstationary random ex­
citation. The identical damper parameters of Example (1) are 
used again. The performance characteristics of the various 
dampers are shown in Fig. 5. The relative efficiency of various 
damping devices matches the results under swept-sine excita­
tion shown in Fig. 4. 

The time history of the adaptive gap size is shown in Fig. 
5(h). The lack of any discernible pattern in the evolution of 
the optimum gap size reflects the nature of the random dis­
turbance. The complex changes of Z\ (t) between impacts 
clearly illustrate the handicaps passive dampers have to cope 
with, since their initial (fixed) gap size cannot change in time 
to accommodate quiescent or active episodes of the random 
response. 

Example (3): Linear MDOF System Under Nonstationary 
Random Excitation. Consider a MDOF linear frame struc­
ture that is subjected to wide-band random interface motion 
and without any directly applied loads. The chain-like nature 
of this example is in no way a requirement of the control 
algorithm under discussion; it is merely a convenient choice so 
as to make the system resemble, for example, a building-like 
structure undergoing earthquake ground motion. 

The response of this structure under a simulated earth­
quake, operating without any auxiliary mass dampers, is 
shown in the LHS column of plots in Fig. 6. If a SAID of mass 
ratio /i, = 0.05, i=\, 2, 3 is attached to each of the three 
"stories," then the controlled response would be as shown in 
the middle column of plots in Fig. 6, and the corresponding 
variable gap sizes are shown in the RHS column of plots. 

Variable >,- (0 represents the displacement of the ith level in 
the structure with respect to the oscillating base. yt(t) is 
closest to the base and yt (t) is the farthest away. For clarity, 
different scales are used for the ordinates of the plots cor­
responding to yu y2, and y3 in Figs. 6(a), (b), and (c). 
However, the middle column of plots uses the same amplitude 
scales as the corresponding uncontrolled cases. Comparison of 
the controlled and uncontrolled responses of various locations 
indicates that nearly the same percentage vibration attenua­
tion is achieved at each of the controlled locations. 

The influence of the SAID location on the efficiency of the 
device is demonstrated in Fig. 7, where a single SAID is at­
tached to different locations in the MDOF system under 
discussion. The LHS column of plots in Fig. 7 shows 
schematic diagrams of the attachment points of the SAID, the 
middle column of plots presents the controlled response of the 
top mass m3 (not necessarily the location of the SAID), and 
the RHS column of plots gives the evolution if the optimum 
gap size for each of the three tests. 

The plots in Fig. 7 show the effects of the SAID locations on 
the attenuation of the relative displacement of the top floor. 
Notice that evolution of the damper clearance is clearly depen­
dent on the local oscillations in the vicinity of the damper. The 
same relative reduction in the response is attained for the loca-
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Fig. 6 Response of a linear frame structure, resembling a 3-story 
building, under nonstationary base excitation. The left-hand side, col­
umn of plots represent the transient response without augmented 
damping, the middle column shows the corresponding response (plot­
ted to the same scale) when a separate SAID is attached to each level in 
the structure, and the right-hand column of plots shows the evolution of 
the dampers stops. Variable y,(() represents the displacement of the fth 
level in the structure with respect to the oscillating base. The mass of 
each damper is 5 percent of the corresponding location mass. 
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^ f l l/lĵ -amJiruiA 

(h) 

Y3 

(o) 
Q„ . 0 . 

- 1 -^atlfliJiliw 

• • ^ J ^ J ̂ J|W^1 

501 0 

Fig. 7 Influence of the controller location on the response of the 
structure in Fig. 6. The top row of plots indicate in part (a) the location of 
a single SAID, whose mass equals 5 percent the total primary structure 
mass, attached to the top "floor" m3 of the structure, the controlled 
response of m$ relative to the moving base is shown in (d), and the 
evolution of the damper gap is shown in (g). Similar results are shown in 
the middle row of plots for the case where the location of the damper is 
moved from m3 to m2 , and in the bottom row for the case where the 
damper location is moved to m1 . 

50 t 

tions that are not shown in the figure. Everything else being 
the same, it is clear that the top floor is the best location to use 
if a single SAID is to be employed. 

The applied excitation is identical to that used in conjunc­
tion with the system of Fig. 6. The mass ratio of the single 
SAID used in each of the three cases illustrated in Fig. 7 was 
equivalent to that total mass ratio incorporated in the three 
SAID used simultaneously in Fig. 6. 

Information about the effect of the placement of active con­
trol devices on vibrating structures is available in the works of 
Lindberg and Longman (1984) and Chassiakos et al. (1988). 

5 Mechanical Model 

5.1 Apparatus. A mechanical model resembling a SDOF 
frame structure was designed and fabricated to investigate the 
SAID under realistic laboratory conditions. This rudimentary 
system, shown in Fig. 8, consisted of the following major 
components: 

• a rectangle-shaped container (approximately 35 X 10 cm 
in plan) used to constrain the motion of the auxiliary 
mass, 

• a bearing-mounted auxiliary mass which was allowed to 
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(b)
Fig. 8 Mechanical model used for implementing the SAID algorithm:
(a) top view and (b) front view

move, with slight friction, in grooves at the center of the
container face plates which were rigidly connected to the
primary structure,

" four movable panels that were used to position the stop­
pers and cause an impact between the auxiliary mass and
the primary structure. Each of the panels could be moved
forward and backward, relative to the centerline of the
panel, and

" a set of 16 spring-loaded "stoppers" mounted on each of
the panels. These stoppers are hinged wedges, approx­
imately 2-cm apart. They are connected to the moving
panel with pins designed to allow the auxiliary mass to
move freely in only one direction. The top set of panels
allowed unimpeded motion in one direction along the
longitudinal axis of the container while the lower set did
the same for the opposite direction of motion. Conse­
quently, the panels provided electromechanically­
controlled ratchet action.

The principal goals of this design (schematic shown in Fig.
9) is to eliminate all sensors required to monitor the state of
the auxiliary mass and to simplify the control to an on/off­
type algorithm (i.e., there is no need to compute and supply a
value for the gap size). The latter feature minimizes the com­
putation time involved in the decision making process. This
shortens the delay, thus allowing more time for hardware
activation.

The control logic was implemented on a Z-80
microprocessor using the FORTH language. Upon detection
of the displacement zero-crossing by the microprocessor, an
"impact" command is issued. This event switches a relay cir­
cuit, activating magnetic solenoids and moving the impact
barriers. As a result, an impact in the desired direction will oc­
cur. The solenoids used were capable of moving the panels in­
to impact position in 4 milliseconds (about 1I20th of the fun­
damental period of the structure).

5.2 Experimental Studies. The response of the structure
photographed in Fig. 8 with and without a SAID, under
swept-sine and wide-band random excitation is shown in the
upper and lower parts of Fig. 10, respectively. The damper
mass ratio p, was"" 0.10. It is seen that under swept-sine excita­
tion the peak displacement response is "" 0.45 of the cor-

1. RETURN
2. PIN
3. STOPPER
4. MOVING PANEL
5. FACE PLATE
6. SPACER
7. SOLENOID BRACKET

8. SOLENOID MOUNTING PLATE
9. MAGNETIC SOLENOID

10. BEARING
11. MASS SUPPORT
12. AXIAL
13. AUXILIARY MASS
14. SCREW
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Fig. 9 Schematic SAID control apparatus
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SWEPT-SINE 

Fig. 10 Transient responses of the mechanical model with and without 
a SAID. The top and bottom groups of plots correspond to the swept-
sine and random excitations, respectively. 

responding value in the absence of the damper, while in the 
case of random excitation this quantity lyl/

iyl is —0.42. 
Among the factors contributing to the lowered efficiency of 

the test apparatus are: 
• relatively low coefficient of restitution due to the use of 

aluminum in constructing the controlling fixture. 
Analytical studies indicate a much superior performance 
for the SAID with relatively high values of e, which 
reduce the loss of impact (control) energy, 

• spacing between adjacent stoppers (resolution) was not 
fine enough to ensure optimum impacts at all times, and 

• fabrication inaccuracies (contributed by inexperienced 

student machinists) in the controller assembly introduced 
a significant amount of backlash (dead-space nonlineari-
ty) thus increasing the influence of mechanical energy 
dissipation (at the expense of momentum transfer) on the 
interaction forces between the structure and the auxiliary 
mass. 

The aforementioned problems can be circumvented by the 
use of more suitable materials and hardware coupled with 
more precise fabrication procedures. 

6 Summary and Conclusions 

A simple, yet efficient, method is presented for the on-line 
parameter control of linear as well as nonlinear multidegree-
of-freedom systems provided with adjustable-gap impact 
dampers responding to arbitrary dynamic loads. The on-line 
control algorithm is suitable for situations in which detailed 
knowledge of the system structure is not available; only local 
measurements in the vicinity of each of the attached impact 
dampers are needed with this adaptive control method to 
determine the evolution of each impact damper clearance so as 
to optimize the vibration attenuation efficiency of the in­
dividual dampers. 

A stability analysis, simulation studies, and experimental 
tests with a mechanical model have demonstrated the feasibili­
ty, reliability, and robustness of the proposed semi-active on­
line control method. 
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An Alternative Perturbation 
Procedure of Multiple Scales for 
Nonlinear Dynamics Systems 
An alternative perturbation procedure of multiple scales is presented in this paper 
which is capable of treating various periodic and almost periodic steady-state vibra­
tions including combination resonance of nonlinear systems with multiple degrees-
of-freedom. This procedure is a generalization of the Lindstedt-Poincare method. 
To show its essential features a typical example of cubic nonlinear systems, the 
clamped-hinged beam, is analyzed. The numerical results for the almost periodic-
free vibration are surprisingly close to that obtained by the incremental harmonic 
balance (IHB) method, and the analytical formulae for steady-state solution are, in 
fact, identical with that of conventional method of multiple time scales. Moreover, 
detail calculations of this example revealed some interesting behavior of nonlinear 
responses, which is of significance for general cubic systems. 

I Introduction 

It is well known that the perturbation method is one of the 
commonly used quantitative methods for analyzing nonlinear 
problems. Nayfeh (1973, 1981) has presented an account of 
various perturbation techniques, pointing out their 
similarities, differences, and advantages, as well as their 
limitations. The most representative perturbation methods 
used in nonlinear structural vibrations are the Lindstedt-
Poincare method, the method of multiple time scales, and the 
KBM method. The first method employed by earlier 
astronomers expands the dependent variable and frequency in 
power series of small parameter, resulting in a set of linear or­
dinary differential equations which can be solved successively. 
With this method, one directly determines the periodic mo­
tions. In comparison with the Lindstedt-Poincare method, the 
method of multiple time scales appears more involved, but it 
can provide a more general solution which is able to treat 
various resonance phenomena and therefore has been widely 
applied to nonlinear vibration problems in recent years (e.g., 
Nayfeh, 1983, 1984; Sridharet et al., 1975, 1978; Mook et al., 
1985, 1986). 

In this paper, a different perturbation procedure of multiple 
scales is presented. This method is, in fact, a generalization of 
Lindstedt-Poincare method and is capable of treating various 
complicated resonances of multiple degrees-of-freedom 
systems. In this procedure, the multiple time variables Tn=oi„t 
(but not the time scales Tn=e"t as in the standard procedure 
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of multiple scales) are employed, so that it may be called the 
method of multiple dimensions. The dependent variables, as 
well as the frequencies co„, are expanded into power series of 
small parameter, and the original nonlinear equations are then 
separated into a series of linear partial differential equations, 
which can be solved in a stepwise manner. The solution of 
each approximation expressed in the form of multiple Fourier 
series is generally an almost periodic steady-state vibration. 
Only when the nonlinear frequencies are commensurable with 
each other will the periodic steady-state solution be reduced. 
The governing equations for the amplitudes and frequencies 
are algebraic equations, which can usually be solved by 
routine methods. 

The main advantages of the present approach are its intui­
tion in idea and versatility in application. Moreover, it leads 
directly to the almost periodic or periodic steady-state solu­
tions, which are probably the most attempted in practice. 

For convenience of presentation of the general procedure, 
only cubic nonlinear system is treated in this paper. Obvious­
ly, the same procedure can be applied to the systems with dif­
ferent kind of nonlinearities. 

To demonstrate the application of the present method, the 
nonlinear vibrations of a clamped-hinged beam, which is a 
typical example of systems with cubic nonlinearity possessing 
internal resonances, are analyzed. The numerical results of 
almost periodic-free vibrations are quite close to that obtained 
by IHB method (Lau, Cheung, and Wu, 1983). The internal 
resonance of the beam has a similar characteristic with that of 
elastic thin plates (Lau, Cheung, and Wu, 1984). However, it 
is found by this example that the nonlinear response 
characteristic is usually excitation-level dependent. It is in­
teresting that this fact provides an explanation of the 
discrepancy in behavior between different computed results 
(see Iu and Lau et al., 1983). 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56/667 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



II General Procedure 

Consider the oscillations of a system having cubic 
nonlinearities 

-g j -Ojw. + . f t , — 

N N N 

+ f E E E TnmpqUm Up Ug=f„ COS(Q/) 
m = 1 /?= 1 q= 1 

« = 1,2 (1) 

where u„ are generalized coordinates of the linear normal 
modes, fl„ linear natural frequencies, Vnmpq coefficients of the 
nonlinear terms, fi„ coefficients of modal viscous damping,/„ 
excitation amplitudes, fi the exciting frequency, and e a small 
constant parameter. 

Following the same consideration of Lau, Cheung, and Wu 
(1983), one can first introduce multiple time variables defined 
as 

-Doo^i + n«"«i = -2£oi"„o-*vDo"„o 
N N N 

~ Ld 2 ^ LJ ^nmpqumOupOuqO +fnl C 0 S T 

m=\ p = \ q=\ 

£>oo«„2 + Q2,«„2 = - 2Dgi unl-D
2
u un0 - 2D2

02u„0 

-fi„(D0u„i+DiU„0) 

N N N 

~ E E E anmpq "mO "pO « , 1 +fnl COS T 

(i i) 

(12) 

where 

a =r +r +r 
^nmpq L nmpq ^ A npqm ' * /i<7/n/> r=su. 

In the case of resonance, it can be expressed for generality as 

T„=rjoi„t (2) 
T= E airi (13) 

in which to„ are the nonlinear frequenices of responses (in free 
or forced vibration) generally incommensurable with one 
another, and y is a rational number depending on the 
resonance to be sought. The introduction of multiple times r„ 
enables the procedure to treat general multiple degrees-of-
freedom systems, especially under almost periodic vibrations. 
For a more detailed explanation of this consideration, please 
refer to Lau et al., (1983). The generalized coordinates u„ 
(«= 1, 2, . . .) are then regarded as functions of independent 
variables T„ . Let u„ and co„ be expanded in power series of e 
similar to that of Lindstedt-Poincare method: 

oo 

w„(r,, T2 , . . . TN)= E u„k{TU T2, . . . rN)ek (3) 

and assume that 

whereupon 

u„= E' 

fn~ LJ fnk e 

k = 0 

in which «,• are rational constants. The solution of equation 
(10) can be expressed as 

"«o = A „0 COS(T„ + </>„„) + Fn0 cos T (14) 

in which A„0 and </>„0 are integration constants, and 

. N N 

F„o=fno/{K-Yd E '/2"/o^o«,«y) (15) 
I = I y = i 

"no = n«/')- (16) 
While the term AnQ COS(T„ + <j>n0) is a solution of the corre­
sponding homogeneous equation, 

JD§flMn0 + Q2M„0 = 0. (17) 

Note that there are many other solutions of equation (17), 
such as 

du du oo oo 

^-Ei^-EE^A",, dt dr 

(4) 

(5) 

(6) 

cos ( T , l , C0S( T, T „ l , 

/ N 
2Q„ fi 

r , -( N - l ) « « 
etc., but these are precluded in the present solution. To ex­
plain this let us be reminded of the fact that for Lindstedt's 
method, the solution is expanded into a single Fourier series, 
i.e., 

d*uK 

dt2 E E V2 w< <"V 

/ k = 0 1 = 0 

d2u„ 
J^[A„ C O S ( « T ) + 5 „ sin(m-)] 

; = i ; = i dTjdrj 

= LE E *k+l+m DUn (7) 

similarly, for the present case with multiple time variables, the 
generalized steady-state solution should be in the form of 
multiple Fourier series (Lau et al., 1983). 

k = 0 1 = 0 m = 0 

where the operators Dk and D\, are introduced for con­
ciseness: 

N 

"ik 
i=\ 

N N 

3 T , 

4"^A-EE^«ft 
d2 

drfiTj 

(8) 

(9) 

E L •••'L Uy2...,m
C0S(EW) 

+ Bhh--im
s{n(TthTk)\ 

Ji n 

/ = i j=\ 

Substituting equations (3), (5), (6), and (7) into equation (1) 
and then equating the coefficients of powers of e, we obtain 

Z)2oo"„o + ̂ t / „ 0 = / „ 0 Cos T 

where j k {k=l, 2, . . .) are integers. Therefore, within the 
frame of this solution form, the solution for the homogeneous 
equation (17) should be taken as 

"«o = C„o COST„ + En0 sinr„ = A „0 COS(T„ + 4>„0). (18) 

(10) 
Inserting (14) into (11), we obtain 
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^00"«1 + ®l "nl = 2 ^ " n 0 " « l ^ « 0 C0S(T„ + </>„„) 

+ 2 I ] L l ^ i o ^ M ^ A o cosT 

N 

+ Wu„0An0 sin(r„ + </>„„) + n„ £ ) ij o),0a,F„0 sinT 

1 nmp?^ mO^pO^qO 
m = l p = { q = \ ^~ 

X COS(TOT + Tp + TQ + </>m0 + 0po + 0 , o ) 

+ - j - < W 9 lAm0ApoAq0 cos(rm + TP - T9 + < + 4>pO ~ <S>qo) 

+Am0Ap0F,0ICOS(T„, + rp + T+(j}m0 + $0) 

+ cos(rm +rp-T+ 4>m0 + 0p„) 

+ cos(rm -rp + T+ <t>ma - 4>po) + cos(rm - rp - T+ <£ra0 - 0^)1 

+-4mo/>-F
9o[cos(Tm + 2T+ </>m0) + cos(rm -2T+ <t>m0) 

+ 2 cos(Tm +</>„,<,)]] 

1 
A L nmpq ^ m o ^ o ^ o [ 3 c o s r + c o s 3 7 ] j 

+•/„, cosT. (19) 

The terms containing COS(T„ + $„0) or sin(r„ + <j>„a) on the 
right-hand side of equation (19) will produce the secular 
terms, which should not be parts of a uniformly valid expan­
sion. To eliminate these secular terms, the coefficients of 
COS(T„ + 0„o) and sin(r„ + (j>„0) must be zero. This leads to a set 
of algebraic equations governing the relationships between 
amplitudes An0 and frequencies OJ„,. Thus, various resonances 
corrected up to the first order can be easily obtained by solving 
these equations. 

Having known A„0 and «„,, we can determine unl from 
(19). Then, substitute them into equation (12) and continue 
this procedure to determine un2, uni . . . , and so on. 

The procedure is obviously the generalization of the 
Lindstedt-Poincare method and will be demonstrated in the 
next section in which the details of treating the specific 
resonances of beam problem are considered. 

Where U\ and u2 are normal mode coordinates, t is the nor­
malized time, fi, = 1, fi2 = 3.24064 are the first and the second 
normalized linear frequencies, respectively, coefficients ay 
(/= 1, 2; j= 1, 2, 3, 4) are constants (see the Appendix). Ob­
viously, equation (20) is a special case of equation (1) with 
A i „ = 0 , / „ = 0 . A r = 2 a n d e = l . 

The following solution clearly illustrates that the introduc­
tion of multiple time variables are necessitated for obtaining 
the almost-periodic vibration solutions. 

Following the procedure developed in Section II, we can ob­
tain each successive approximation solution as follows: 

The first approximation solutions are 

COjQ—1*, ^ 2 0 — " 5 
M io=-4io COST, u20=A20 COST2. 

The second approximation solutions are 

wH=25r(-T°iii4»+4-a"'410) 

(21) 

(22) 

w2r 20, 
( — a2lAl0 + — a23A

2
i0J (23) 

Mn = C]; ' C0STi + C^l COS3T, + C $ COST2 + C $ COS3T2 

+ C $ COS(2TI + T2) + C $ COS(2T, - T2) + C$ COS(2T2 + T,) 

+ C\y COS(2T 2 -T , ) 

M2i = C£V cosr2 + C $ COS3T2 + C $ COST, + C$ COS3T, 

+ C $ COS(2T2 + T, ) + 0 $ COS(2T2 -T^ + Cfl COS(2T, + T2) 

+ C2
1

8>COS(2T,-T2) . 

The third approximation solutions are 

"12= - \ \~< -4io+ - 2 ~ « i i A\0QCft + C®) 2ui0AlQ L 4 

(24) 

+ —al2A
2
0OC% + 0$) 

+ y - « u ^ , 0 ^ 2 o ( 2 ^ + ( ^ + C $ ) 

III Application to Nonlinear Vibrations of Clamped-
Hinged Beam 

This problem is a typical example of cubic nonlinearity 
system possessing the phenomenon of internal resonance, and 
was first analyzed by Nayfeh, Mook, and Sridhar (1974, 1975) 
using the standard method of multiple scales. Lau, Cheung, 
and Wu (1983) analyzed the almost periodic-free vibration of 
this problem numerically by the use of the IHB method with 
multiple time variables. In this section we consider both the 
free vibrations and the forced vibrations including fundamen­
tal resonance and combination resonance under the influence 
of internal resonance using the method developed in Section 
II. 

1 Almost Periodic-Free Vibration. The governing equa­
tions describing the transverse-free vibration of a undamped 
clamped-hinged beam using a two-mode shape approximation 
finally can be written as (Lau et al., 1983): 

dt2 

<Pu2 

dt2 

+ Q2w, + auu] + anu\u2 + anu{u\ + a , 4 « | = 0 

+ " J " «13^10 ^ 2 o M » + C® + C $ ) 

+ — « » ̂ §0(23? + C $ +Cft) 

1 r 3 
" 2 2 = -= -7-\ -coli A20+ — ail A^QO}} + C$) 

+ —a22A
2
20OC$ + CW) 

+ y - Q22 A20 Al0(2C% + C # + Cft) 

+ y - «23 A20 A ,0(2CtV + CIV + Cft) 

+ ^-«23/i?0(2ci i
1»+av+ay) 

+ Q2
2u2 + a2lu\ + a22u

2
2u{ + a2lu2u\ + a24u\ = 0. (20) + _ «24 A

2
l0(2C[^ + Cft + C$)~\ (25) 
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Table 1 The values of Ctj in equations (27) 

Method 

U [ 

0>2 

Cu 
C\2 
C,3 
Cu 
Cl5 
C,6 

c17 
^-18 

£-2) 
C22 
^"23 
^•24 
^ 2 5 
^ 2 6 
C27 
^ 2 8 

IHB Method 

1.01556 
3.25841 

0.300£0 
0.228._3 

- 0 . 3 2 3 £ _ 3 
- 0 . 3 5 3 £ _ 5 
- 0 . 3 8 9 £ _ 4 

- 0 . 2 2 4 £ _ 2 
0.340£_4 
0.647£_4 

0.150^, 
0.386£^4 

0.628£_3 
0.530£_3 

-0.420 £_4 
-0.101 £_3 

0.216. , 
-0 .417 £_3 

Present Method 

2nd Approximation 

1.01568 
3.25845 

0.300£0 

0.235^3 
-0 .324 £ _ 3 
-0 .349 £ _ 5 
-0 .397 £ 4 
- 0 . 1 9 5 £ _ 2 

0.343£ 4 
0.648£_4 

0.150£0 

0.389B_4 

0.633B 3 
0.466£ 3 

- 0 . 4 3 0 £ „ 4 

- 0 . 1 0 0 . 3 
0.222. 3 

-0 .420^ 3 

3rd Approximation 

1.01555 
3.25841 

0.300£0 

0.227£_3 
- 0 . 3 2 3 £ ^ 3 
-0 .353 B _ 5 
-0 .389 £ 4 
-0 .220 £ _ 2 

0.340£_4 
0.647£_4 

0.150£0 

0.386._4 

0.627£_3 
0.521£ 3 

- 0 . 4 2 0 £ _ 4 

-O. lOO^j 
0.216£ 3 

- 0 . 4 1 6 £ ^ 3 

IHB Method 

1.0427 
3.2898 

0.500£0 

0.997£_3 
- 0 . 1 5 1 £ _ 2 
-0 .167 £ _ 4 
-0 .174 £ _ 3 
- 0 . 1 4 3 £ _ , 

0.155B_3 
0 . 3 0 1 ^ 3 

0.250£0 

0.176£_3 

0 .289^ 2 
0.333£_2 

- 0 . 1 8 7 s _ 3 

- 0 . 4 8 6 ^ 3 
0.952£_3 

- 0 . 1 9 2 £ _ 2 

Present Method 

2nd Approximation 

1.0436 
3.2902 

0.500£0 

0.109£_2 
-0 .150 £ _ 2 
- 0 . 1 6 1 £ _ 4 
-0,184^ 3 
- 0 . 9 0 1 £ 2 

0.159£_3 
0.300^3 

0.250^ 
0.180£ 3 
0.293£_2 
0.216£ 2 

- 0 . 1 9 9 ^ 3 
-0 .463 £ _ 3 -

0.103. 3 
- 0 . 1 9 5 £ _ 2 

3rd Approximation 

1.0426 
3.2898 

0.500£0 

0.998£_3 
-0 .149 £ _ 2 
- 0 . 1 6 8 £ _ 4 
- 0 . 1 7 3 ^ 3 
- 0 . 1 2 3 £ _ , 

0.155£_3 
0.300£„3 

0.250^ 
0.176£_3 

0.286B_2 
0.286£_2 

-0 .186 £ 3 

- 0 . 4 6 7 ^ 3 
0.947£_3 

-0 .189 £ _ 2 

uu = Cff cosT) + C$ COS3T, + C$ COST2 + C$ COS3T2 

+ C$ COS(2TJ + T2) + C $ COS(2T! - T2) + C $ COS(2T2 + T,) 

+ C\2i COS(2T 2 -T I )+ • • • 

"22 = C$ COST2 + C22? COS3T2 + C$ COST! + C$ COS3T, 

+ C g COS(2T2 + Ti) + C $ COS(2T2 - TJ) + C$ COS(2T, + T2) 

+ C% COS(2T , -T 2 ) + . . . , (26) 

where coefficients Cjj' and Cff (/= 1, 2; j = 2, . . . , 8) are 
given in the Appendix. Therefore, the almost-periodic steady-
state solutions to the third-order approximation are given by 

oj„=o)„0 + wnl+a)„2 (« = 1,2) 

ux = Cn COST! + C12 COS3TI + C13 COST2 + CM COS3T2 

+ CJ5 COS(2TJ + T2) + C16 COS(2TJ - T2) + C,7 COS(2T2 + T,) 

+ C18 C O S ( 2 T 2 - T I ) + . . . 

u2 = C2l COST2 + C22 COS3T2 + C23 cosrj + C24 cos3r! 

+ C25 COS(2T2 + T () + C2S COS(2T2 - TX) + C27 cos(2r, + r2) 

+ C 2 8 C O S ( 2 T I - T 2 ) + . . . (27) 

where 

T l = « l f , T2=C02? ( 1 = 1 ) 

C„ = OiP + C® i = l , 2;y = 2, 3, . . . 8. (28) 

In order to make comparisons the coefficients C,-,, 
calculated by the present method and by IHB method (Lau et 
al., 1983), are listed in • Table 1. It can be seen that the 
discrepancies of the results between the two methods are quite 
small. In fact, the results of the second approximation have 
already been accurate enough for the case of moderately large 
amplitudes. 

2 Forced Vibration With Internal Resonance. For the 
forced vibration of the beam with two-mode approximation, 
the governing equations read: 

<fux 

dt2 

d2u1 

dt2 

+ Q2U[ +/ i j 
du{ 

~dt 
+ a„Mf+a12Mf«2 

+ ai3«iM2 + a i 4 « 2 = / l C0ST 

du0 
+ Q\u2 + n2 ~ - + a21 u\ + a22ujul 

+ «23"2«1 + <*24»1 =fl COST 

where fi{ and n2 are viscous damping coefficients, fx and / 2 

are forcing coefficients, and T=Qt, 0 is exciting frequency. 

2.1 Fundamental Resonance, fi Near U,. In this case, we 
should take Q = o>,, i.e., 

r = r , . (30) 

It should be stressed that oi], as well as u2, are nonlinear 
response frequencies in the present formulation. 

The second linear frequency, (J2, is nearly three times the 
fundamental frequency Q1? and therefore, the internal 
resonance is likely to occur. For a periodic solution we should 
let o)2 = 3o)1, i.e., 

T2 = 3 T , . (31) 

Since T= T, , / 1 0 must be zero, otherwise it will produce a 
secular term in w10. Hence we have Fl0 =0 . Similarly, to 
eliminate secular terms, the coefficients of COS(T, +<I>W) and 
COS(T2 + 4>20) in equation (19) for n = 1 and n - 2 must be zero, 
respectively. Thus we obtain the solvability conditions relating 
amplitudes An0, phase angles <$>„a, and frequencies u>nl. 

H{riul0Al0+ — a12^4io^2osm(<A2-3vi10) 

— a12A
2
i0F20sm<l>10+ —- anAi0A20F20sin((j>20-2(l>lQ) 

ai4^2o^2osin0 1 
1 

oinAl0Fl0sin2<j)il 

+ —r- auA20Fl0sm(<l>20-<l>i0) 

«i4^2osin</>10 +/nsin<i10 =0 

3 1 
2ij2coi0co11^10 —anA\0 — auAl0A

2
20 

ai2^io^20c°s(^20 -30io) 

«12-410'F20COS</>10-
1 

"13-4 l0A20F20cos(4>20 -2<j>i0) 

1 

T 
_3_ 

T 
3 1 

— aHAj0F2gcos(f>i0 —• ai3^10i
;f0(cos2s?iI0 +2) 

3 3 
— o;14^20^0cos(</>20 - 01O) — a14J^0cos</>10 

(29) +/ncos</>10 = 0 
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Fig. 1 Forced frequency response as f^ =0.03, T = T-\ forced 
frequency response, w-, backbone curve, ,410 = amplitude of 
first harmonic term 

Fig. 2 Forced frequency response as f^ = 0.03, T = TI forced 
frequency response, a^ backbone curve, — u2 

backbone curve. A2o = amplitude of third harmonic term. 

/ •Who^o j - °ti4A\asm((t>m-3<t>ia) 

oi2iA lO^2OSm(02O - 20 ]O) 
4 

— a22y410i^0sin(^20 - </>10) — a ^ o s i n ^ o = 0 

V"20W21^20 T "21^20 ^-023^20^10 

a24^0cos(4>20-34>10) 

3 . 1 , 
2 ~ "21^20^20 ^ - a 2 3 - 4 i o / r 2 o c o s ( < / > 2 0 - 2 ^ 1 0 ) 

- a12A20A 10^20COS*10 J " " ^ 10'F20COS(</,20 ~ * l o ) 

4 
a21^20C O S*20=°- (32) 

Nayfeh and Mook (1979) analyzed equations (29) with the 
method of standard multiple scales in which they considered 
ix„ = 0 and /„ 0 = 0, n = 1, 2. If we take t\ = 1, /ij = /x2 = 0, and 
F20 = 0 in (32), then obviously <f>l0 = <j>20 = 0. Hence, equations 
of (32) are reduced to 

2co,nco,,v4, 
3 1 

- ^ - a i i ^ i o YanAwA™ 

1 
• a U ; 4 1 0 ^ 2 0 + / u = 0 

2co2oCo21/42 —— a2lA20 — a21A20Ai0 

^ - « 2 4 ^ 1 0 = 0 . (33) 

It can be found that equations (33) are, in fact, the same as 
those obtained by Nayfeh and Mook. 

Figures 1 and 2 show the frequency response curves Q — A10 

and Q—A20 for undamped forced vibration. The undamped, 

free vibration backbone curves for Am and A20 are also plot­
ted with dotted line and dash-dotted line, respectively, to 
facilitate the understanding for the relation between forced 
and free vibration. It is apparent that there are two separate 
branches of solution, i.e., the "in-phase" and the "out-of-
phase" resonances. The in-phase resonance is shown by curves 
A$, Af^ and , 4 $ , A$, while the out-of-phase resonance is 
shown by A^ and A$. It can be seen from Figs. 1 and 2 that 
the superharmonic resonances caused by internal resonance 
exist in both in-phase and out-of-phase responses. However, 
detail calculation reveals that the out-of-phase response is 
excitation-level dependent. If the excitation increases beyond a 
certain critical level, the out-of-phase superharmonic 
resonance disappears. An example of response at critical ex­
citation is shown in Figs. 3 and 4. This phenomenon can be ex­
plained in that the out-of-phase response curve will shift 
towards far right to the backbone curve as the applied forces 
increase beyond the critical excitation. Therefore, no 
superharmonic resonance can be excited. 

It is worth pointing out that the forced vibration responses 
of beam with internal resonance exhibit the same character as 
those of thin plates and sandwich plates computed with the 
IHB method by Lau, Cheung, and Wu (1984), and by Iu 
(1985), respectively, as they are all of cubic nonlinearity with 
similar frequency distribution. The particularly interesting 
point is that the out-of-phase superharmonic resonance, as 
shown in Figs. 1 and 2, which occurs exactly in the same man­
ner in the case of thin plate, does not appear in the computed 
response of sandwich plate (i.e., its responses are similar to 
those shown in Figs. 3 and 4). This discrepancy may now be 
explained as such that the former results correspond to an 
undercritical excitation, while the latter results an overcritical 
excitation. 

2.2 Combination Resonance, Q Near 1 / 2 ( 0 / + ^ ) . For 
treating this case, we should take Q=l/2(o>, + w2), i.e., 

T= - y - ^ - r - T j ) (34) 

and let 

r2 = 3 Tl (35) 

in line with the periodic solution. Thus, Tcan also be rewritten 
in terms of T, alone as 

r = 2 TV. (36) 
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Fig. 4 Forced frequency response as f^ =0.064, 7 = T-|, A20 = Fig. 7 Combination response with internal resonance 7 = 1/2 (T1 +T 2 ) , 
amplitude of third harmonic term T2 = 3T1 , f10 = 2, f20 = 2, A10 = amplitude of first harmonic term 
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Fig. 5 Combination response with internal resonance 7=1/2 (T1 + T2), Fig. 8 Combination response with internal resonance 7=1/2 (T1 + T2), 
72 = 31-!, f10=0.5, f20=0.5, Aw = amplitude of first harmonic term T 2 = 3 T 1 , r10=2, f20 =2, A10 = amplitude of third harmonic term 
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The solvability conditions are obtained from equation (19) 
by letting the coefficients of COS(T, + </>10) and COS(T2 + </>20) for 
n = 1 and n = 2 be zero, respectively. 

1 

T /*if «KH 4 IO + —— a,2;42
0,420sin(</>20-3<£10) 

- ( — «12^0 + - y "13^10^20 

+ — ai4^2o)^20sin(</>2o + <t>io) = 0 

3 1 
2i/2w,0wi,X10 —anA\0 ^-anAl0Al 

—-a12v4fOv42Ocos(</>2O-30lo) 

- ( — anFz
m + al2Fl0F20+ — anF2

20JA] 

- ( " J " «12^10 + — "13^10^20 

+ -^-a14.FloJv42Ocos(4>2o + 0 lo) = O 

Pin w2Qy420 — a24-4iosin(02O - 3</>io) 

/ 3 1 
- ^ — "24^10 + - y "23^10^20 

+ ^ - a 2 2 ^ 2 o ) ^ 1 O s i n ( * 2 0 + * l o ) = 0 

3 1 
2T) 2 CO 2 0 O) 2 1 /1 2 O ^ - a 2 i ^ 2 o 2 ~ « 2 3 ^ 10^20 

a24,4?0cos(</>20-3</>10) 

( - J - "23^0 + <*22Fl0F20 + — a2lJF|0jyl2 

(J 
V 4 

4-Fin + -^r" <XiiF,nF. 23^10^20 

+ - ^ - a 2 2 i ; l o ) - 4 i o c o s ( 0 2 o + 0 i o ) . (37) 

Figures 5-8 show the undamped combination resonance 
curves plotted against 0/20, from the solutions of equations 
(37), with ^ = n2 = 0 and/ , 0 = 0.5, 2 , / 2 0 = 0.5, 2, respectively. 
Obviously, the curves are symmetrical with the frequency axis. 

From Figs. 5-8, some interesting phenomena can be listed 
as follows: 

(1) The combination resonance only occurs when 0>2Q, , 
i.e., the exciting frequency is greater than twice the linear fun­
damental frequency 0 , . 

(2) There are two branches of solution which indicate that 
two different responses may exist beyond certain exciting 
frequency. 

(3) The response is also excitation-level dependent. For 
higher level excitation, A,„ and A20 are dominant in different 
response curves, respectively. However, for lower-level excita­
tion, the response curves become more involved. The 
dominance of modes may exchange in a single response curve 
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Fig. 9 Damped combination response with internal resonance 
T = 1/2(T1 + I 2 ) , T 2 = 3 T I , / 1 0 = f20 = 0.5, C1 = (»2 = 0.001; (a) Frequency-
amplitude curve of first harmonic term, (b) Frequency-phase curve of 
first harmonic term, (c) Frequency-amplitude curve of third harmonic 
term, and (d) Frequency-phase curve of third harmonic term 

as energy transfers from mode to mode occurring at a certain 
frequency range. 

(4) Since the first mode vibrates at a frequency of 0/2 and 
the second mode at 30/2, the first-mode dominant response 
can be regarded as a subharmonic resonance of order 1/2, 
while the second-mode dominant response has a superhar-
monic resonance of order 3/2. 

Figures 9 and 10 show the combination resonance response 
curves with damping ratios ^ =n2 =0.001 and 0.003, respec­
tively. They are all plotted against 0/20, from the solution of 
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Fig. 10 Damped combination response with internal resonance 7=1/2 
(T1 + 72>< T2 = 3 T 1 I '10 = '20 = = °-5> M1 = M2 = 0.003; A-to = amplitude of 
first harmonic term; A20 = amplitude of third harmonic term 

equation (37) with the forcing t e r m / 1 0 = / 2 0 = 0.5. It is in­
teresting to note that the originally separate response curves in 
undamped systems become connected together to form a com­
plex loop due to the influence of damping. Figure 10 indicates 
that the response loops shrink rather rapidly when increasing 
the damping rat io. This fact implies that there must be a 
critical damping ratio where the combinat ion resonance may 
be completely suppressed. 

IV Conc lud ing R e m a r k s 

(1) An alternative perturbat ion procedure of multiple scales 
for nonlinear dynamic systems is presented. It is capable of 
treating periodic and almost-periodic steady-state vibrations 
for multiple D O F systems, with various resonances including 
the combination resonance, which the conventional Lindstedt-
Poincare method cannot apply. Obviously, this method can be 
further generalized. 

(2) The aim of this paper is to introduce the essence of the 
method, so only solutions of nonlinear responses are con­
sidered. However, to fully unders tand the complete picture of 
nonlinear vibration behavior of the system, the inclusion of 
stability analysis is definitely necessary. In fact, for a given 
periodic vibration, the stability analysis can be carried out by 
considering the corresponding variational differential equa­
tions and applying the Floquet theorem. Hsu (1972, 1973, 
1974) has developed an efficient method for approximating 
the transition matrix of the variational equations, during one 
period, by a series of step functions. Hsu ' s is a very convenient 
method to be implemented on a pomputer. 
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On Realization of Program 
Constraints: Part I—Theory 
The problem of realization of program constraints is considered. The classical 
theory approach based on replacing the constriant reactions by adequate control 
forces has been generalized to the case when the control forces are not collinear with 
program constraint vectors or, in the extreme, when the control forces do not pro­
ject in these directions at all (control forces are tangent to constraint manifolds). A 
classification of possible ways of program constraint realization is proposed and a 
general solution of the problem is presented. 

1 Introduction 

In the classical theory of mechanical systems an idea of 
reactions of ideal constraints is introduced. In principle, these 
reactions are postulated to be collinear with so-called 
"constraint vectors" or, in other words, orthogonal to con­
straint manifolds (see Arnold (1978), Gutowski (1971), Kam-
man and Huston (1984), Kane (1968), Nejmark and Fufajev 
(1972), Wang and Huston (1987), and Wittenburg (1977)). Ac­
cording to these works, the constraint reactions can be written 
in the matrix notation as 

R=B\, (1) 
where B is an n x m full-rank matrix of constraint vectors and 
A is an w-dimensional vector of Lagrange multipliers 
associated with m constraints imposed on the system. 

Equations of motion with the constraining forces (equation 
(1)) coupled with the equations of corresponding constraints 
then become the Lagrange's equations of first order. In a 
general case, when the dynamic equations in quasi-coordinates 
are considered, the full set of governing equations may be ex­
pressed as follows (refer also to Blajer (1988a,b), Hemami et 
al. (1979,1981), Lotstedt (1982), Nikravesh (1984,1985), and 
Wittenburg (1977)): 

M(q)6>=f(oo,q,t)+B\, (2a) 

q = g(w,q,t), (2b) 

BT w + b(w,q,t)=Q, (2c) 

where M is an n x n symmetric positive-definite matrix, 
co=[a)! w„]T and q = [qlt . . . , q„]T are vectors of 
quasi-velocities and generalized coordinates, respectively, t is 
time, / and g are /2-dimensional vectors, and b is an m-
dimensional vector. If the motion in generalized coordinates is 
considered, o becomes the vector of generalized velocities and 
(2b) simplifies to q = w. 
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The equation (2c) represents a set of w-constraint equations 
in the second-order kinematic form. They are linear in to, i.e., 
B can be a function of o, q, and /. Usually, however, con­
straints imposed on the system are of the form of geometric 
and/or first-order kinematic constraints, u(q,t) = 0 or 
v(oi,q,t) = 0, respectively. Thus, in order to transform them to 
the form (2c), they must be differentiated with respect to time 
twice or once, respectively. As a result, according to the con­
straint form, the rows of BT are 

B1 
(g„uq)

T = ulgl for u(q,t)=0, 

for v(w,q,t) =0 . 

(3a) 

Ob) 

The constraint vectors, defined by (2c) or (3), projected in the 
directions of quasi-coordinates ir=[7r1; . . . , ir„]T, TT = O>, are 
contained in B as columns. Evidently, if geometric or first-
order kinematic constraints are imposed, their transformation 
to the form (2c) yields appropriate conditions imposed on the 
initial value problem of (2). 

In applications, see Gear et al. (1985), Lotstedt et al. 
(1982,1986), Hemami et al. (1979,1981); the Lagrange 
multipliers are often eliminated from the equations (2), i.e., 

\=-(BT M " 1 B)~i(BT M " 1 f+b). (4) 

Then, the equation (2a) becomes 

M6i=f+B(BT M " 1 B)~l(BT M~{ f+b) (5) 

and, including (2b), a set of 2n ordinary differential equations 
(ODEs) in [w,q]T is obtained. 

The aforementioned approach and other techniques for 
solving (2), as well as other types of equations of motion used 
in analytical mechanics (Lagrange's equation of second order, 
Hamilton's canonical equations, Gibbs' equations, Kane's 
equations, . . .), all of them originate more or less directly 
from the fundamental postulate of orthogonality of constraint 
reactions (1) to the corresponding constraint manifolds. (See 
Arnold (1978), Hemami et al. (1979,1981), Kamman and 
Huston (1984), Nejmark and Fufajew (1972), and Wang and 
Huston (1987)). The constraints imposed on the system are 
called ideal constraints and usually refer to material con-
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straints, since the constraining forces represent the reactions 
of environment to the system. The situation may change, 
however, when a system with program constraints is 
considered. 

Program constraints are meant here as requirements im­
posed on the system motion (see Blajer (1988a,b), Gutowski 
(1972), and Walker et al. (1984)). The motion consistent with 
these constraints (program motion) must be ensured by an ex­
actly adopted model of control (program control). Control 
forces, however, being an inner feature of the system, may 
have arbitrary directions in relation to the constraint 
manifolds and may not be able to replace the constraint reac­
tions in the sense of classical mechanics. As a consequence, the 
approach defined by (4) and (5) may fail because of the 
noninvertibility of a matrix corresponding to BTM~ lB (X now 
denotes the vector of control forces). 

The objective of this paper is to present possible ways of 
realization of program constraints and to formulate a general 
mathematical model for determination of control ensuring ex­
act execution of assumed program. It will be shown that the 
program constraint realization is possible when control forces 
do not satisfy the condition of orthogonality to constraint 
manifolds and, in the extreme, when they are tangent to these 
manifolds. The results obtained generalize, to some extent, the 
classical theory of constrained dynamical systems. 

2 Formulation of the Problem 

An «-degree-of-freedom controlled system with m program 
constraints is considered. According to the formulation (2) of 
motion equations for a system with "material" constraints, 
the governing equations for a controlled mechanical system 
subjected to program constraints have been taken in the 
following form (refer also to Blajer (1988a,b) and Hemami et 
al. (1979,1981)): 

M6i=f+AC, (6a) 

Q = 8, (66) 
BT d) + 6 = 0, (6c) 

where C=[C{, . . . , Cm]T is a vector of control forces and A 
is a full-rank n x m matrix of control force representation in 
the «-dimensional space of ir. Similarly, as in (2c), B is an 
n x m full-rank matrix of program constraint vectors, m<n. 

It is worth noting that the solution of (6) and the determina­
tion of control reactions ensuring the realization of program 
constraints by using the classical theory approach described in 
Section 1 will be possible as long as the matrix BTM~ lA is in-
vertible. In many works such a condition is postulated a priori 
(or, simply, A =B) (see Do Sanh (1984), Gutowski and Rad-
ziszewski (1969), and Hemami et al. (1979,1981)), which is 
equivalent to the demand that the control reactions replace the 
reactions of program constraints treated as ideal "material" 
ones. In a general case, however, the directions of control 
forces, being an individual characteristic of the system, may 
have nothing to do with the directions of program constraint 
vectors contained in B as columns. Hence, the matrix 
BTM~lA may be singular and the classical theory approach 
may be not valid. In this case the solution of the problem 
described needs a modified procedure. 

Let us factorize the matrix B as follows: 

B=A P+A*Q= (A,A*) (7) 

where the full-rank n x k (k = n — m) matrix A* is an or­
thogonal complement of M~ lA such that 

(A*)TM-iA=0. (8) 

1 

2 

3 

4 

Table 1 

rank(P) =m 

r ank(Q)=0 

rank(P) =m 

0 < r a n k ( Q ) = t f < m 

0<rank(P) =p<m 
0<rank(Q) =q<m 

p + q>m 

r a n k ( P ) = 0 

rank(Q) =m 
2m <n 

OR 

(orthogonal realization) 

NOR 

(nonideal orthogonal realization) 

MR 
(mixed realization) 

TR 
(tangent realization) 

The m x m matrix P and k x m matrix Q can be found from 
the following relation: 

[A,A* lB. (9) 

The factorization (7) consists in the determination of 
tangent and orthogonal components of constraint vectors B in 
relation to the directions of control forces C in the n-
dimensional space. According to the ranks of P and Q, the 
following classification of program constraint realization is 
proposed (see Table 1). 

Substituting cb from (6a) into (6c), and considering (7) and 
(8), it can be found that 

(PTAT + QT(A*)T)xM-[f+PTATM~iA C+b = 0. (10) 

Analyzing (10), the possibility of OR and NOR can be easily 
deduced since P and ATM~lA are invertible and (10) can be 
solved univocally for C, i.e., 

C=-(ATM-lA)~l(PT)~l((PTAT+QT(A*)T)M~1f+b). 

(11) 
In the classical case of OR (Q = 0 and B=A), the relation (11) 
transforms to (4) and C plays the role of the Lagrange 
multiplier vector. 

In the cases of MR and TR, equation (10) cannot be solved 
for C—the matrix P is not invertible. In these cases, a special 
approach to the problem must be undertaken. However, prior 
to the presentation of the solution, another form of the gov­
erning equations of motion will be introduced. It will be of 
some use in further considerations. 

Premultiplying (6a) by the full-rank matrix (A, A*)T or, in 
other words, projecting the equations (6a) in the directions of 
vectors contained as columns in (A, A*) and considering (8), it 
follows that 

ATi)=ATM-lf+ATM~lA C, 

(A*)T6i=(A*)T M~lf. 

(12a) 

(Ub) 

Now, the equations (\2b), (6b), and (6c) form a new set of 
equations of program motion, the dimension of which is 
reduced to 2« (note that the dimension of (6) is 2n + m). Since 
the matrix ATM~XA is invertible, (12a) will serve only for 
determination of demanded control ensuring the exact real­
ization of program constraints. The problem of control deter­
mination then becomes a secondary one and follows from the 
transient dynamic solution of program motion equations. Ob­
viously, in the cases of OR and NOR, the program control will 
be found rather from (4) or (11) than from (12a). 

The aforementioned approach is used in classical mechanics 
for reducing the equations of motion with constraints (see 
Amirouche et al. (1987,1988), Hemami et al. (1979,1981), 
Kamman and Huston (1984), and Wang and Huston (1987)), 
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and is known as the Maggi transformation (refer to Nejmark 
and Fufajew (1972)). 

The set of program motion equations (12b), (fib), and (6c) 
can be converted to a standard ODE system in [u>,q]r if 

rank! 
V BT J = max = «. 

Considering that 

(A*)T (A*r 
PTAT+QT(A*)T 

0 

QT(A*)T 

I 0 

0 PT 

(13) 

Ar 

(14) 

the existence of condition (13) for the cases of OR and NOR is 
evident. However, for the cases of MR and TR, 

rank 
(A*) 

( ) < max, (15) 

and the problem cannot be solved using the classical theory. 

3 Solution of the Problem 

As it was shown in Sections 1 and 2, for the cases of OR and 
NOR, the problem of control ensuring the realization of pro­
gram of motion can be easily solved using the classical theory 
of constrained systems or a slightly modified (generalized) ver­
sion of this theory. For the case of OR, the demanded control 
can be found from (4), where C = \ , and the governing equa­
tions of program motion are formed by (5) and (2b) (or (126) 
and (6c), alternatively). For the case of NOR, the program 
control can be determined from (11), whereas the equations of 
program motion can be composed either of (6a) (after 
substituting C from (11)) and (6b) or of (126) and (6c). 

Let us concentrate now on the solution of the problem when 
the cases of MR and TR are faced. First, we will show that the 
case of MR can be transformed to a form equivalent to TR, 
and then the solution for both the cases will be presented. 

For the purpose of the analysis, let us rewrite the reduced 
dynamic equation (126) and the constraint equation (6c) as 
follows: 

(A*)T6>=(A*)TM-if, (16a) 

(PTAT + QT(A*)T)6> + b = 0. (166) 

Denote now that for the case of MR, rank(P) =p = m — l (see 
Table 1). In this case, / rows of P are linearly dependent, i.e., 

UTPT = 0, (17) 

where U is an m x / full-rank matrix. Let U* be a complement 
of U in the w-dimensional space. Thus, rank ((U*)T 

PT)=max=p. Premultiplying now the equation (166) by the 
matrix (U*, U)T, and considering (16a), the equations (16) can 
be manipulated to the following form: 

(A*)T6i=(A*)TM-if, (18a) 
(U*)TPTATw=-(U*)T(b + QTA*M-lf), (186) 

UTQT(A*)Tw=-UTb. (18c) 

Since rank ([(A*)T, (U*)TPTAT]T) =max = « - / , the form 
(18) is structurally similar to (16) and the equations (166) and 
(18c) represent the program constraints which are realized by 
"tangent" control forces. Substituting Co from (6a), these 
equations can be rewritten in the generalized form as follows: 

CQT(A*)TM-lf+b (19a) 
w(u,q,t)= •{ 

[_UTQT(A*)TM-if+UTb. (196) 

Note that the dimension of (196), referring to the MR case, is 
l=m—p, whereas, the dimension of (19a) is m. 

Taking into account the previous considerations, the 
schemes for solution of the problem for MR and TR cases are 
similar. In the following we will deal with the case of TR, 
where P = Q, r ank(g )=m, and w = BTM~if+b. Now, the 
governing equations of program motion can be reformulated 
as a set of differential/algebraic equations (DAEs), i.e., 

(A*)TCo-(A*)TM~1f=0, (20a) 

q-g(w,q,t)=0, (206) 

w(t»,q,t)=0. (20c) 

According to the theory of DAEs, a range of ODE methods 
can be used to solve the problem stated in equations (20). The 
idea of using ODE methods for solving DAE systems directly 
was introduced by Gear (1971) and is based on the backward 
Euler method. The original algorithm analysis was performed 
under the assumption that the index of system is equal to one. 
For our case it means that the matrix ((A*)T, wl)T is non-
singular, where wM denotes the n x m Jacobian matrix. With 
some care, techniques based on this method can be con­
structed for solving DAE systems even if the index exceeds one 
(for details refer to Brenan (1983)). For the purpose of this 
paper, however, a reduction technique to rewrite the system in 
the form with lower index will be applied to get a set of DAEs 
with index equal to one. 

The technqiue is based on the algorithms proposed by Gear 
(1984), Gear and Petzold (1984), Lotstedt and Petzold (1986), 
and, apart from reducing the index of systems, it is also useful 
for determining their index value. The applied algorithm can 
be stated as follows: 

Algorithm 1. (1) Differentiate with respect to time the 
equation (20c) to get 

wlo> + w^q+w, = w^w + h(w,q,t)=0. (21) 

(2) If the matrix ((A*)T, w^)T is nonsingular, then we are 
done (the equations (20a), (206), and (21) can be transformed 
to a set of ODEs). 

(3) Otherwise, premultiply the set of equations (20a) and 
(21) by a nonsingular n x n matrix R to zero out a maximal 
number of rows of ((A*)T, w^)T and permute the zero rows 
to the bottom to obtain 

(22) 

Now, apply the process to this new system, which is in the 
form of the equations (20a) and (20c). 

Of course, by differentiating the algebraic equations a 
number of integration constants are introduced, which means 
that we must determine the correct initial conditions. This can 
be done by satisfying w(co0,q0,0) = 0, wl(uo,qo,0) = 0 or other 
algebraic equations which may appear in the next steps of 
Algorithm 1. 

4 General Remarks 

A more detailed discussion of this formulation is provided 
at the end of Part II of this paper, where practical implications 
of the general theory are demonstrated. In this section we 
would like to emphasize only some interesting conclusions 
resulting from the analysis investigated in the previous section. 

One of the most valuable results seems to be the generaliza­
tion of the concept of constraint reactions. The mathematical 

A,' 

o 
C0 + 

~fi(oo,q,t) 

wx(w,q,t) 
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formulation presented in the paper can make it possible to 
analyze mechanical systems with so-called nonideal con­
straints (constraints with friction, for example). Moreover, a 
new type of constraint realization has been defined. It has 
been proved that the realization is also possible by constrain­
ing forces which are tangent to the constraint manifolds. Ob­
viously, this refers mainly to a subclass of constraints—the 
program constraints, the realization of which is ensured by 
control reactions. 

One may face difficulties in the determination of or­
thogonal complements of the matrix M~ lA and U, and in the 
determination of the matrix R introduced in Algorithm 1. As 
it will be shown in Part II of the paper, the task seems quite 
simple for small systems. For large systems, the methods sug­
gested by Kamman and Huston (1984) or by Wang and 
Huston (1987) may be valuable. The problem has not been 
considered in this paper. 

In Section 3 the governing equations of program motion 
have been introduced in the form of the DAE system—the 
equations (16) and (18). One of the important characteristics 
that determines the behavior of DAEs is the index of the 
system. Following the definitions suggested by Gear (1984), 
Gear and Petzold (1984), and Lotstedt and Petzold (1986), the 
index of (16) equals zero for the cases of OR and NOR. In 
these cases the condition (13) is fulfilled and (16) can be 
transformed to a standard ODE form. For the cases of MR 
and TR, the corresponding index exceeds one and the pro­
posed algorithm must be used. It might be worth noting that if 
the program of motion consists of any geometric constraints, 
they must be first differentiated twice to be transformed to the 
form (2c). Considering this the global index of the problem for 
the cases of MR and TR is at least four. Examples of such 
systems will be presented in Part II. 
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On Realization of Program 
Constraints: Part II— 
Practical Implications 
Practical implications of a general mathematical model of realization of program 
constraints are investigated. Illustrative examples of different types of this realiza­
tion are demonstrated and discussed. Some general conclusions concerning the 
problem of program constraint realization are drawn. 

1 Introduction 

A general methodology for analyzing the dynamics of con­
trolled mechanical systems subjected to program constraints 
was presented in Part I of this paper. Different types of pro­
gram constraint realization were classified there. A general 
mathematical model for determination of control forces en­
suring the exact realization of program constraints and for 
formulation of governing equations of program motion were 
also contained there. 

In Part II of this paper, practical implications of the general 
formulation are demonstrated and discussed. The examples of 
particle and aircraft trajectory motion are used to present dif­
ferent types of possible ways of program constraint realization 
by adequate control forces. Through these examples, the 
general formulation of Part I becomes clearer. The practical 
implications enabled us also to draw some general conclusions 
concerning the mathematical model of Part I. They are 
discussed at the end of this paper. 

Many of the equations and definitions used in Part II refer 
closely to Part I of the paper. Reading both parts as a whole is 
suggested. 

2 Particle Trajectory Motion 

Let us consider a particle of mass m and charge q moving in 
the gravitational, electric, and magnetic fields. Let us limit 
ourselves to the case of planar motion and assume that the 
vector of gravity acceleration lies along the z-axis 
(downwards), the vector of electric force is parallel to the x-
axis, and the vector of magnetic induction lies along the.y-axis 
(see Fig. 1). 

The governing equations of the particle motion expressed in 
the path axes are, as follows: 

mV= — aV2 — mg siny+ qE COSY, (la) 

m Vy = — mg COSY ~ QE sinY + q VBA (lb) 
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where Kis the velocity, a is a constant value (aV2 denotes the 
drag force), g is the acceleration due to gravity, E is the electric 
field intensity, BM is the value of magnetic induction, and y is 
the inclination angle of V. The path axes have been chosen 
since, in these axes, it is convenient to formulate the or­
thogonal and tangent directions to the predetermined path 
(constraint). 

The equations (1) must be completed with the kinematic 
equations: 

x = V COSY, (2a) 

z = V sinY. (2b) 

Let us assume now that the particle is postulated to move 
along a prescribed trajectory (program constraint), the equa­
tion of which is 

f(x,z) = 0. (3) 

Assuming that f(xo,zo) = 0 and tgy0 = -fx{x0,z0Wz{x0,z0), 
the geometric constraint (3) can be transformed (after two dif­
ferentiations) to the second-order kinematic form, i.e., 

Vy-^K^O, (4) 

0 L , 

y * mg N ^normal 

x 
/ 

^trajectory 
{(x,y) = 0 

Fig. 1 Particle trajectory motion 
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where K = (fxxfz +fzzfxV(fx +fzV
n is the curvature of (3). 

Since, in the sense of equations (1) the quantity Vy should be 
interpreted as a quasi-acceleration (the corresponding quasi-
velocity has no physical interpretation), the matrix M and the 
constraint vector B (see Part I) can be formulated as follows: 

M= 
~ m 0 " 

0 m 
, B = 

;o~ 
[ I _ 

(5) 

Example 1 (OR). Let us postulate that the particle motion 
along the trajectory (3) is ensured by changes in the Lorentz 
force qVBM (control force) or, in other words, by changes in 
the value of magnetic induction BM (control parameter). In 
accordance with the mathematical formulation of Part I, we 
can find that the matrix A of control force representation and 
the matrix A* (orthogonal complement of M~l A) are 

A = 
0" 

1 
; A* = 

' 1 

0 
(6) 

It is evident that B = A, P = 7(1 x 1 identity matrix), Q = 0and, 
consequently, we have a case of orthogonal realization (OR). 
Then, the actual value BM ensuring the exact realization of the 
program (3) can be found from the relation following from 
(16) and (4), i.e., 

5 A , 
mV2K + mg COS7 + qE sin7 

q~V • 
(7) 

Taking into account equation (7), the dynamic equations (1) 
transform to 

mV = — aV1 — mg smy + qE smy, (8a) 

mVy^mV-K. (8b) 

Example 2 (NOR). Let us assume now that BM is a 
suitably differentiable arbitrary function and that the particle 
trajectory motion is controlled by the electric force q E (E is a 
control parameter). Then, the matrices A and A * are 

A = 
0S7 

sin7 
; A* = 

sin7 

COS7 
(9) 

Following the mathematical model proposed in Part I, we 
can find that 

= (A,A*)~lB = 
COS7 - shry" 

sin7 COS7 
X 

"(T 

I 1 J 
- S U 1 7 

COS7 
(10) 

Since, for s in7^0, rank ( P ) = l = m a x , and rank (Q)>0, a 
case of nonideal orthogonal realization (NOR) has been ob­
tained. The actual value of control parameter E ensuring the 
particle trajectory motion can be found from the equation (10) 
of Part I, i.e., 

E=-
mg cosy — qB MV + mV2 K 

q sin7 
(11) 

Note that for sin7 = 0, the realization of the control defined by 
(10) is impossible, and that for cos7 = 0, the problem becomes 
an OR case (rank ( 0 = 0). 

Considering (11), the dynamic equations (1) become 

m V= — a V2 - mg sin7 - (mg cosy — qBM V+ m V^Kjetgy, 
(12a) 

mVy = mV1K. (\2b) 

Comparing the equations (8) and (12), it is worth noting 
that in both cases (OR and NOR) the dynamic equation (lb) 
has been replaced by the same equation mVy = mV1 K, which is 
equivalent to (4). This equation expresses the actual value of 
external force projections in the normal direction demanded 
for trajectory motion. From this condition the control forces 
qVBN in Example 1 and qE in Example 2 are derived. Since 
the control reaction qVBM is orthogonal to the trajectory, it 
can be interpreted as an ideal constraint reaction. The control 
reaction qE, however, is not "ideal" and gives projections in 
both normal and tangent directions. The tangent projection is 
represented in (12a) by the last factor. 

Example 3 (OR). This example will also be classified as an 
OR case. The analysis will be of some use in further 
discussion. 

In addition to the trajectory constraint (3), an additional 
constraint on particle velocity is postulated; 

V=<t>(x,Z,t). (13) 

If V0 = <j>(x0,z0,Q), the condition (13) can be replaced by its 
differentiated form 

V-b = 0, (14) 

where b = V<j)xcosy + Vcl>zs'my + <j>t. 
In the example considered now, the number of constraints 

equals the number of degrees-of-freedom. As a consequence, 
both of the dynamic equations (1) will be replaced by the con­
straint equations in the second-order kinematic form (4) and 
(14). Moreover, both control forces, qVBM and qE, must be 
applied to ensure the realization of the program. 

The matrix of constraint vectors can be written as 

B--
0 1 

1 0 

and the matrix of control force representation 

0 COS7 

A = 
1 - sin7 

(15) 

(16) 

where the vector of control forces is meant as 
C=[qVBM,qE]T. Note that the matrix A* does not exist, so 
the matrix Q does not exist either. 

It is easy to deduce that 

P=A~XB = 
tgy 1 " 

cos_17 0 
X 

"0 1 " 

Li oj 

1 tgy 

0 cos" '7 
(17) 

and that rank (P) = max = 2, if only cos7^0. Then, in accor­
dance to the classification provided in Table 1 of Part I, a case 
of OR has been obtained. 

The governing equations of the program motion can be 
composed now of the constraint conditions (4) and (14) and 
the kinematic equations (2). The actual values of control 
forces qVBM and qE (or control parameters BM and E) follow 
from the equation (11) of Part I, i.e., 
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c= 
' qVBM 

qE 

mg cos'^y + aV-tgy + mV-K + mbtgy 

a V2 cos ~' 7 + mgtgy + mb cos ~' 7 

i = K c o s 7 , (20a) 

i = K s i n 7 , (206) 

6 = Q, (20c) 

QJA and the geometric relation following from Fig. 2 

0 = a + 7. . (21) 

where b is defined in (14). 
Note that in this example, classified as an OR case, the 

realization of the program is not "ideal" in the sense of 
classical theory. Since A T^B, the control forces qVBM and qE 
cannot be, in principle, identified with ideal constraint reac­
tions. It refers to the qE control force giving projections in 
directions of both constraint vectors defined in (15). Of 
course, for 7 = 0 or 7 = ir, the realization becomes "ideal", 
and for 7==Fir/2, the realization defined by (18) is 
impossible. 

3 Aircraft Trajectory Motion 

An aircraft program flight along a prescribed trajectory 
may be used to introduce examples of the other types of pro­
gram constraint realization classified in Part I. For a more 
detailed discussion of the problem of aircraft trajectory mo­
tion, the reader is referred also to Blajer et al. (1987, 1988a,b). 
Here, we will quote the governing equations of motion and 
discuss a simple case of planar motion. 

Using similar notation as in Section 2, the governing equa­
tions are (see Fig. 2): 

1 
m V= ——p S V2 cD(a) - mg sin7 + T cosa, (19a) 

1 
mVy = -—p S V2 cL{a)-mg COS7+ Tsina, (196) 

JQ~P $ V2 ca(cmo(a,Q) + ̂ b H ) , (19c) 

where p is the air density (for simplicity p = const), S is the 
wing area, cD and cL are the drag and lift force coefficients, 
respectively, ca is the mean chord value, cm is the pitching mo­
ment coefficient, J is the aircraft moment of inertia, a is the 
value of attack, Q is the aircraft angular velocity, T is the 
thrust force, and 8H is the elevator deflection. 

The modeled aircraft can be controlled by changes in T and 
6H values. Assuming that cm depends linearly on 8H (see 
(19c)), the control forces are Tand l/2(p S V2 ca)dcm/d8H(5H) 
(Tand 5H are control parameters). 

The dynamic equations (19) must be completed with the 
kinematic differentional equations 

'""" *" }§SVc0Cm 

"•trajectory 

Fig. 2 Aircraft trajectory motion 

Example 4 (TR). Let us assume first that the aircraft is 
postulated to fly along the prescribed trajectory (3), and that 
the program motion is ensured by changes in 5H value (T is 
assumed to be an arbitrary continuous function, for simplicity 
T= const). Using the mathematical model proposed in Part I, 
the matrices M, B, A and A * can be stated as follows: 

M= 

m 0 O"1 

0 m 0 

0 0 7 

0" 

0 

1 

, 5 = 

A* = 

0 

1 

0 

" 1 0" 

0 1 

0 0 

(22) 

A = 

Then, it can be easily deduced that 

P 
= (A,A*)~lB 

Q 

(23) 

"o 0 r 
1 0 0 

0 1 0 

X 

" 0 " 

1 

0 

= 

" 0 " 

0 

1 

(24) 

Since P=0 and rank ( 0 = 1, a case of tangent realization 
(TR) has been obtained. Using the mathematical model pro­
posed in Section 3 of Part I, one can easily prove that the 
equation (19c) will serve only for determination of demanded 
control, whereas (19a) and (196) must be combined with the 
twice differentiated form (4) of the constraint (3). To solve the 
problem the algorithm introduced in Part I has to be used and 
the differential condition (4) must be transformed to the 
following algebraic form 

w = —p S V2 cL-mg cos7+7 , s ina- /nF 2 K = 0, (25) 

which follows by substituting 7 from (196). 
The governing equations of the program motion are com­

posed now of (19a), (196), (20), and (25), and form a set of 
DAEs with the state vector [wT, qT]T=[V,y,Q,x,z,6]T- Since 
the index of the DAE system exceeds one, the following 
transformation have to be used. 

Differentiating with respect to time, and taking into account 
(20c) and (21), it can be found that 

w = w„V+ ('zip S V2-^- + T cosa) Q + wyy = 0, (26) 
da *)e-

where wv=p S V cL-2mVK, w 7 = - p S V2(bcL/ba) 
- IT cosa + mg smy. One can easily prove now that the matrix 
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«A*y,ww 

1 0 0 

0 1 0 

w„ w„ 0 

(27) 

is singular, the index of the DAE system exceeds one, and that 
the Algorithm 1 proposed in Part I has to be used to solve the 
problem. Using the nomenclature proposed there, the matrix 
R can be defined as 

R = 

1 0 0 

0 1 0 

-w„ •wy 1 

(28) 

to obtain 

= RW)T,wDT = 

" 1 0 0" 

0 1 0 

0 0 0 

(29) 

Premultiplying the set of equations (19a), (196), and (26) by 
R, we can find a new set of DAEs of the form 

V= ( ——p S V2 cD-mg sin7 + T cosa) , (30a) 
m \ 2 / 

Vy = \~TTP S V2 cL — mg COS7 + T s ina) , 

w ( 1 \ 
i = - ( - r - P S V2 cD + mg s i n 7 - r c o s a ) 

m \ 2 / 

w / 1 \ 
H — (- r -p S V2 cL—mg COS7 + T sina J 

(306) 

(4 o dc, 
S V2—-+Tcosa 

da 
:)<2 = 0. (30c) 

Now, it is easy to prove that the index of the DAE system 
(30) is an equal one, since dw{/dQ^0, as far as Vi p S 
V2(dcL/da) + T cosa^O. Obviously, by differentiating (30c) 
once more, the system (30) can be, in principle, standardized 
to an ODE system. In this case the initial values must satisfy 
the conditions w(VB,yo,do) = 0, and wl(Vo,yo,Qo,d„) = 0. 

In practical applications of the problem described, the 
mathematical formulation can be considerably simplified. 
Since (19c) serves only for determination of the actual value of 
SH ensuring the exact trajectory flight, the set of DAEs 
describing the program motion can be stated as being com­
posed of (19a), (4), (25), and (21) (The initial position of the 
aircraft must satisfy (3) and the vector of V0 must be tangent 
to the trajectory.) The state vector of the DAE system is 
[V,y,a,6]T and its index is equal to one. As a consequence, a 
standard ODE method can be used to solve this DAE system 
(Gear (1971, 1984), Brenan (1983)). Demanded values of 8H 

can then be found from (19c), where Q = & — 7, and a and 7 
can be determined by numerical differentiations of a and 7 
obtained from the solution of the DAE system (for details see 
Blajer and Parczewski (1987)). 

Example 5 (MR). In the last example, the case of MR will 
be presented. Assume that in the trajectory flight, as in the 
previous example, an additional constraint (13) is imposed on 
the value of the aircraft velocity. Now, the control by changes 
in SH and T values must be applied, and the corresponding 
matrices B, A, and A* are defined as follows (the matrix M 
has been already defined in Example 4): 

B = 

cosa 0 " 

sina 0 

0 1 

> 

"0 11 

1 0 

0 0 

» 

A* = 

- s i n a 

cosa 

0 

(31) 

(32) 

and C= [T,(l/2)p S V2 ca(dcm/d5H)8H]T. The matrices P and 
Q can be defined then as 

P 
= (A,A*)-iB 

cosa sina 0" 

0 0 1 

- s i na cosa 0 

X 

"0 1 " 

1 0 

. 0 0 

= 

sina cosa 

0 0 

cosa —sina 

.(33) 

Since there are two constraints imposed, rank (P )= l and 
rank (Q) = 1, the case of mixed realization (MR) has been ob­
tained (see Table 1 in Part I). 

Considering the theory proposed in Section 3 of Part I, the 
problem can be solved as follows, defining the full rank matrix 
(£/*,£/) in the form 

(U*,U) = 
sma cosa 

cosa - s i n a 
(34) 

one can easily prove that UTPT = 0. Then, the equations (18) 
of Part I take the following form 

- V sina + Vy cosa = 
m 

1 
p S V^icp sina 

+ cL cosa) - mg cos(7 + a) , 

Fcosa + Vy sina = + J-^K sina + b cosa, 

p S V2(cD sina + Ci cosa) 

s(7 + a) — K2* cosa — b sina = 0. — mgcos( 

(35a) 

(356) 

(35c) 

The aforementioned set of DAEs can be solved using the 
algorithm described in Section 3 of Part I and used previously 
in Example 4. The algebraic equation (35c) must be differen­
tiated twice to get an ODE system or once to reduce the index 
of (35) to one. Obviously, appropriate conditions on the initial 
value problem have to be imposed. 

The actual values of control forces (or control parameters) 
ensuring the exact realization of the program can then be 
found as 

C=(ATM-1A)~i(.AT6>-ATM-[f). 

For the case considered, (36) takes the form 

T=mVcosa + mVy sina — — p S V2{cL sina 

— cD cosa) + mg sin(a + 7), 

(36) 

(37) 
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~TpSy2 Ca~^*H=J®~~Yps v2 c° Cm°- (38) 

In practical applications, the actual values of V, y, and Q in 
(37) and (38) can be found numerically, following time 
histories of V, y, and a(Q = y + a). 

4 Discussion 

In this paper the number of control forces C has been 
assumed to be equal to the number of program constraints * 
imposed on the system. In many applications it may appear 
that dim ( Q > d i m (*) = m. In such a case, the m "control­
ling" forces must be chosen in advance, whereas the remain­
ing ones can be taken as arbitrary, suitably differentiable 
functions of time and state variables. 

The problem of "controlling" forces should be discussed 
more thoroughly. Let us consider again Example 4, which 
relates to the aircraft program flight along a prescribed trajec­
tory. We have assumed that the aircraft is controlled by 
changes in SH value, and a case of TR has been deduced. 
However, if the aircraft would be controlled by changes in T 
value (5H is an arbitrary function now), we could find that ' 

A M H = A L H % 

Fig. 3 Model of aircraft 5H-control 

1 

~~d 
0 

c c' 

(43) 

A = 

cosa 

sina 

0 

A* = 

and then 

= (A,A*)~lB--

- s i n a 0 

cosa 0 

0 1 

sina 

cosa 

0 

(39) 

where d= det (A,A*) = m c2
ac,'n

2 +Jc[2 and x denotes nonzero 
entries being of no use in the following. 

Now, rank (P) = rank (Q)= l and, in principle, a case of 
NOR has been obtained. Then, the demanded values of 8H en­
suring the realization of program can be determined from the 
relation 

— l—r-p S V^Cig—mg COS7+ Tsina] 

(40) + p S V2C[8H-V2K = 0. 
m 2 

(44) 

Now, if sina ;*0, rank (P)= 1 and rank (Q)= 1, and the case 
can be classified as NOR. Theoretically then, as far as 
sina 5*0, the aircraft trajectory motion can be controlled by 
variations in T. However, the problem stated in such a way is 
ill-conditioned. The angle a is normally small, up to a dozen 
or so degrees, and T projects mainly in the tangent to the tra­
jectory direction. Even small changes in "normal" projection 
of T demanded for the trajectory flight will cause big varia­
tions in V (see the equation (19a)), and then in other state 
parameter values. As a consequence, the motion controlled 
this way may be unstable and, possibly, unrealizable. 

Let us assume now that the model of control introduced in 
Example 4 is slightly modified, i.e., assume that SH also af­
fects cL: 

cm=cmo + c'mbH, cL=cLo + c'LbH, (41) 

where c'm = dcm/d8H, c'L = dcL/d5H, and cmo, cLo, c'm and c[ do References 

The problem stated in this way also seems to be ill-
conditioned. The value c'L is usually negligible in comparison 
to the value of c'm. Moreover, c'L <0 , thus, the variations of 8H 

demanded for the trajectory motion through producing a gain 
in the lift force ALH= l/2(p S V^c'^x), will cause an incre­
ment of the pitching moment AMH=l/2(p S V-c^bu), 
which in turn will cause the growth of both a and the lift force 
in the opposite direction to the "controlling" ALH (see Fig. 3). 
Then, the simulated flight will be unstable and the proposed 
way of the program constraint realization is impossible in 
practice. 

This discussion indicates that the choice of possible ways of 
program control needs a careful consideration, particularly 
when the orthogonal realization (OR) of program constraints 
imposed cannot be provided by the system. 

not depend on 5^. In fact, c[ is usually negligible and has been 
introduced here for theoretical considerations only. Denoting 
C= (l/2)p S V-hu, it follows that 

A = 

0 

Ca^n 

A* = 

1 0 

0 m cac'm 

0 -Jc'r 

(42) 

' p 

.Q. 
= (A,A*)~1B = 

1 

"0 J c'L x~ 

x 0 0 

_0 cac'm x 

"0 

1 

0 
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Effect of Correlation on the 
Almost-Sure Asymptotic Stability 
of Second-Order Linear Stochastic 
Systems 
A method of obtaining a sufficient almost-sure (a.s.) asymptotic stability condition 
for second-order, linear systems with both ergodic damping and stiffness coeffi­
cients is presented. The probabilistic property of the correlation between the damp­
ing and stiffness coefficients is taken into account. A sufficient condition for a.s. 
asymptotic stability is derived and numerical results are presented for the case of 
Gaussian noise coefficients. Results obtained in some of the previous investigations 
are included in the present study as special cases. 

Introduction 
The specific system considered is described by the second-

order differential equation 

x+2[t+f(t))x+[l+g(t)]x = 0, (1) 

where/(0, g(t) are zero mean, ergodic stochastic processes 
and f is the damping coefficient. 

When/(/) and g(t) are ergodic, wide-band Gaussian pro­
cesses which may be approximated by white noise processes, 
the influence of the correlation between f(t) and g(t) on the 
almost-sure asymptotic stability of the system has been con­
sidered by Mitchell and Kozin (1974), who employed a method 
of Khas'minskii (1967) to obtain numerically the exact stabil­
ity boundary. However, for arbitrary random excitation, this 
method is not applicable. In this paper, a method of obtaining 
a sufficient condition for a.s. asymptotic stability when the ex­
citations / ( t ) , g(t) are arbitrary ergodic, correlated or in­
dependent random processes is presented. Sufficient stability 
boundaries are obtained numerically in the case of Gaussian 
excitations. 

Basic Equations 

Consider a stochastic differential equation of the form 

x + 2[t+f(t)]x+[l+g(t)]x = 0, (1) 

where/(/), g(t) are ergodic processes with mean zero. 
Ariaratnam and Ly (1989) considered /(t) and g(t) to be 

uncorrected, and were able to get the best available results so 
far for the stability boundary. However, in general, f(t) and 

Contributed by the Applied Mechanics Division on THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED 

MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME 
Applied Mechanics Division, May 23, 1988; final revision, December 22, 1988. 

g(t) can be correlated random processes with correlation coef­
ficient p. 

In order to bring in the correlation effect, we first seek a 
transformation of the form 

= vp-t> x=ye (2) 

(3) 

which, when substituted into equation (1), yields 

y + 2f(t)y+[c + hO)]y = 0, 

where 

c = W 2 , 

h{t)=g(t)-2mt). 

Equation (3) can be written in the state equation form as 

h = yi, 

y2 = -2f(t)y2-[c + h(t)]y1. (4) 

The norm of the vector y = (j>,, y2), lly II, may be defined by 

||yIP=K=y7'Ay, 

where A is a positive-definite matrix given as 

(5) 

a.\-al >0. 
af a2 

a2 1 

Evaluation of V along the trajectories of (4) yields 

K=yrBy, 

where 

-2a2(c + h) ct?-2a2f-(c + h) 

^af-2azf-(c + h) 2a2-4f 

(6) 

B = 
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Therefore, since A, B are real symmetric matrices, and A is 
positive-definite, 

_K_ = 'y rBy 
V 

dF dF 
= 0. 

— = % . / <X(BA~'), 
yTAy 

(7) 

where X is the maximum eigenvalue of BA ' , i.e., X is the 
maximum root of the determinantal equation 

d(a2) da2 

Substituting (16) into (17) results in 

dF 
: -4f2 + 4a/

2 + 2(a,2-c) = 0, 

(17) 

IB-XAI=0 . (8) 

Therefore, a sufficient condition for asymptotic stability with 
probability 1 (w.p.l) is given by (Infante (1968)) 

-2{+E[\(t)]<-e, «>0. (9) 

Substituting A and B into equation (8) yields 

-2a2(c + h)-\a2 a\-2a2f- (c + h) 

a2-2a2f-(c + h)-\a2 2 a 2 - 4 / - X 

d(a,2) 

dF 

da-, 

(18) 

: 8r2a2 + 8 c a 2 - 4 / / 2 = 0 , 

from which the optimization parameters a2, a2 are obtained 
as 

af = l+?-2o?, a2=H2/2. (19) 

IB-XAI = 
- X a , 

which gives 

X2 + 4 A - G / ( a i 2 - a 2
2 ) = 0, (10) 

where 

G = (a2-c)2 + 4cai-4a2(a
2 + c)f+4a2

2f-4a2fh 

+ (4a | + 2c - 2a \)h + h2, 

so that one obtains the maximum eigenvalue as 

X = - 2/+ [4f + G/(a,2 - a2
2)] l /2. (11) 

Substituting (11) into (9) leads to a sufficient asymptotic 
stability condition 

- 2 f + £ [ - 2 / + ( 4 y 2 + G/ (a , 2 - a 2
2 ) ) 1 / 2 ]< -e , e>0 . (12) 

Since/(/) has zero mean, this simplifies to 

- 2 r + £ [ ( 4 / + G / ( a 2 - a 2
2 ) ) 1 / 2 ] < - e , e>0 . (13) 

Systems With Arbitrary Ergodic Coefficients 

If no further information other than the mean and the 
variance of the processes/(0 and g(t) and their correlation 
coefficient p is available, one can apply the Schwarz in­
equality to (13) to obtain a stability boundary 

E{4f + G/(a2-a2
2)] = 4^, 

F^ - 4f2(a2 - a2
2) + 4(a,

2 - afra) + E[G] = 0, (14) 

where G is given in (10), a n d / ( / ) and g(t) have zero mean. 
Then one can calculate E[G] as 

E[G] = (a? - cf + 4cai + 4a2
2<7/

2 + H{- 4a2H2, (15) 

where / / , = E[h2(t)], H2=E[f(t)h(t)], and equation (14) 
then becomes 

F = -4?{cx2 - al) + 4(a2 - afro} + (a2 - c)2 

+ 4ca | + 4a2 a} +HX- 4a2H2, 

= 0. (16) 

In order to obtain the optimal stability boundary, a 2 and a2 

are varied to get maximum af and ag, which are given by 

da„ do. dOf day 
- = 0. 

d(a2) da2 9 (a 2) da2 

These conditions turn out to be equivalent to (Ariaratnam and 
Ly (1989)) 

= 0, 

Substituting (19) into (16) results in a sufficient asymptotic 
stability boundary 

4(1 + f)aj - 4a} +HX- Hi - 4f = 0. (20) 

Since E[f(t)g(t)] = pofOg, one has 

Hi = E[h2(t)]=E[g2(t)-4mt)g(t)+4?f{t)], 

= 02-4{pofag + 4£2a}, 

H2 = E[f(t)h(t)]=E[f(t)gU)-2jf(t)], 

Therefore, equation (20) becomes 

(1 -p 2a})a 2 - 4fp(l - c2)0fog + 4(1 - o})[(\ + f2)ff/
2 - r2] = 0. 

(21) 

In the following, some particular cases are studied in detail. 

(1) The case/(0 = 0. Equation (1) becomes 

x+2{x+{\+g(t)\x = 0. (22) 

A sufficient a.s. asymptotic stability condition is 

<x2<4f2, (23) 

which is the same as that of Infante (1968). 

(2) The case g(0 = 0. Equation (1) becomes 

x + 2[f+/(f ) ]* + * = 0. (24) 

A sufficient a.s. asymptotic stability condition is 

(i- f f /
2)[(i+r2w-f2]<o, 

which gives 

a <- f (25) 

which is also the same as that of Infante (1968). 

(3) The case f{t) &0, g(t) m0. 

(0 p = 0, i.e., f(t) andg(t) are uncorrected. A sufficient 
a.s. asymptotic stability condition is, from (21), 

a,2 + 4(l- t7 /
2)[(l + f 2 ) a / - r 2 ] < 0 , (26) 

which is the same as that found by Ariaratnam and Ly (1989). 
The stability region defined by (26) is shown in Fig. 1 (a) for 
various values of f. 

(/'/') P&0, i.e., f(t) and g(t) are correlated. A sufficient 
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Fig. 1(a) Regions of almost-sure asymptotic stability for 
x + 2[f+ f(t)]x + [1 + g(t)\x = 0 via Schwarz Inequality (pfg = 0) 

stable regions 

Fig. 1(b) Regions of almost-sure asymptotic stability for 
x + 2[j-+f(r)]x + [1+g(r)]x = 0 via Optimization Method (pfg=0; f(t), g(t) 
Gaussian) 

a.s. asymptotic stability boundary is given by the general form 
of (21). In Figs. 2 and 3, the stability boundaries are plotted 
for the cases when p = ±0.5, p = ±1, respectively, for dif­
ferent values of the damping parameter f. 

It appears that the correlation coefficient of/(/) and g(t)> 
p, has a definite influence on the sufficient asymptotic stability 
boundaries. When/(0 and g(t) are positively correlated, the 
stability boundaries are enlarged, while when they are 
negatively correlated, the effect is opposite. The larger the 
value of lp I, the larger is this effect. 

It should be mentioned that the present results are only suf­
ficient asymptotic stability conditions and can be improved 
further. In the special case when f= 1 and/(0=0.5g(f), it 
has been shown recently by Kozin (1988) in a private com­
munication that the system is a.s. stable for any value of the 
variance parameter aj. Kozin's analysis is presented (with per­
mission) in the Appendix. 
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Fig. 2 Regions of almost-sure asymptotic stability for 
x + 21f+ W]x + I1 +g(t)]x = 0 via Schwarz Inequality 
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Fig. 3 Regions of almost-sure asymptotic stability for 
x + 2Jj- + l(t)]i + [1 + g(t)]x = 0 via Schwarz Inequality 

These stability regions can be enlarged if the distributional 
properties of f(t) and g(t) are known. To show this improve­
ment, the particular case of Gaussian excitation is considered 
in the following section. 

Systems with Ergodic Gaussian Coefficients 

(1) Optimization Model. Suppose that the joint prob­
ability density p (/, g) of the random processes /(t) and g (/) is 
available, so that for any integrable function F\f(t), g(t)], 

E[F(f, '^=$-15- F<J,g)p[f,g)dfdg, (27) 

and (13) can then be calculated numerically. 
To obtain the maximum stability boundary, it is necessary 

that for fixed oy (at a given f), the parameters a{ and a2 be op­
timally chosen so as to get the maximum value of ag. Then one 
can construct the following optimization model subject to 
nonlinear constraints, namely 

Maximize: 

Subject to Constraints: 
"a, >0, 
— al <a 2 < a i> 
-2f+£[(4/ 2 + 

+ G/(a,2 

(28) 

-«2 2 ) ) ' / 2 ] > - e . 
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One convenient method of carrying out this optimization 
numerically is described in the following subsection. 

(2) The Complex Method for Constrained Optimiza­
tion. The complex method for constrained optimization, due 
to Box (1965), enables one to find the maximum of a 
multivariable, nonlinear function subject to nonlinear con­
straints, i.e., 

Maximize: F(XUX2, . . . ,XN), 

Subject to Constraints: Gk<Xk<Hk,k-\,2, . . . ,M. 

(29) 

The implicit variables XN+, XM are dependent func­
tions of the explicit independent variables Xx, X2, . • • , XN. 
The upper and lower constraints Hk and Gk are either con­
stants or functions of the independent variables. 

The algorithm proceeds as follows (Richardson and Kuester 
(1973)): 

(1) An original "complex" of K>N+1 points is 
generated consisting of a feasible starting point and (K— 1) ad­
ditional points generated from random numbers and con­
straints for each of the independent variables as follows: 

XlJ = G, + rlj(Hl-Gl), i=l,2,...,N; 

y = l , 2 ,K-l, 

where r,j are random numbers between 0 and 1. 
(2) The selected points must satisfy both the explicit and 

the implicit constraints. If at any step the explicit constraints 
are violated, the point is moved a small distance 5 inside the 
violated limit. If an implicit constraint is violated, the point is 
moved one half of the distance to the centroid of the remain­
ing points: 

Xlt ,(new) = [Xu j(o\d) + X,J/2, /= 1,2 TV, 

where the coordinates of the centroid of the remaining points, 
XitC, are defined by 

1 xl^-^ZT[txIJ-xlj(0id)], '=1,2, . N. 

This process is repeated until all the implicit constraints are 
satisfied. 

(3) The objective function is evaluated at each point. The 
point having the lowest function value is replaced by its 
reflected point, chosen as follows: 

The centroid of the remaining points 

Xi-<=~^T I ̂  XiJ ~ x < v ( l o w e s t v a l u e ) J • i=1'2 N> 
is calculated so that the reflected point corresponding to the 
point having the lowest function value is given by 

Jfw(new) = y{XiiC - X,j (old)) + Xu e, i = 1,2, N. 

A recommended value for 7 is 1.3. 
(4) If a point repeats in giving the lowest function value on 

consecutive trials, it is moved one half the distance to the cen­
troid of the remaining points. 

(5) The new point is checked against the constraints and is 
adjusted as before if the constraints are violated. 

(6) Convergence is assumed when the objective function 
value at each point is within e units for m consecutive 
iterations. 

This method is a sequential search technique, which has 
been proven to be effective in solving problems with nonlinear 
objective functions subject to nonlinear inequality constraints. 
No derivatives are required. The procedure attempts to find 
the global maximum because the initial set of points is ran­
domly scattered throughout the feasible region. 

(3) Numerical Solution for Systems With Ergodic Gaus­
sian Coefficients. Assume that f(t) and g(t) are jointly 
distributed Gaussian random processes with jointly probabil­
ity density of the form 

Pif,g)-
1 

exp [-
/ : 

2*0^ , (1 ~p2)W2 ^L 2ff/(l-p2) 

pfg ~) _ _ pfg 
2 ^ ( 1 - p 2 ) " 

(30) 

so that for any integrable function F(f,g) 

E[F(f,g)] = [ +°° df\ + °° F(f,g)p(f,g)dg. (31) 
J —00 J — CO 

Changing to new variables defined by 

/ 
s = [ 2 ( l - p 2 ) ] " V 

[2(1 -p 2 ) ] 1 / 2a s 

(32) 

equation (31) becomes 

- ! W was)] = \ +°° exP(- m 
(1-P 2 ) 1 

I: F(ff /,^,p,|,j))exp(2p^)exp(-r)2)c/r). (33) 

The R.H.S. of (33) can be calculated numerically by the 
double Gauss-Hermite integration formula. Therefore, the 
sufficient asymptotic stability condition (9) becomes 

•2irf 

(1-P 2 ) 1 i +oo ri +00 

exp(-£2)c?M \(apa,p,i, 
— 00 J —00 

V) 

X exp(2p£»7)exp( - rj2)di/ < - e, e > 0. (34) 

One can then construct the optimization model that may be 
solved by the complex method as follows (for any given ay): 

Maximize: V=oj, 

Subject to Constraints: 

0.01 <Xi=ag< 10.0, 

0.01 <Xj = a i < 5.0, 

- la, l + 0 . 0 1 < Z 3 = a 2 < l a j l - 0 . 0 1 , 

0.0<A-4<2Trf/(l-p2)1 / 2 , 

where 

(35) 

XA = -
27Tf - ( + ° ° e x p ( - m 

J —00 (1-P 2 ) 1 

J -a, x(c/,(Tg,p,?,r))exp(2pgij)exp(-7j2)c??), 

and X is given by (11). 
In the optimization model (35), the values of the upper and 

lower constraints have been chosen for convenience of com­
putation. Then one can solve the problem numerically by the 
complex method for constrained optimization. 

For the case p = 0, i.e., f(t) and g(t) are independent 
stochastic processes, the results of numerical computation are 
plotted in Fig. 1(b) which are the same as those of Ariarat-
nam and Ly (1989), and Kozin and Milstead (1979). 

688/Vol. 56, SEPTEMBER 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



>>>i>> s t a b l e regions 

Fig. 4 Regions of almost-sure asymptotic stability for 
x + 2[f + f(t)]x + [1 + g(f)]x = 0 via Opimization Method {pfg = + 0.5; f(t), g(t) 
Gaussian) 

it,»/it stable regions 

f=2.0 

Fig. 5 Regions of almost-sure asymptotic stability for 
x + 2[f + f(t)]x + [1 + g(t)]x = 0 via Opimization Method (p/g = - 0.5; f(t), g(t) 
Gaussian) 

For the case p = ± 0.5, the results of the numerical computa­
tion are plotted in Fig. 4 and Fig. 5. 

Since the results obtained by using the Schwarz inequality 
are sufficient stability conditions for arbitrary ergodic coeffi­
cients, they can be used as the original "complex" points, i.e., 
initial values in the numerical computation. 

Obviously, within the stability domain, the positive-
definiteness of matrix A is always satisfied, since it is 
guaranteed in the explicit constraints of the optimization 
model. 

Conclusion 

A method of obtaining a sufficient a.s. asymptotic stability 
condition for second-order systems with ergodic coefficients, 
which takes into account the correlation between the damping 
and stiffness coefficients, has been presented. A sufficient 
condition for stability has been derived and numerical results 
have been presented for the case of Gaussian noise coeffi­
cients, where some of the previous investigations were includ­
ed as special cases. 

It is obvious that the correlation coefficient, p, of f(t) and 
g(t), has a definite influence on the sufficient asymptotic 
stability boundaries. When/(0 and g(t) are positively cor­
related, the stability boundaries are enlarged, while when they 
are negatively correlated, the effect is opposite. The larger the 
value of Ipl, the larger is this effect. 

Mitchell and Kozin (1974) also found a definite effect on the 
stability boundaries due to correlation between excitations. 
Their results, which are necessary and sufficient, pertain to ex­
citation by white noise, and cannot therefore be directly com­
pared to the present results. For instance, the behavior near 
f = 1 and f > 1 for the case p = + 1 is not obtainable by the pre­
sent approach in the case of arbitrary ergodic excitations with 
finite variance. 
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A P P E N D I X 
Consider system (1) with parameter f = 1 and/(0 = 0.5g(t), 

namely 

x+l2 + g(t)]x+ll+g{t)]x = 0, Ml) 

where g(t) is an ergodic process with zero mean and variance 
a*. System {Al) can be written as 

x + x+ [1 +g(t)](x + x) = 0, 

which is reduced to a single first-order linear equation by set­
ting y = x+x, with y0=x0+x0, 

y{t) + [l+g(t)]y(t) = 0. (A2) 

The solution of (A 2) is given by 

v (0=J 0 e - ' - G ( " , (A3) 

where G(t) = \},g(s)ds. By definition of y, one has 
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x + x=ya + e -t-GU) 

whose solution is 

x(t) = e- '[W°io e^G(s)ds 

(A4) 

x(t) = e~' \-x0+y0e-GI's)-y0\ e~G(-l)ds 

It can be shown that x(t) and x(t) approach zero as ?-—<», 
w.p.l. Clearly x0e~' approaches zero. The integral \ge~a^s)ds 
is monotonic nondecreasing since e - G ( s ) > 0 . Therefore, the 
integral will approach a finite limit or +oo, samplewise, 
w.p.l. If the sample limit is finite, then clearly e~'\'ae~a{s)ds 
approaches zero. On the other hand, if the sample integral ap­
proaches infinity, L'Hospital's rule is employed to yield 

e-G(s)ds 

l i m • lim 
e - G ( 0 

lim e 
( - 0 0 

io«w* 

Since the stochastic process g(t) is ergodic with zero mean, 
one has a sample limit 

lim e -/in •J0g(s)ds] 
= 0. 045) 

Hence, from (A5) it is found that lim x(t) =0, w.p.l; and a 
t— 00 

similar results holds for x( t), which establishes the asymptotic 
stability for system (-41). Furthermore, it may be noted from 
(,45) that for any mean value -\<E\g(t)\«x>, the system 
(-41) is almost surely stable for any value of a}. 
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Determining Lyapunov Exponents 
by Means of Interpolated 
Mapping1 

The method of Interpolated Mapping is extended to encompass the calculation of 
transient system behavior, specifically the efficient determination of the Lyapunov 
exponents for a simple nonlinear system. Both the continuous Lyapunov exponents 
as well as the corresponding Lyapunov exponents of the Poincare map for a forced 
Duffing's oscillator are found. The use of Interpolated Mapping is compared to 
straightforward numerical integration and is shown to offer distinct computational 
advantages. 

Introduction 
Interpolated Mapping has been shown in previous works 

(Tongue, 1987; Tongue and Gu, 1988) to be a very efficient 
tool for the global analysis of nonlinear systems. The technique 
was shown to be suitable for determining the basins of at­
traction for a system's attractors and for conducting accurate 
fractal determinations. One of the attractive advantages of the 
method that has not yet been fully exploited is the ability to 
analyze the transient motion of any trajectory in phase space, 
thus permitting an examination of local stability characteris­
tics. This paper will focus on the identification of a system's 
Lyapunov exponents (Benettin et al., 1980; Wolf et al., 1985) 
to illustrate this capability. As is well known, Lyapunov ex­
ponents measure the exponential rates of divergence or con­
vergence associated with an attractor of a system. For periodic 
attractors, one obtains only negative and zero exponents, in­
dicating convergence to a highly predictable motion, whereas 
a chaotic system will exhibit at least one positive exponent. A 
positive exponent is significant because it gives an indication 
of the rate at which one loses the ability to predict the system 
response. This is closely tied to the property of sensitive de­
pendence on initial conditions which is present in chaotic sys­
tems. Therefore, one way to determine if a system is behaving 
in a chaotic manner is to calculate the Lyapunov exponents. 
A further motivation for calculating these exponents is that a 
knowledge of the full spectrum of Lyapunov exponents can 
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be used to calculate an approximate value of the fractal di­
mension of the attractor (Farmer, Ott, and Yorke, 1983). 

The chief problem with Lyapunov exponents is that they 
can be costly to calculate. Because the individual exponent 
calculations can vary widely over short time intervals, the ex­
ponents are defined as a long time average over the entire 
attractor. This forces long computer simulations that serve 
only to give the exponents for a given set of parameters with 
a particular group of initial conditions. This is obviously lim­
iting when there is more than one attractor in the same region 
of phase space. Thus, there exists a need for calculating Lya­
punov exponents cheaply and quickly. Ideally, one would want 
to be able to determine the exponents analytically from the 
differential equation. However, as this is not generally pos­
sible, an approximate technique would be helpful. 

In this paper, it will be shown how some characteristics of 
the Lyapunov exponents can be calculated using both analytical 
and approximate methods. The methods will be applied to a 
general second-order Duffing's equation. In the first section, 
an analytical method for calculating the Lyapunov exponents 
of linear systems will be presented. Following this, some of 
these same techniques will be applied to nonlinear systems in 
order to determine what information about the exponents is 
available. Next, some of the numerical difficulties involved in 
a calculation of the exponents for nonlinear systems will be 
discussed. In the final sections, methods for calculating a Lya­
punov exponent spectrum using the Interpolated Mapping 
technique will be proposed and the results compared to 
straightforward numerical integration. 

Predicting Lyapunov Exponents 
Linear Systems. It is quite simple to calculate the Lyapunov 

exponents of a linear system. Linear differential equations can 
frequently be solved exactly, and the exponents determined by 
an inspection of the solution. For example, the unforced 
problem 
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x + 5x + 6x = 0 (1) 

has the solution 

x = Aex\> + BeK2< (2) 

where the Lyapunov exponents, \ and X2, are equal to - 2 
and - 3 , respectively. 

Even for the case of a forced system such as 

x + 5x + 6x = G cos(o)/), (3) 

the same exponents are obtained, but with an additional ex­
ponent that has zero as its real part. This fact is obvious from 
the general solution of the problem, which is easily recognized 
as: 

x = Aexi' + Bex2< + F(e'al + £-'<•")• (4) 

Notice that the exponents are constants at all points in phase 
space (i.e., they do not depend upon the value of x). Further, 
because the forcing function does not alter the complementary 
solution, X! and X2 are independent of G and co. This makes 
the computation of the Lyapunov exponents for linear systems 
very easy. 

Nonlinear Systems. Nonlinearities can cause a repeated 
stretching and folding of even small regions of phase space 
(Guckenheimer and Holmes, 1983) which causes the locally 
determined Lyapunov exponents to vary widely over the at­
tractor. Thus, one must examine the long time average of the 
exponents. Furthermore, unlike the case for linear systems, 
the Lyapunov exponent behavior changes with forcing am­
plitude and frequency. Even for a relatively simple nonlinear 
differential equation, such as the Duffing equation, it is known 
that periodic as well as chaotic responses can be obtained for 
a given set of system parameters merely by changing the forcing 
amplitude and frequency. For example, the Duffing's equa­
tion: 

x + Ax - x + x3 = 3.2 cos(a>0 (5) 

yields a periodic response (two negative Lyapunov exponents) 
for co = 0.482, but exhibits chaotic behavior for co = .475 
(Tongue, 1987). This indicates that the exponent has shifted 
from negative to positive over a very small change in co. 

Even though there is no analytical way to determine the 
Lyapunov exponents for a general system of equations, one 
can still obtain some information about the local rate of di­
vergence (or convergence) experienced by perturbed trajecto­
ries from an attractor by examining the differential equations 
of motion. Consider the general Duffing's equation: 

x + ax + fix + yx3 = G cos(cot). (6) 

A standard linearization about a solution involves expressing 
xas the sum of n(t) andp(t) , where n represents the nominal 
trajectory and/? represents a local perturbation from this tra­
jectory. 

In this case the equation for p is 

p + ap + (8 + 3y n2(t))p = 0. (7) 

One can easily transform this into an undamped equation 
by expressing p as 

a 

p = ye 2 ' (8) 

in which case the equation for y is 

y + (B - j + 3ynAy = 0. (9) 

For small intervals of time, the stiffness term of equation (9) 
is essentially constant, leading to solutions for y of the form 

yU2 = Ae±«. (10) 

It is therefore clear that the sum of the Lyapunov exponents 
for the given system are 

— + b - - - b = - a . (11) 

This is true everywhere locally and so will be true over the 
long time average. This implies that no matter how widely the 
exponents vary, they must always vary symmetrically about 
- .5a. The fact that \i + X2, which governs the rate of phase 
space contraction, is equal to the negative of the damping 
coefficient can be used as a convenient means of checking the 
accuracy of the numerical routines. This property is a specific 
case of the more general observation that the sum of the ei­
genvalues of a system having a characteristic polynomial equal 
to 

s" + a„sn~l + . . . + a, 

is simply -an. 
The foregoing will be illustrated by a numerical calculation 

of the Lyapunov exponents for the following Duffing's equa­
tion: 

x + Ax - x + x3 = 3.2 cos (.4750- (12) 

The general method of numerically calculating the exponents 
of a dynamical system proceeds in the following manner. First, 
a point that lies on the steady-state attractor of the system of 
interest is selected. Initially, a vector of magnitude e and ar­
bitrary direction is formed and placed with its base at the point 
on the trajectory. It is important that e be small because non-
linearities cause, in general, a repeated stretching and folding 
of phase space, and only the stretching of the space is of interest 
here. A small test vector, as would be expected, is better able 
to avoid any effects of folding. A second vector, perpendicular 
to the first, but with equal magnitude, is also constructed at 
the test point. Additional vectors are added in a similar fashion 
until the vector set forms an orthonormal basis for the space 
in the region of the test point. The test point and the vector 
set are then integrated a short time into the future. The largest 
vector is used to calculate the largest local exponent from the 
equation 

X , = ^ l n ( J ) (13) 

where At is the time interval over which the system was inte­
grated and If is the length of the largest vector after integration. 
This vector will automatically tend toward the direction of 
maximum divergence (or minimum convergence). The second 
vector, however, is not free to tend toward the second greatest 
direction of divergence because of the effect of the largest 
exponent upon its direction. Thus, the second exponent is 
calculated through the calculation of the sum of the first two 
exponents, which measures the rate of contraction of a two-
dimensional box in state space. This is governed by a similar 
equation: 

x> + x> = hln(v) (14) 

where Af is the final area of the space covered by the first two 
vectors. Subsequent exponent sums would be computed in a 
similar fashion for higher dimensional systems. The largest 
vector is then renormalized to a magnitude of e, while its 
direction is preserved, enabling this vector to continue con­
verging to the direction of the largest exponent. The remaining 
vectors are again constructed perpendicular to the first. This 
process is repeated over a long time interval and the exponents 
are calculated as a long time average over the steady-state 
motion. This long time average is extremely important, as even 
very close trajectories leading to periodic orbits can diverge 
from each other over short time intervals. Indeed, this phe­
nomenon is what characterizes transient chaos. 
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LOCALLY 
DETERMINED 
EXPONENTS 

TIME STEP 
Fig. 1 Local variation of Lyapunov exponents for x + Ax - x + x3 

3.2 cos (.475f) 

CUMULATIVE 
AVERAGE 

OF 
EXPONENTS 

10.00 30.00 40.00 
*10 ' 

TIME STEP 
Fig. 2 Cumulative average of Lyapunov exponents for x + Ax - x + 
x3 = 3.2 cos (.4750 

The above method is conceptually similar to that of Wolf 
et al. Figure 1 shows the local behavior of Xj and X2 for the 
system given by (12) as a function of time. For this graph, 
ViQ\x + \2) = -.0500. Figure 2 shows the cumulative averages 
of X] and X2. Note that, as expected, the sum is not changed 
by averaging. The analytical method derived here would in­
dicate that !/2(X, + X2) = - .05, a precise match. 

Behavior of Phase Space in Lyapunov Exponent Cal­
culation 

Before attempting to calculate Lyapunov exponents for a 
point-to-point mapping such as the Interpolated Mapping tech­
nique, it is helpful to know what sort of behavior to expect 
from small regions of phase space. To examine this question, 
three different cases, each exhibiting period one behavior, were 
examined. The cases considered were: a forced linear oscil­
lator, a forced Duffing's oscillator with positive linear stiff­
ness, and a forced Duffing's oscillator with negative linear 
stiffness. Each case selected has a Poincare map with a stable 
fixed point in phase space, and, thus, each orbit possesses two 
negative exponents. 

The method used to examine the local region around the 
fixed point of the Poincare map was as follows. A set of initial 

conditions was chosen and this point was numerically inte­
grated for 1000 full forcing periods to ensure that the point 
was very close to the fixed point. This point was then sur­
rounded with 32 points in a circular pattern at a small radius 
of e. Each of these points was numerically integrated over one 
full forcing period and its final position reproduced on the 
same plot as the original circle. Thus, one is examining the 
behavior of the Poincare map of the system. It is natural to 
expect that, for small enough e, the mapped image will lie 
entirely within the original circle. Figures 3-6 show the actual 
results. Note that the axes have been shifted so that the fixed 
point is located at the origin. 

For the linear case (Fig. 3), the first iterate map of the circular 
region lies well within the original circle. Even for the forced 
Duffing oscillator with positive linear stiffness (Fig. 4), the 
image does not leave the boundary of the original set. However, 
in the case of a forced Duffing's oscillator with negative linear 
stiffness (Fig. 5), most of the points map outside of the original 
circle. Smaller values of e yield qualitatively identical results. 
As Fig. 6 shows, the entire region is asymptotically stable to 
the fixed point, so it must have two negative Lyapunov ex­
ponents. However, these exponents can only be determined as 
a long time effect. 

At first it seems inconsistent to state that a stable system 
has points arbitrarily close to it that diverge. However, stability 
requires only that for every region U there exists a region W 
such that all future iterates of Uremain in W(Lefschetz, 1977). 
Clearly one can draw a larger circle around the ellipse in Fig. 
5 within which all subsequent iterates of the original circle will 
remain. This is the reason that the numerical technique used 
here requires that the direction of the largest exponent be 
allowed to evolve over time. Although this effect does not run 
counter to any established stability theory, it is certainly coun­
terintuitive. An awareness of this sort of behavior is important 
to an understanding of the use of point-to-point mapping tech­
niques in finding a set of exponents for a system. 

Generating Lyapunov Exponents Using an Interpolated 
Trajectory 

Interpolated Cell Mapping (ICM). This technique provides 
an efficient means of generating continuous system trajectories 
and allows one to obtain a variety of system characteristics 
(such as a system's attractor or a plot of the corresponding 
basins of attraction). The method has been discussed at length 
(Tongue, 1987), so only an overview will be given here. To 
utilize Interpolated Mapping, a region of phase space which 
is to be investigated is defined. One then overlays an array of 
points over the phase space. Each grid point is used as an initial 
condition. The system is then numerically integrated for a given 
length of time and the final location of the trajectory is re­
corded. Since the object of previous work was to examine 
Poincare maps, the length of this integration was set equal to 
the period of the forcing function. This restriction will be 
removed in the work to be presented later in this paper. Once 
a mapping array has been generated, an arbitrary initial con­
dition is chosen and its mapped location is found by inter­
polating between the terminal points of the trajectories 
emanating from the four initial condition grid points that sur­
round the chosen point. 

Calculation of the Lyapunov Exponents. To calculate the 
Lyapunov exponents of a full-time series using Interpolated 
Mapping requires a knowledge of the system behavior at all 
phases of the forcing function, not just at periodic intervals, 
as has been the case previously, when considering a system's 
Poincare map. To accomplish this it is necessary to record the 
position of each point in the ICM array, relative to its previous 
location, at each numerical time step, so that each position 
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Fig. 3 Mapped image: x + .1x + x = 3.2 cos (.4820, 1st iterate 
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Fig. 5 Mapped image: x + .1x - x + x3 = 3.2 cos (.4820, 1st iterate 
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Fig. 4 Mapped image: x + .1x + x + x3 = 3.2 cos (.4820, 1st iterate F i9- 6 Mapped image: x + .1 x + x - x3 = 3.2 cos (.4820, 20th iterate 

can be used to interpolate to the next. If an Interpolated Map­
ping grid that is reasonable for a Poincare map is used, how­
ever, this method fails to converge due to the wanderings of 
the trajectory. Specifically, a typical region in the initial array 
maps outside of the array bounds after less than ten inter­
polations. Expanding the array to the degree needed to en­
compass all of the wanderings of the system for all phases is 
infeasible, as this would require a grid of such magnitude that 
all computational advantage would be lost. It would appear, 
therefore, that Interpolated Mapping is impractical (in its 
standard form) for finding the exact exponents of a system. 
Thus, a modification to the technique is in order. 

Sequentially Generated Mapping. To obtain the quantity 
of transient information necessary to determine the Lyapunov 
exponents, while preserving the computational advantage of 
Interpolated Mapping, the following technique is used. A test 
point in phase space is selected and numerically integrated until 
it has converged onto an attractor. Once the generated tra­
jectory has converged to an attractor, the interpolation process 

begins. When the point begins its next forcing period, it is 
surrounded with four other points. Each of these four points 
are then numerically integrated to their position after just one 
time step in the numerical integration routine, and their final 
positions are recorded. The test point is interpolated to its next 
location at the next time At in the future, and the process is 
repeated. Each time the point advances a step forward, a test 
is made to see if the point is surrounded by any existing array 
points. If it is, then the point is interpolated to its next position 
and the process continues. Otherwise, another group of sur­
rounding points is created in the manner just described before 
continuing. The procedure used in finding the exponents by 
this technique is identical to the general method except that at 
each time step the vectors are interpolated, rather than inte­
grated, to their next positions at some point At in the future. 
The calculations are then performed in the same way as before. 
In this way, the minimum covering set of array points is cal­
culated that encloses the attractor. 

Because of the transient information recorded, the array can 
be used to recreate an entire trajectory for the system. The 
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Table 1 Comparison of exact and approximate exponents 

Period 1 

Period 2 

Period 4 

Chaos 

Exact 

- .00860 
-.09139 

- .04995 
- .05004 
-.03218 
- .06780 

.01755 
-.11754 

Approximate 

- .00865 
-.09135 

- .04996 
- .05004 
- .03287 
-.06713 

.01713 
-.11713 

Table 2 Comparison of CPU requirements 

Period 1 

Period 2 
Period 4 

Chaos 

Exact 

486.1 

487.2 

486.2 

486.9 

Approximate 

75.1 

77.0 

77.6 

283.0 

Table 3 Comparison of exact and discrete map exponents 

Period 1 

Period 2 

Period 4 

Chaos 

Exact 

- .00860 
-.09139 

- .04995 
- .05004 
-.03218 
- .06780 

.01755 
-.11754 

Mapping 

- .01004 
-.08617 

- .04024 
- .23666 
-.01339 
- .07438 

.01612 
-.10830 

Table 4 Comparison of CPU requirements 

Period 1 

Period 2 

Period 4 

Chaos 

Exact 

486.1 

487.2 

486.2 

486.9 

Approximate 

70.2 

70.9 

71.2 

71.6 

results of the Lyapunov exponent calculations obtained with 
this approach are compared in Table 1 with those found through 
direct numerical integration. Equation (12) was used in the 
calculations, except that the forcing frequency was chosen to 
be (0.482, 0.4776, 0.476, 0.475) to allow the different period 
responses to be studied. 

These results indeed show that the exponents found using 
the Sequentially Generated Mapping are close to the exponents 
calculated through exact numerical integration. The practi­
cality of the method is further illustrated by a comparison of 
CPU times required to complete the calculations. Table 2 shows 
the CPU time required by a CYBER 855 computer to perform 
the calculations illustrated in Table 1. In each case, 200 forcing 
periods at 80 time steps per period were used to eliminate the 
transient behavior. The calculations were then based upon 5000 
additional forcing periods. 

It is clear from Table 2 that this approximate method is less 
computationally intensive than "exact" numerical integration 
for the periodic cases. Even for the chaotic case, the Sequen­
tially Generated Mapping technique took only about half as 
long as the direct integration method. Because all of the nec­
essary grid points have been generated by the time 5000 forcing 
periods have been followed, the savings in computation will 
increase if longer times are examined. Therefore, this sort of 
approach to Lyapunov exponent calculation appears to be 

practical and inexpensive, especially in the case of periodic 
orbits. 

Exponents of the Mapping 
When dealing with a previously calculated array for Poincare 

map generation, transient information is not available. How­
ever, the exponents themselves may not be as important as 
their sign and how they compare with other exponents. It is 
therefore of interest to see what information can be gained 
from the use of the entire mapping array and considering the 
system to be represented by a point-to-point map. That is, the 
At used in the exponent calculation becomes a much larger 
period of time, such as the full period of the forcing function 
for the system. This approach was undertaken for the same 
cases as was done previously for the Sequentially Generated 
Array. An exponent was considered to have converged when 
its average exhibited a change of less than 10"4 over 10 iter­
ations. In order to allow a fair comparison with the previous 
results, the number of forcing cycles was chosen to be equal 
to 400,000. This was because the Sequentially Generated data 
used 5000 forcing periods with 80 time steps per period, a total 
of 400,000 individual time increments. In the present case one 
jumps forward an entire period at a time, thus the 400,000 
total periods of interpolation. The computational results are 
shown in Table 3 and the associated costs in Table 4. 

It must be noted that an Interpolated Mapping array must 
first be found for this method and that the cost of this is 114 
CPU seconds. Presumably the array would have been found 
in both cases if a global determination of the various attractors 
had been desired. The results show that, generally, there is not 
an exact correlation between the exponents found from nu­
merical integration and their discrete-mapped counterparts. 
The smallest exponent for the exact period-two motion, for 
example, is smaller in magnitude than the corresponding value 
for the period-one motion. However, the reverse of this trend 
is evident in the exponents calculated from the mapping. At 
other times, an increase in the exact system exponents is met 
with an increase in the mapping exponents. It is also very 
interesting to note that the exponents found for the chaotic 
system were almost identical for the two methods. This suggests 
that more information is available in the strange attractor of 
a system than in the periodic attracting sets. This would seem 
to be reasonable in view of the fact that the dimension of a 
chaotic attractor is higher than that of a periodic attractor. 
Also, it should be noted that a positive exponent remained 
positive and a negative exponent remained negative whether 
the system was viewed as a continuous dynamical system or 
as a discrete mapping. This sort of calculation, therefore, can 
serve as a means of classifying the global behavior of a system 
as periodic or chaotic in nature. 

Conclusions 
The method of Interpolated Mapping has been extended to 

the case of transient analyses, specifically that of Lyapunov 
exponent determinations. Using the newly presented Sequen­
tially Generated Mapping, results that were extremely close to 
those found from numerical integrations were generated at 
reduced computational costs. The results of determining Lya­
punov exponents from a point-to-point mapping were pre­
sented and shown to preserve the sign of the actual exponents, 
thus permitting an efficient identification of a system as being 
chaotic or not. 

The results shown indicate that more extensive transient 
analyses, stability calculations, optimal trajectory planning, 
etc., may well be efficiently obtained through the use of In­
terpolated Mapping. Furthermore, the examination of higher 
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dimensional systems would seem to be readily accomplished. 
These topics shall be addressed in a future paper. 
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Improvement of a Nonparametrio 
Identification Procedure Used in 
Nonlinear Dynamics 
The advantage of nonparametric identification methods based on the use of approx­
imations of the restoring forces is that they do not require the a priori knowledge of 
a model for the nonlinear behavior of the structure. However, the main difficulty 
encountered with this type of methods is the fitting of nonlinear forces in the force-
state mapping fields where there are not sufficient experimental data. In this paper, 
an improvement of the regression technique in conjunction with the use of two-
dimensional Chebyshev orthogonal polynomials by introducing an interative com­
putation process is presented. It is shown that the proposed method can properly 
identify the discretized model even in the case of high cross-product displacement-
velocity terms and that this method can be used for structures presenting important 
nonlinear modal coupling. 

1 Introduction 

A real structure always presents nonlinear characteristics, 
and the modal extraction and synthesis procedure based on the 
theory of linear systems often gives erroneous results. 
However, the use of modal analysis can inform the ex­
perimenter to the fact that the structure is nonlinear and can 
give a rough idea about its behavior (Busby, 1986). In most 
cases, the nonlinear characteristics of a structure are low and 
its dynamic behavior can be considered as linear. Therefore, 
most mechanical structural identification methods (Caughey, 
1963; Iwan, 1972; Rakheja, 1985; Fang, 1986) are based on 
equivalent linearization models able to provide a good approx­
imation of forced steady-state responses of quasi-linear 
systems. Nevertheless, such models cannot reproduce such 
classical phenomena observed in the case of nonlinear struc­
tures as jumps in frequency response plots, and secondary, in­
ternal or combined resonance. 

Therefore, many studies (Tomizuka, 1977; Wysocky, 1979) 
have compared tested structure response with the response of 
models of nonlinear "plants," made of few branches, where 
linear subsystems are present. These models can be identified 
from harmonic study of responses obtained by varying the fre­
quency and the magnitude of the harmonic excitations 
(Wysocky, 1979). This type of procedure consists in approx­
imating the Volterra kernels that represent the nonlinear 
behavior of the studied structure. Using the properties of 
separable processes, Billings and Fakhouri (1978, 1982) have 
proposed a method allowing to separately identify the linear 
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part and the memoryless nonlinear characteristics of a system. 
Such a procedure appears especially suitable for identifying 
large structures often presenting nonlinear joints (Jezequel, 
1984). However, when dealing with systems that incorporate 
commonly encountered nonlinearities such as polynomial 
nonlinearities, the evaluation of higher degree terms requires a 
great amount of tests often extremely difficult to perform as 
well as extensive computer storage requirments and high com­
putation costs. 

The use of the Hilbert transform (Simon, 1984) also allows 
to extract the linear part of a system and to detect 
nonlinearities in a frequency response curve. Even if the struc­
ture presents nonlinear characteristics, its dynamic behavior in 
a given frequency range can be approximated by a discrete 
model of a few degrees-of-freedom. Therefore, many studies 
have been devoted to the extension of modal synthesis 
methods to the nonlinear case (Jezequel, 1985). Szemplinska-
Stupnicka (1983) have shown that the introduction of 
nonlinear normal coordinates in relation to the notion of 
nonlinear modes permits to improve the classical Rayleigh-
Ritz method using linear system modes. In the same way, the 
efficiency of the use of local modes in relation to a tangent 
stiffness matrix has been shown (Morris, 1977; Almroth, 
1978) during the computation of the nonlinear system 
response. Recently Ibrahim (1984) has proposed to use the 
I.T.D. (Ibrahim Time Domain) method for identifying the 
modal characteristics depending to the excitation magnitude 
from transient responses. 

However, within the modal synthesis framework, it might 
be more appropriate to use a model based on a discretization 
in relation to fixed trials functions. The methods of control 
and optimization theory can then be applied to correct a set of 
discrete parameters of the model. Further, in most cases the 
knowledge of basic equations is not sufficient to have a 
"good" discrete model. Very often in the literature, the 
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knowledge of the connectivity of the discrete model is as­
sumed. This knowledge allows, by means of an appropriate 
coordinate change, an uncoupling of the nonlinear cross-
product terms involving displacement and velocity and to 
facilitate their identification. In accordance with modal syn­
thesis methods, it would be consistent to use a normal model 
with a linear part identified from low-level vibration tests. 
Thus, the nonlinear part appears as a function of the modal 
coordinates and their derivatives in time. This part obtained 
experimentally by substracting the inertial forces from the ap­
plied forces is often assumed to be of polynomial form. 
Therefore, it is identified by means of fitting techniques of 
force-state mapping (Distephano, 1975; Yang, 1985; Crawley, 
1986). Such a nonparametric identification procedure is at­
tractive, because it does not require the knowledge of 
nonlinear characteristics appearing in the dynamic behavior of 
the tested structures. The fitting method proposed by Masri et 
al. (1979, 1982a, 1982b, 1987) is particularly interesting 
because it is based on the use of a regression technique based 
on Chebyshev polynomials. This method has been used suc­
cessfully in several cases. In relation with this method, this 
paper presents a new interpolation procedure which improves 
the identification of the nonlinear part of lumped parameter 
systems in areas of the state-space fields where experimental 
data are insufficient. When the connectivity of the model is 
unknown, the proposed modifications of the procedure 
become essential to properly identify the nonlinear modal 
coupling for any structural discrete model. The technique is 
applied to two simple systems presenting high velocity and 
displacement cross-product terms or high modal coupled 
terms. Analysis with the proposed modifications yields good 
agreement with actual structural behavior. 

2 Identification Procedure 

For a discretized dynamic system with Af-degree-of-
freedom, the restoring forces / are defined from the equation 
of motion by 

/ (x ,x )=p(0-m.x( / ) (1) 
where m is the mass matrix (NxN) which can be estimated 
using a finite element procedure and where x(t) (Nx 1) the 
acceleration vector andp(/) (A^x 1) the excitation forces vec­
tor are assumed to be available from measurements over a 
period Tmax. No assumptions are made on the discrete model 
connectivity as are often assumed in the literature—for exam­
ple, a chainlike structure that consists of a lumped mass model 
with elementary masses being connected to one another by 
unknown nonlinear elements (Masri, 1982a) or a more com­
plex model called a branched system with NxN restoring 
forces elements (Yang, 1985). 

According to modal synthesis methods (Jezequel, 1985), a 
more appropriate modal representation is used. Let 

x = * w (2) 

where <t> is the modal matrix (Nxr). Its r columns represent 
estimations of the r "linearized" normal modes. * is iden­
tified by means of an usual method of linear identification 
from low-level magnitude experimental tests. 

Equation (1) can be expressed in the form 
h(u,ii)=P(t)-ii{t) (3) 

with h = $'f; P = $'p and w = *'mx. 
Thus, for a given excitationp{t), and r coordinates A, of h 

are known for the experimental points Qe (u, ii) of state plane 
E of dimension 2r. The modal coordinate vectors u(t) and 
u(t) can be obtained from measurements or successive in­
tegrations of the modal acceleration vector ii(t). 

An estimation of the h,- over the whole plane E must then be 
made. It is assumed, in relation to the modal representation, 

that hj(u, it) can be expressed as the sum of a main term 
him{uh «,) representing the contribution of mode / to h, and 
some other terms resulting from the interaction of modes 
JU^i) with mode i. 

From the knowledge of the measurements of h,-(u, it), ht
m 

(«,, «,) is approximated in the phase plane (uh it,) by a func­
tion hjO) expressed in terms of two-dimensional Chebyshev 
polynomials. 
/!<»(«„«,. )« / ;}»(«,• ,« , ) 

= EEcUf)r*(«/)7'/<«/) (4) 

It is assumed that the residual error [h,(u, it) -^(it/, ii,-)] 
due to the previous approximation constitutes an estimation 
of hj(2)(uh Uj), which is also developed in a Chebyshev 
polynomial expansion. 

h<P(u„Uj)~h<P(u„Uj) 

= EEC2ii,^(«/)7'/("y)- (5) 

As just indicated, [hj(u, it) -A;
(1)(M,-, M,-) -ft,(2)(u,-, «,)] 

allows an approximation of/!,(3)(ii,-, itj) 

hf\uh uj)»hW(uh uj) = £EC3JJ>7'*("/>7''("A <6> 

The convergence criterion taken for the calculation is as 
follows 

hj(u, ii) — 2J h .(*> <e (7) 

where e is a small positive quantity and where the II. II norm is 
the root-mean-square (rms) value over the K experimental 
points, defined by 

K e = l 
(8) 

Finally, an estimation of h, (u, ii) is obtained by 

h,(u, ii)~hj(u, ii)=h<j
1)(uh u,) + £J hf>(uh Uj) 

+ fiP>(«„ Uj)+W(U„ Uj)+W(U„ Uj). (9) 
The h;(i) terms due to the interaction between modes j and 

mode / (j very higher than i) are usually neglected in com­
parison with / j / 1 ' . This simplification is valid due to the 
change of representation to modal coordinates. Thus, only 
(/'—1) and (/+1) indexes are usually taken into account in 
equation (9). 

3 Chebyshev Polynomial Approximation 

The estimation of h,(u, u) is based on two-dimensional 
least-squares orthogonal polynomial approximation. The 
choice of Chebyshev polynomials of first kind is particularly 
interesting partly because the least-squares approximation 
with Chebyshev polynomials of first kind is known to be the 
most rapidly convergent of all ultraspherical (or Gegenbauer) 
polynomial approximations (Denman, 1969). Also, the error 
associated with Chebyshev approximation will tend to 
oscillate with uniform amplitude over [ - 1., 1.] interval (equal 
ripple), whereas the error afforded by the Legendre 
polynomial approximations (with uniform weighting) will 
tend to oscillate with an amplitude which increases toward the 
ends of the interval. 

Let h (a, b) be the function known experimentally for a set 
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SQ of Qeie=liK points of a domain fi. h is then approximated 
by Chebyshev polynomials 

Na Nb 

h(a, b)~h(a', b')= £ £ c H r t ( B ' ) r , ( i ' ) (10) 
k=l 1=1 

where ( a ' , /?') are the normalized values of (a, 6) over 
Q' = [— 1, l ]2 and Vs are Chebyshev polynomials. 

The Ckl coefficients are given by 

_ 4 
Ck!~ (a„,+ l)(5M + l )n2 

f f h(a,b)Tk(a')Tl{b')u{a')w(b')da'db' (11) 

where 5,y is the Kronecker symbol and 

« ( * ' ) = /- -, f o r x ' 6 [ - l , 1]. 

The two-variable integral in (11) is computed by a Gauss-
Chebyshev quadrature with (Ma xMb) Pn Chebyshev points 
with the following coordinates 

"-^CiSr 1 1 ) and b>=°»(-%£-n): (12) 

The Ckl are given by 

4 
(50 /+l)(50 f t+l)MoMb 

M„ Mh 

gEMP, y ) cos ( . -^ -n )cos ( /^ -n ) . (13) 

Equation (13) becomes exact when h is a polynomial of 
degree (2Ma-l-k) for the variable u and of degree 
(2Mb — I-1) for the variable u. 

The application of equation (13) for the computation of the 
Ckl coefficients implies the estimation of h at Py Chebyshev 
points which are located symmetrically with respect to the cen­
tral point of the square Q' in the phase plane. A two-
dimensional interpolation scheme is elaborated to generate h 
at the prescribed Py points by means of data Qe points in the 
vicinity of Py. It is first necessary to choose a type of excita­
tion and a period rmax adapted to sweep the whole domain as 
uniformly as possible. However, even with a proper excitation 
and a large enough period Tmax, there may still be locations in 
domain 0 where the density of data points is too low to allow a 
"good" bilinear interpolation. Moreover, when Ma and Mb 

increase, the Py quadrature points concentrate near the edges 
of fi' where experimental points are missing. A domain 
smaller than Q and where the interpolation procedure would 
be properly made could be then chosen. But it would not be 
advisable to stop the computation at that point for two 
reasons: 

• first, the value of h at points of the state plane for u or u 
sufficiently important must be known so that the effects of the 
nonlinearity be taken into account. 

• then, the points far away from the origin of Q domain are 
less sensitive to noise pollution present in all experimental tests 
than the points near the origin. 

Therefore, the following interpolation technique has been 
built up to take into account the remarks mentioned 
previously. 

4 Interpolation Procedure 

Two cases are considered, when P is close to SQ or P is not 
close to SQ. Thus, a critical distance rc is introduced in rela­
tion to the number K and the position of the data points Qe. A 

point P of fi is said "close" to SQ if it is possible to find a 
triangle including P with end-points R, belonging to SQ and 
verifying 

Vi'6[l,3] distance(P, i? , )<r c . (14) 

To determine whether P is "close" to SQ or not, the points 
of SQ which verify or which do not verify equation (14) are 
looked for in the four quadrants around P. 

(A) P is "Close" to Experimental Points. The optimal 
triangle for the interpolation must be chosen among previous­
ly found triangles including P. To obtain a proper bilinear in­
terpolation, the use of a too "flat" triangle must be avoided. 
For this purpose, a ratio defined by (perimeter)2/(surface) is 
computed for each triangle and the triangle with the smaller 
ratio is kept for the interpolation. h(P) is then computed us­
ing a bilinear interpolation at the three end-points of this 
triangle where the value of h is experimentally known. 

(B) P is not "Close" to Experimental Points. For P points 
far removed from measured response pairs (w, u), an ex­
trapolation procedure must be found for properly estimating 
the nonlinear restoring forces even in the case of cross-product 
terms. 

First, a domain 0, (0, =[a(1)mill, a<"max]X[6<»min, &(»max], 
Q D Q{) must be found where the information on h is sufficient 
to make a good bilinear interpolation of h(Py)—that is to say 
on fi, domain, sufficient experimental points can be found 
close to the Py quadrature-points. It is therefore possible to 
compute the Chebyshev approximation hx * of h on Q,. Then, 
for a larger domain 02 (Q2 DQ,, Q2 = [«<2)

min, «
<2)

max] x [6(2>
min, 

^<2)max]) f ° r P ^^2' P being not "close" to experimental 
points, the following extrapolation scheme has been tested 

h(P)^hi*{g(P)) 

where g is the affinity defined from Q2 to Q.x by 

g(cP\ 6<2>) = (a<", &<•>) with 

(15) 

(16) 

and 

7 < ' ) : 

6<» = 

« ( 2 ) («^x u m i n / ' "max 
7(1) -
*min 

•a (2) M) 

3(2) . 
•*max •a ( 2> 

Mmin 

hV>(tfX) _/,(!) )+/>P) />(>) - h P ) fid) 

1,(2) _£(2) 
' - 'may u m i n 

where the index 1 (or 2) indicates that the indexed terms are 
relative to Q, (or fi2), respectively. 

It is now possible to compute Chebyshev polynomial ap­
proximation h2* of h on fi2. Then, this process is being 
iterated until Q„ covers entirely the domain 0. In most cases, 
the experimental points envelope has a form near the elliptic 
(or circular) one as shown in Fig. 1. For the extension of the 
successive domains ty (1 <y <«) of the proposed extrapolation 
procedure, the ratio sn between two successive subdomains 
areas, is defined by 

So 7T 

s"=-sT7~-r- (17) 
un — l 

s„ ratio is taken equal to ir/2 because it corresponds to the 
ratio between an elliptic (or circular) surface and the surface 
of the largest rectangle inscribed within the ellipse as shown in 
Fig. 1. Finally, an approximation h„* of h upon Q is obtained. 

5 Applications of the Proposed Method 

(1) First, the new extrapolation process has been compared 
to the one proposed by Masri et al. (1979) with the example of 
the Van der Pol oscillator which involves cross-coupling 
nonlinearity in u2ii 

h(u, u) = ~a(l-u2)u + u (18) 

where m = l , co=l and a = 0.4. 
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Table I Comparison between Caughey-Masri method (standard-typed) and new 
proposed method (heavy-typed) for calculation of Ckl coefficients for the Van der 
Pol oscillator identification 

1 
k 

W ) 

r,(«') 

T2(W) 

T3(W) 

W) 

Ti(W) 

T6(.W) 

T0(W) 

0.27 

-0 .18 

9.47 

7.20 

-0 .94 

0.02 

-1 .93 

-2 .97 

0.19 

0.04 

-0 .77 

0.60 

0.64 

0.16 

W) 
12.83 

-1 .28 

0.49 

0.23 

7.70 

-2 .66 

-1 .27 

-0 .32 

-5 .33 

-2 .18 

1.87 

0.30 

2.64 

3.14 

T2(W) 

0.18 

-0 .17 

3.41 

-0 .52 

-0 .05 

-0 .23 

-0 .46 

-1 .25 

0.63 

-0 .57 

0.45 

2.60 

0.09 

0.91 

T3 

-2 .79 

-2 .79 

-0 .64 

0.24 

-0 .93 

0.28 

0.60 

-1 .02 

2.81 

2.84 

-0 .33 

0.19 

0.64 

-0 .40 

T*(W) 

-0 .18 

-0 .16 

-1 .20 

-0 .66 

-0.001 

-0 .35 

0.67 

1.69 

-0 .03 

-0 .65 

0.52 

-0 .39 

0.06 

0.57 

T5(W) 

1.15 

0.82 

0.02 

0.81 

0.89 

0.48 

-0.25 

-0 .47 

-0 .74 

-1 .72 

0.23 

- 0.002 

-0 .24 

-0 .81 

r«(«') 

-0 .25 

-0 .50 

-0 .10 

0.76 

-0 .16 

-0 .21 

-0 .41 

-0 .67 

0.20 

0.15 

-0 .46 

-1 .07 

0.37 

0.24 
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Fig. 1 Illustration of domain-extending ratio s„ for the new extrapola­
tion scheme 

To identify this oscillator, 1000 data points have been used 
in the state-plane fl = [-5.02, 5.83] x [-10.71, 10.87], as 
shown in Fig. 2. These points have been generated by sub­
jecting during a period Tmax = 100, the mass m to an harmonic 
excitation, with a linearly varying frequency, given by 

/>(:) = 13 sinf—-— f2 + 0.5 t). 
M5.TT / 

(19) 

For the points far removed from experimental data points, 
and by analogy with linear systems behavior, Masri et al. have 
used the following extrapolation scheme 

m2 

A(a ,&)«Ma)+M&)~Dc / 7 ' / ( a ' )+ L W & ' ) (20) 
i=o y=o 

where the c's are Chebyshev polynomial coefficients for a one-

Fig. 2 Data points in the state-plane for the Van der Pol oscillator 
identification 

dimensional least-squares fit of the experimental data for 
which l«l~0 and the d's are similar coefficients for data 
points for which \b I « 0. It is obvious that if the structure has 
polynomial nonlinearities without cross-products terms, the 
approximation of h given by relation (20) is sufficient to give a 
correct identification of h. Nevertheless, this extrapolation 
procedure will involve some difficulties to take into account 
cross-coupling effects because its application for the points far 
away from experimental points will strongly disturb the two-
dimensional Chebyshev approximation. Table 1 give the two-
dimensional Ckl coefficients obtained, respectively, with the 
proposed iterative process and with Masri et al. process. 
Figures 3-4 show a comparison between the constant u or con­
stant u sections of h(u,u) computed with Masri et al. ex­
trapolation scheme and the ones computed with the new ex­
trapolation scheme. For the considered oscillatory, the plots 
of constant w or constant u sections of the restoring force h 
surface identified with the Masri et al. extrapolation scheme in 
Figs. 3-4 deviate from exact ones even at locations where suf­
ficient experimental information is available. When the new 
iterative extrapolation process is used, the identified curves are 
closer to the exact ones and a good estimation of nonlinear 
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Fig. 3 Section of constant u = 2.5 h(u, 0) surface for the Van der Pol 
oscillator 

- 1 0 . 

•12 . 

1. analytical solution 
2. predicted solution (proposed method) \ 
3. predicted solution (Masri & al. method) \ 
4. linear part of analytical solution 

•11 1 1 

Fig. 4 Section of constant u = - 1 h(u, 0) surface for the Van der Pol 
oscillator 

cross-product terms effects is achieved in the force-state fields 
where experimental points are present. The successive subdo-
mains used for the Van der Pol oscillator identification, 
shown in Fig. 2 are, respectively, Q{ = [ — 3., 3.]2; Q2 = [ -4 . , 
4.]2; Q3 = [-5.02, 5 . ]X[ -5 . , 5.]; G4 = [-5.02, 5 .83]X[-7. , 
7.]; Q5 = J] and the Ckl have been computed with 15x15 
quadrature points. 

(2) Since noise pollution cannot be prevented in any ex­
perimental measurment, the sensitivity of the proposed pro­
cedure to measurement noise has been studied. To do this, the 
h(Qe) initial data of the previous oscillator have been con­
taminated by adding Gaussian zero mean white noise with a 
standard deviation equal to 10 percent of the maximum value 
of h(Qe). 

In the force-state mapping, the overall h(u,u) surface iden­
tified with noise-perturbed data still yields a good estimate of 
the physical structure characteristics obtained without noise 
pollution as shown by Figs. 6(a) and 6(b). On the contrary, 
the surface hx(u,ii) identified with noised data points in the 
first subdomain Q{ is very different from the one identified 
with noiseless points as shown by Figs. 5(a) and 5(6) . 

The influence of points far removed from experimental 
points is of great interest in the new extrapolation scheme 
because these points are generally located far away from the 
state-plane origin point and their value of h is high and low-
sensitive to noise pollution. 

Fig. 5(a) Chebyshev approximation h-\ *(u, 0) on fi-| for the Van der Pol 
oscillator obtained with noised data 

6.5 

Fig. 5(b) Chebyshev approximation hi l(u, u) on fy for the Van der Pol 
oscillator obtained with noiseless data 

3 The proposed identification procedure has been tested on 
a two-degree-of-freedom model presenting a Duffing-type 
nonlinear element between the two masses M,, and M2 , il­
lustrated in Fig. 7. After the change into a modal representa­
tion where the modal matrix is 

* = 
0.526 0.851 

-0.851 0.526 
(21) 

and with the natural pulsations u{ = 1.39 and o2 = 1.47 being 
very close to each other, relation (3) gives 

h{ =2.162 M, +0.718 M,3 +0.508 t/,2w2 + 0.12 w,w2
2 

+ 0.034 u2
3 +0.029 tij +0.002 u2 

and 

h2 = 1.938 M2+ 0.002 w2
3 +0.028 w2

2«,+0.12 w2«,2 

+ 0.169 M,3 +0.002 «, +0.021 u2. (22) 

Figures 8 and 9 show the modal displacement time history 
u^t) and u2(t) for the two modes. These plots have been 
generated by subjecting the mass M2 during a period 
Tmax = 200, to a swept-sine excitation given by 

/7(O=0.6s inf t2 + 0.5t). (23) 
V70.TT / 

1000 Qe data points have been used for the identification of 
each of the two modal restoring forces hi and h2 in the force-
state mapping. Figure 10 shows a three-dimensional plot of 
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Fig. 6(a) Overall Chebyshev approximation hs *(u, ii) on !! for the Van F i9- 8 Modal displacement time history for the 2DOF system first 
der Pol oscillator obtained with noised data mode 

-4.1 

4.6 

Fig. 6(b) Overall Chebyshev approximation hs(u, u) on Si for the Van der 
Pol oscillator obtained with noiseless data 

Fig. 9 Modal displacement time history for the 2DOF system second 
mode 
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M, = M2 =1 

K. = 1.9 , K2 = 0.1 , K3 = 2. 

0.02 0.005 

and a = 0 . 2 

Fig. 7 Example nonlinear 2DOF system (Duffing nonlinearity) 

the estimated restoring force surface /!,(«,, u2) where ii\ and 
u2 are taken equal to zero. Figures 11 and 12 show constant w, 
or constant «2 sections of this surface. The ^ (M, , «2) surface 
in Fig. 10 clearly indicates the cubic variation of the 
nonlinearity terms along «,. This result is confirmed by the 
constant H, or constant u2 sections of h{ plotted in Figs. 
11-12, and the identified curves are very close to the exact 
ones. The proposed procedure allows to emphasize the 
nonlinear coupling terms between the modes. 

9.6 

,-8.4 

Fig. 10 Constant u1 = 0 and u2 = 0 section of least-squares Chebyshev 
polynomial approximated surface A1(A1, h2 , i>j, u2) for the 2DOF 
system 

6 Conclusion 

Among nonparametric identification techniques, a relative­
ly simple and efficient technique based on force-state mapping 
has been presented that is suitable for use with discretized 
systems without any restriction with regard to the connectivity 
of the discrete model. It proves to be effective to identify the 
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Fig. 11 Constant u 2 = - 1 , u2 = 3 sections of the surface hWu-,, u2 , 0, 
0) for the 2DOF system 

nonlinear system behavior without making any assumption on 
the type of nonlinearities of the system. The proposed method 
requires information on the identification of the linear 
behavior of the structure—its pertinent mode shapes—which 
allows the change to a modal representation and on its 
dynamic nonlinear response. Then, an approximated expres­
sion for each of the modal restoring functions is determined 
by means of regression techniques involving two-dimensional 
orthogonal functions, in terms of the corresponding modal 
state variables. The main difficulty with this type of methods 
is the interpolation procedure in the state-plane fields where 
there are not sufficient experimental data. The proposed inter­
polation procedure improved the results by introducing an 
iterative process which proved to be more efficient when the 
encountered nonlinearities include velocity and displacement 
cross-product terms. Analysis indicates that identification 
results obtained with this new procedure are relatively insen­
sitive to noise pollution of the data and that this new method 
allows to the proper identification of high nonlinear coupling 
terms between the modes. 
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On the Sufficiency of the Principle of 
Virtual Work for Mechanical Equilibrium: 
A Critical Reexamination 

John G. Papastavridis1 

Starting from the general kinetic principle of d'Alembert/ 
Lagrange, an energetic proof of the sufficiency conditions for 
equilibrium (known as Principle of Virtual Work) is 
presented. It is clearly demonstrated why to maintain 
equilibrium requires that, in addition to the familiar vanishing 
of the virtual work of the impressed forces on the originally 
motionless system, its geometrical (holonomic) constraints be 
explicitly time independent (stationary) and its nonintegrable 
kinematical (nonholonomic) ones be linear and homogeneous 
in the generalized velocities (catastatic). 

1 Introduction 
In analytical statics, the Principle of Virtual Work (PVW) 

states that the vanishing of the (first order) virtual work of all 
the (internal and external) impressed forces on an originally 
motionless mechanical system, relative to an inertial frame of 
reference, and subject to bilateral geometrical and kinematical 
(nonholonomic or not) constraints, is a necessary and suffi­
cient condition for that system to remain in equilibrium in that 
frame. Here analytical means deductive, as opposed to syn­
thetic or inductive, and therefore the PVW is taken as the sole 
and simplest axiom: With it alone one can determine all of 
the configurations of equilibrium of even the most general 
mechanical system. Also, and this makes the PVW superior to 
the elementary force/moment-free body diagram approach, 
one does not need to include the reactions/constraint forces in 
the analysis since their virtual work is independently zero; the 
latter is actually an equivalent formulation of the PVW. In 
concrete mechanical problems what one really employs is the 
sufficiency condition of the principle: If the virtual work is 
zero, then the originally motionless system remains in 
equilibrium. The purpose of this paper is to reexamine this 
static sufficiency condition not as an independent axiom, but 
starting from the general variational equation known as 
"Lagrange's Principle" (LP) or "d'Alembert's Principle in 

1 School of Mechanical Engineering, Georgia Institute of Technology, Atlan­
ta, OA 30332. 
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1988; final revision, October 26, 1988. 

Lagrange's Form," specialize it to statics and deduce the 
PVW as a theorem, i.e., start with LP as an axiom, set the vir­
tual work equal to zero, and then derive (sufficient) condi­
tions to maintain equilibrium. It will be clearly demonstrated 
that to maintain equilibrium it is required that, in addition to 
the stated conditions, the system also be scleronomic in its 
holonomic constraints and catastatic in its nonholonomic 
ones. In practical terms this means that all support surf aces of 
the system must be fixed in the inertial frame. Actually, the 
entire argument of the paper applies intact, even if some or all 
of the kinematical constraints are additional holonomic ones 
in disguise, i.e., integrable constraints in differential form; 
possible limitations to truly nonintegrable constraints should 
not be hard to spot. The author is aware of only one rigorous 
formulation of the PVW stressing the importance of con­
straint stationarity for equilibrium: that by Hamel (1912). 
However, no explicit mention of nonholonomic constraints is 
made there. Most authors proceed from the PVW to LP, i.e., 
from statics to kinetics; this makes the detection of the impor­
tance of the stationarity of holonomic constraints rather dif­
ficult. Hamel, on the other hand, in a truly analytical fashion 
deduces the PVW from LP; this allows a clear focusing on the 
effect of the kinematic constitution of the system on its 
equilibrium. Here, Hamel's approach is enlarged to include 
both holonomic and (linear) nonholonomic constraints, in 
order to show quantitatively the precise effect of nonsta-
tionarity and acatastaticity on the violation of equilibrium. In 
the Appendix an alternative formulation of the PVW for 
nonstationary constraints by Gantmacher (1970) will also be 
discussed and compared with that of Hamel and with the fin­
dings of this paper. 

2 Kinematical Background 
For a full coverage see, e.g., Hamel (1912, 1949), and Gant­

macher (1970). Consider an arbitrary finite mechanical system 
consisting of discrete or continuous material bodies, and sub­
ject to bilateral, holonomic and/or nonholonomic constraints. 
The position vectors of its particles, relative to an "origin" 
fixed in an inertial frame of reference R, are 

r = r(P;qit. . . ,q„,t)=r(q,t). (1) 
Here, P is the label identifying the various particles of the 

system, t is the time, and q = q(t) = [qu . . . , q„] are a set 
of ^-generalized Lagrangean (or true), independent, posi­
tional, system coordinates; Pis independent of t; from now on 
the explicit dependence of r on P will be dropped. Usually the 
particle label is shown by a subscript on r: rk(q, t); k=\, 
. . . ,N= number of particles; the practice (1), reminiscent of 
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continuum mechanics, simplifies the notation. The representa­
tion (1), with n s 37V— h, takes care of the h holonomic con­
straints. Next, (/) the velocity v, and acceleration a, of a 
typical particle P (relative to R) are defined, respectively, by 

dr 

~~d7 
dr 

Qi + 

and 

a = -
d\ 

~dT 
d / dr \ _ 

~~~dt\d7) = 

dr 

d2r 

If 

(2a) 

(2b) 

whereas, (ii) a kinematically possible or admissible displace­
ment of P is 

J_ -f, dr j dr J 

dr= IJ~^— dQi+-^r dt> £[ dQi dt 
(3) 

and (Hi) a virtual displacement of the same P (again at a given 
instant t and configuration q, as for dr) is 

*=£-£-* i <*=°>- (4) 

Clearly, 5r in (4) is the linear and, since 5/ = 0, homogeneous 
part in the arbitrary increments bq = {8qit . . . , Sq„) of the 
q's of the expansion 

r(q + 5q,t)~r(q,t). (5) 
When only the h holonomic constraints are present, the 

(n + 1) differentials dq and dt in (3) are independent of each 
other, and so are the n, q's, and t. When, however, 
nonholonomic constraints are imposed on the system, the q's 
and t are not affected, but now the members of the two sets of 
dq's, dt, and 5^'s are no longer independent but have to 
satisfy the nonholonomic constraints in their d - (= admissi­
ble/possible) or 8- ( = virtual) forms. This interdependence 
of the dq's, dt, and of the 8q's, respectively, matters not only 
in the derivation of equations of motion (equilibrium) from 
LP (PVW), but also in the equilibrium argument that follows. 
When the holonomic constraints are stationary: 

dr 

— ° - (6) 

Then, as (3) and (4) show, the classes of dr and 5r are 
equivalent; it is this (dr/dt) - proportional term in (2a) and 
(3)-and corresponding terms for nonholonomic con­
straints - that necessitate a sharper formulation of the PVW. 
When m(<n), additional nonholonomic constraints are im­
posed, then additional efr-proportional terms due to those new 
constraints "widen" the difference between dr and 5r. The 
"particle" forms of these constraints are Gantmacher (1970): 

HBj.v)+Bj = 0 [/=1 m«n)], (7) 

where i3 ( . . . ) denotes discrete and/or continuous summa­
tion over the entire material system (a la Stieltjes), and By = 
Bj(P; r, / ) , Bj = Bj(P, r, t) are given or known functions. 
Substituting r and v from (1) and (2a) into (7) transforms it to 

\ T ( dqt ' dt J J 

or the system form of the constraints: 

where 

J^ajiqi + aj = 0 [ /=l m(<n)\, 

fl,,-aj,(g,0-»3(By~), 

(8) 

(9) 

aj = aj(q,t)mS(Bj~)+Bj; 

the ay, and ay are known functions of the q's and /. If 

dOji 

dt 
- = 0, and Oj = 0, 

(10) 

(11) 

the NH constraints are called stationary, and the system 
scleronomic in them. Here, however, another classification 
seems more useful: If 

«/ = 0, (12) 

the NH constraints are called catastatic, otherwise acatastatic; 
in catastatic constraints, however, one may still have ay, = 
aji(q, t)\ As seen from (10), the [ak] consist of the nonsta-
tionary contributions of the holonomic constraints as well as 
the nonhomogeneous (acatastatic) contributions of the NH 
ones. Equation (8) holds for the actual system generalized 
velocities q. For the kinematically possible/admissible and vir­
tual (generalized) system displacements dq, dt, and 8q, one 
has, respectively, the constraints 

and 

Ytajidqi + ajdt = Qi, 

YiajMi = Q [/'=! m(<n)]. 

(13) 

(14) 

Equation (13) shows that now the dq's depend on each other 
and on dt; this is the reason for the additional dt-proportional 
contributions to dr. To incorporate (13) into (3) the following 
(special case of the method of quasi-coordinates - see Hamel 
(1949)) scheme is chosen: The m equations (13) are used to 
express the first m dq's {dqx, . . . , dq,„} in terms of the re­
maining, independent, (n — m) dq's {dqm+\ dq„] and 
dt. Thus 

n 
d1j = Z ) bjkdqk + bjdt, (15a) 

k = m + 1 

bjk = bJk(q,t),bj=bj(q,t),[j=l,. . . , m; 

k = m+\,. . . ,ri\; (156) 

this idea, used in connection with the method of "embedding" 
of the constraints to LP, dates back to Hadamard (1895, 
1899), Chaplygin (1895, 1897), Voronets (1901): Neimark and 
Fufaev (1972). Inserting (15) into (3), one successfully finds 

J A dr J dr J 
dr= L,-^—dqi + -—-dt (16) 

= E dt 
^ 1 — d Q j + Li ~,— dqk+—-dt 
" dqj k=%+i dqk *< 

= 2 - ^ - ( E bjkdqk + bjdt) 
jZ dQj 

+ L-J -T.—dqk + dt 
* - » + i d1k dt 

n , m 

1J \2-< x r b'k + 
dr 

k = m+l S '= l Qj 

dr 

dqk/ 

/ A dr t dr \ J 

^ dQj 
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or, in terms of the holonomic and nonholonomic (particle and 
system) base vectors, respectively, 

dr dr 
e,=-r— I e „ + 1 = ^ ^ (*=1, dt • . n; q„+i=t, 

\,dqn+l=dt); 

1+1 
a* = E bjk*j + e*; a«+1 = £ *;e; + e»+ 

; = i y = i 

(AT = / H + 1 , . . . , « ) , 

finally 

tfr = Z) a^^ + a^!*; 

(17) 

(18) 

(19) 

the [(/? — m) + 1] dg's and dt are now independent. Similarly, 
for the particle and system virtual displacements, 5r and bq: 
from (14) 

5<7/= YJ bjk5Qk> 
k = m+\ 

instead of (15), and 

br-- Ti M<7* 

(20) 

(21) 

instead of (19)-the (n — tri) bq's are now independent. Equa­
tions (21) and (19) clearly show that in the NH case, the classes 
of dr and 8t differ by 

(22) 

Therefore, if (13) is catastatic, i.e., a, = 0 (/'= 1, • • • , m), 
then bj = 0 and (15) is also "catastatic," and a„+ , — e„+1 as 
before. The vectors (e,-, e„+1) and [a^, a„+ 1) are fundamen­
tal to constrained system mechanics (equations of motion, 
etc.)-see Hamel (1949) and Gantmacher (1970). 

3 Kinetics Background 

According to the "Principle of Lagrange" (LP), the motion 
of a mechanical system subject to bilateral and "ideal" con­
straints is uniquely determined by the following differential 
variational equation 

idma'bx •-Sdi- ST. (23) 

Here, di represents the total (given) impressed force on the 
particle P of mass dm. On the other hand, Newton's "second 
law of motion'' for P is 

dma = df + dR, (24) 

where dR = total (contact) reaction force on dm. LP states 
that the system of the "lost" forces [ — dR] = {df - dma] is 
in "equilibrium," not in the elementary sense, but in that the 
[~dR)'sdo not affect the acceleration state of the system, or 
in work terms: 

>(-tfR)-5r = 0; (25) 

combination of (24) with (25) produces the standard form 
(23). 

4 From LP to the PVW/Equilibrium 
Conditions for equilibrium: (i) Necessary Condi­

tions: If the system is in equilibrium (relative to R), then a = 
0 and therefore from (7) the (first order) virtual work, 5' W, 
vanishes: 

b'W = Sc di-br = 0. (26) 

(//) Sufficiency Conditions: If b'W = 0 from an initial mo­
ment t0 and for some time thereafter, then as (23) shows 

Sdmsfbr = 0, for t^ t„. (27) 

The consequences of (26) and (27) for equilibrium will now 
be examined: Substituting 

dr-a„+ldt={\-an+i)dt, 

for br into (27) and cancelling dt(?±0), yields 

or, since 

dmv2 

= kinetic energy of system (relative to R), 

finally 

dT C 
dt 

(28) 

(29) 

(30) 

(3D dma-y = Otfma-a„+ , 

( = (3c?f.a„+1 +iSdR-an+i). 

Integrating both sides of the aforementioned equation be­
tween t0 and t (r? t0), and with T0 = T(t0), T= T(t), yields 

T-T0=\ [ibdma'a„ + l]dt; a„+i= T,-^—bj+—-. (32) 
•"o j=i oqj at 

One notes that (32) follows from (26) and also from the 
more general (and perhaps more realistic) condition 

b'Wdt = 0. (33) 

Equation (32) (with (22)) holds the key to the understanding 
of the constraints/equilibrium connection: 

( / ) i fa„ + 1 =0, then : r= : r o > (34) 

and since v0 = v(/0) = 0 — T0 = 0, it follows that T = 0 or, 
since Tis a positive-definite function ( — al) in they2 = v2, all 
the v's are zero for t = t0, i.e., after t0 the system remains in 
equilibrium in R. As mentioned in the Introduction, the mean­
ing of (17) is that all the system support surfaces are fixed in 
R. For most structures the earth can serve as R; then a system 
fixed relative to the earth is scleronomic, and the forces from 
the earth to it are external reactions to be calculated - of 
course, this refers to the contact forces, not the gravita­
tional/field ones. However, if the earth is assumed to have a 
given motion (unaffected by the system's action), then the 
system is rheonomic and the corresponding forces are again 
unknown reactions. If, finally, the earth interacts with the 
system, then together they constitute a new scleronomic 
system and the forces between them are impressed. 

(ii) if a„+1 ^ 0 , then as (32) shows, in general, 

AT=T-To?i0, (35) 

i.e., the system moves away from the original equilibrium con­
figuration, even though b'W = 0 for t ^ t0, and v0 = 0! 
Weaker (special) conditions for equilibrium result: 

( a ) i f a„ + 1 *0 , but \ [Sdma'Hn+1)dt = 0, (36) 

(Z>)ifa„+1?£0, bu ta«a„ + i=0 , ioxt~^t0. (37) 

The PVW now reads: An originally motionless 
mechanical system, relative to an inertial frame, remains in 
equilibrium if and only if: (i) b'W = 0, and (ii) its 
holonomic and nonholonomic constraints are such that the 
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right side of (32) vanishes. Here are some additional possible 
consequences of the vanishing of 8' W: Substituting (28) for 
5r into (26) yields 

Sdi-y = Sdi'*n+x. (38) 
This shows that, again, unless a„+i = 0, or some other 

weaker condition that ends up annihilating the right side of 
(38), the "power of the impressed forces" (= left side of (38)) 
is not zero! Finally, it should be noted that the foregoing 
discussion avoids the use of unknown Lagrangean multipliers, 
and uses virtual work, instead of power, which is more in line 
with standard tradition of analytical statics (see e.g., Som-
merfeld (1964)). 
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A P P E N D I X 

Gantmacher's Formulation and its Relation With the Present 
Work 

The distinguished applied mathematician F. Gantmacher 
(1970) formulates the PVW as follows: "For some position 
(compatible with constraints) of a system to be an equilibrium 
position, it is necessary and sufficient that in this position, the 
sum of the works of effective forces on any virtual 
displacements of the system be zero." And he adds "If the 
constraints are nonstationary, then the term "compatible with 
constraints" signifies that they are satisfied for any t if in them 
we put (in our notation) r = r0 and v = 0," and "It is then 
assumed that (our) equation (26) holds for any value of t if in 
the expression for d/we put all r = r0 and all v = 0." Gant­
macher gives no explanation for his last "rule," and presents 
the PVW as an independent axiom before LP. The connection 
of the aforementioned with the findings of this paper is worth 
examining: if v = 0, then from (2a). 

i = l aQi a l 1 = 1 

If the system is holonomic the n q's, are independent, and since 
dr/dqj = e, ^ 0, 

<jj = 0(/= 1,. , . ,n) and 
dr 

^n+i s~;— = 0—stationary constraints. (A2) 
at 

This shows that, since qt(t) = qit0 = constant, the system will 
remain in equilibrium. If, on trie other hand, the system is 
nonholonomic, then from (19), 

n 
v= D M* + an+i=0. (A3) 

k = m+l 

and thus since the (n — m) "base" vectors am + , , . . . , a„ are 
independent, 

qk = 0 (k = m + \,. . . ,n) and a„+ ,=0, (,44) 

and noting (15) and (18), finally 
dj = 0( i=l n),bj= 0[—Oy=0, since ê  ^ 0] 

dr 
(/=!, . . . , m),e„+1=—— = 0, (A5) 

i.e., the holonomic constraints are stationary, the 
nonholonomic ones are catastatic, and q, = qt(t) = constant. 
These findings are equivalent with those of this paper. In 
sum: (0 one sets either b'W = 0 and v = 0 (in the con­
straints and forces), or (if) 8'W=0 and dr/dt = 0, «,- (or Bf) 
= 0. Therefore, in both the holonomic and nonholonomic 
cases the formulations of Gantmacher and that of Hamel and 
this paper are fundamentally equivalent, although the second 
approach is clearer both logically and physically. 

Analysis of Thermal Stresses in a Ceramic-
to-Metal Cylindrical Joint With a Homo­
geneous Elastic Medium 

Osamu Kimura2 and Toshio Kawashima3 

It is well known that large thermal stresses arise in a ceramic-
to-metal joint because of thermal expansion mismatch. 
Therefore, to avoid fracture of a joint, it has been recom­
mended a joint in which thermal expansion coefficient of a 
ceramic member is smaller than that of a metal member. The 
joint is called a "compressive" joint, because it was believed 
that only compressive stresses occur in the ceramic member. 
Since ceramic is about ten times as strong in compression as in 
tension, this joint is considered stronger than a tensile joint. 

A finite element calculation (FEC), however, has shown 
that a large tensile stress is generated even in ceramic part of a 
compressive joint. The aim of this study is to clarify stress 
distribution in a compressive joint by solving analytically the 
stress equation of the joint. 

For convenience, we deal with a special joint in which the 
elastic constants of the ceramic member are assumed to be the 
same as those of the metal member. The result of the analysis 
gives the same stress distribution obtained by FEC, and its 
value of the tensile stress agrees fairly well with that of FEC. 

I Introduction 
Ceramic-to-metal joints have been investigated using dif­

ferent bonding methods due to their industrial importance. 
Generally, thermal expansion coefficients of members to be 
bonded are different. Therefore, when a joint is cooled to 
room temperature, thermal stresses are caused in the joint by 
the resulting thermal expansion mismatch. 

Several stress calculations were done on joints of other types 
of Preist and Talcott (1959) or by Cole and Inge (1961). Also 
stress analyses were carried out both experimentally and 
theoretically on glass-to-metal seals of coaxial cylinders used 
in vacuum tubes by Sutton (1958), and of very thin sheets by 
Oel and Frechette (1967). In these cases, internal stresses in 
glass are measurable using photoelastic techniques, so that 
detailed information is available on stress distribution in seals. 
No detailed stress calculation, however, has been carried out 
in this butt joint, except in the discussion by Bogy (1968), who 
pointed out the occurrence of singularities of the type r"01 in 
the stress field in a wedge with dissimilar media, where r is 
distance from the bonded edge. 
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right side of (32) vanishes. Here are some additional possible 
consequences of the vanishing of 8' W: Substituting (28) for 
5r into (26) yields 

Sdi-y = Sdi'*n+x. (38) 
This shows that, again, unless a„+i = 0, or some other 

weaker condition that ends up annihilating the right side of 
(38), the "power of the impressed forces" (= left side of (38)) 
is not zero! Finally, it should be noted that the foregoing 
discussion avoids the use of unknown Lagrangean multipliers, 
and uses virtual work, instead of power, which is more in line 
with standard tradition of analytical statics (see e.g., Som-
merfeld (1964)). 
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A P P E N D I X 

Gantmacher's Formulation and its Relation With the Present 
Work 

The distinguished applied mathematician F. Gantmacher 
(1970) formulates the PVW as follows: "For some position 
(compatible with constraints) of a system to be an equilibrium 
position, it is necessary and sufficient that in this position, the 
sum of the works of effective forces on any virtual 
displacements of the system be zero." And he adds "If the 
constraints are nonstationary, then the term "compatible with 
constraints" signifies that they are satisfied for any t if in them 
we put (in our notation) r = r0 and v = 0," and "It is then 
assumed that (our) equation (26) holds for any value of t if in 
the expression for d/we put all r = r0 and all v = 0." Gant­
macher gives no explanation for his last "rule," and presents 
the PVW as an independent axiom before LP. The connection 
of the aforementioned with the findings of this paper is worth 
examining: if v = 0, then from (2a). 

i = l aQi a l 1 = 1 

If the system is holonomic the n q's, are independent, and since 
dr/dqj = e, ^ 0, 

<jj = 0(/= 1,. , . ,n) and 
dr 

^n+i s~;— = 0—stationary constraints. (A2) 
at 

This shows that, since qt(t) = qit0 = constant, the system will 
remain in equilibrium. If, on trie other hand, the system is 
nonholonomic, then from (19), 

n 
v= D M* + an+i=0. (A3) 

k = m+l 

and thus since the (n — m) "base" vectors am + , , . . . , a„ are 
independent, 

qk = 0 (k = m + \,. . . ,n) and a„+ ,=0, (,44) 

and noting (15) and (18), finally 
dj = 0( i=l n),bj= 0[—Oy=0, since ê  ^ 0] 

dr 
(/=!, . . . , m),e„+1=—— = 0, (A5) 

i.e., the holonomic constraints are stationary, the 
nonholonomic ones are catastatic, and q, = qt(t) = constant. 
These findings are equivalent with those of this paper. In 
sum: (0 one sets either b'W = 0 and v = 0 (in the con­
straints and forces), or (if) 8'W=0 and dr/dt = 0, «,- (or Bf) 
= 0. Therefore, in both the holonomic and nonholonomic 
cases the formulations of Gantmacher and that of Hamel and 
this paper are fundamentally equivalent, although the second 
approach is clearer both logically and physically. 

Analysis of Thermal Stresses in a Ceramic-
to-Metal Cylindrical Joint With a Homo­
geneous Elastic Medium 

Osamu Kimura2 and Toshio Kawashima3 

It is well known that large thermal stresses arise in a ceramic-
to-metal joint because of thermal expansion mismatch. 
Therefore, to avoid fracture of a joint, it has been recom­
mended a joint in which thermal expansion coefficient of a 
ceramic member is smaller than that of a metal member. The 
joint is called a "compressive" joint, because it was believed 
that only compressive stresses occur in the ceramic member. 
Since ceramic is about ten times as strong in compression as in 
tension, this joint is considered stronger than a tensile joint. 

A finite element calculation (FEC), however, has shown 
that a large tensile stress is generated even in ceramic part of a 
compressive joint. The aim of this study is to clarify stress 
distribution in a compressive joint by solving analytically the 
stress equation of the joint. 

For convenience, we deal with a special joint in which the 
elastic constants of the ceramic member are assumed to be the 
same as those of the metal member. The result of the analysis 
gives the same stress distribution obtained by FEC, and its 
value of the tensile stress agrees fairly well with that of FEC. 

I Introduction 
Ceramic-to-metal joints have been investigated using dif­

ferent bonding methods due to their industrial importance. 
Generally, thermal expansion coefficients of members to be 
bonded are different. Therefore, when a joint is cooled to 
room temperature, thermal stresses are caused in the joint by 
the resulting thermal expansion mismatch. 

Several stress calculations were done on joints of other types 
of Preist and Talcott (1959) or by Cole and Inge (1961). Also 
stress analyses were carried out both experimentally and 
theoretically on glass-to-metal seals of coaxial cylinders used 
in vacuum tubes by Sutton (1958), and of very thin sheets by 
Oel and Frechette (1967). In these cases, internal stresses in 
glass are measurable using photoelastic techniques, so that 
detailed information is available on stress distribution in seals. 
No detailed stress calculation, however, has been carried out 
in this butt joint, except in the discussion by Bogy (1968), who 
pointed out the occurrence of singularities of the type r"01 in 
the stress field in a wedge with dissimilar media, where r is 
distance from the bonded edge. 
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Recently, a finite element calculation (FEC) was conducted 
on a Steel-Alumina joint by Suganuma et al. (1984). They 
showed that a maximum tensile stress occurs in the alumina 
part of the joint. The aim of this study is, therefore, to 
calculate analytically the thermal stress distribution in the 
ceramic-metal joint to check the calculation by FEC. Because 
of some difficulties in treating general cases, we treat a special 
ceramic-metal joint in which the elastic constants of the 
ceramic member are the same as those of the metal member, 
namely, a joint with uniform elastic medium (hereafter, re­
ferred as a "homogeneous" joint). The present model is, of 
course, of limited applicability to actual cases, however, the 
analysis of the joint may serve as a starting point for the 
analysis of dissimilar joints. Because of the elastic homogenei­
ty of the joint, the stresses in it can be treated as those 
generated in a single rod using the formal elastic theory, and 
no singularity in its stress field is supposed to occur, according 
to Bogy's treatment (Bogy, 1968). 

II Analysis 
The procedure in analysis proceeds as follows, which is 

analogous to that proposed by Barton (1941) for the thermal 
stress problem of a circular cylinder. 

We treat the joint as a rod with thermal expansion coeffi­
cient a — /3 and with no thermal conductivity at the interface, 
where a and /3 correspond to the thermal expansion coefficient 
of the lower half and the upper half of the joint, respectively. 
Thus, the thermal stresses in the joint are exactly the same as 
those stresses generated in the rod when its upper half is 
heated to /, while its lower half is still maintained at 
temperature t0. This process corresponds to establish thermal 
expansion mismatch of £ [ = (a —0) (t —10)] between the up­
per and lower half of the rod. This mismatch may be diminish­
ed by plastic deformation or creep during cooling process of 
the joint. 

It is easily seen that angular displacement V vanishes and 
other displacements U and W are independent of 6 according 
to the cylindrical symmetry of strains. 

(1) The First Deformation. In this step, the radial expan­
sion of the upper half of the rod is reduced to zero by applying 
an external pressure of P =E%/(l-v), where E = Young's 
modulus and v = Poisson's ratio. The stresses in the upper 
half due to this pressure are ar = ae = — P, az = rn = 0 and 
axial deformation W = (1 + e)£/(l - v), while all stresses and 
deformations are zero in the lower half. 

(2) The Second Deformation. In this step, the pressure is 
removed from the rod surface by superimposing on the upper 
half of the rod an external tensile load of P = E£,/{\-v). 
Then, radial displacement U occurs as well as W. The final 
stresses and displacements are given by the algebraic sum of 
the first and the second ones. Then, we obtain the relations for 
the second surface tractions 

f P for z > 0 (rrz)r=a = 0 everywhere, 

t 0 for z < 0 . 

This condition can be divided into following conditions (a) 
and (b). 

Condition (a). 

(ar)r=a=P/2, (r r ! .) r=0 = Oeverywhere, 

Condition (b). 

P/2 for z>0 {rn)r=a = Q everywhere. 

V 4 * = 0 (3) 

("r)r = B = 
- P / 2 for z<0. 

(2) 

where stresses are given by 

or = d/dz{vV2$-d2ib/dr2), 

ae = d/dz(W2^- l/rdi/dr) 

oz = d/dz((2-p)V2$-d2<i>/dz2), 

Trz = d/dr((l - v) V2$-d2<f>/dz2) 

with 

V2 = d2/dr2 + \/rd/dr + d2/dz2. (4) 

Since condition (a) corresponds to the problem for uniform 
tensile load of P/2 applied on the outer surface of the rod, $„ 
is given by 

$ a = - (1 - „ ) P r V 4 ( l + v) + (2 - v)Pz3/6(1 + v). (5) 

This gives 

ar = <7„ = P/2, az = Trz = 0 everywhere. (6) 

On the other hand, the solution for condition (b) was already 
given by Barton (1941) and Rankin (1944). Following 
Timoshenko and Goodier (1970b), the potential $ 6 is given by 

i oo 

[PI0(kr)-krI1(kr)]cos(kz)/k4Fk(a)'dk 

with 

p = 2(l-v)+kal0(ka)/li(.ka) 

Fk(a) =ka\Ia
2(ka)-Il

2(ka))/Il(ka)-2(,1 -v)Il(ka)/ka, (7) 

where Ia{x) and /,(*) are modified Bessel function of zero 
order and first order, respectively. 

Since stresses are the algebraic sum of the first and the 
secondary stresses, we have 

i oo 

\Fk{r)/Fk(a) - \}sm(kz)/k-dk 
0 

oe=P/ir*[ {Gk(r)/Fk(a)-\]sm(kz)/k'dk 

oz=P/iv> \ [Hk(r)/Fk(a)]sm(kz)/k-dk 

i oo 

[Jk(r)/Fk(a)]cos(kz)'dk (8) 
0 

where, Fk(r), Gk(r),Hk(r), and Jk(r) are given by 

Fk(r) = [l+fcrfo(ta)//,(*fl)]/0(*r) 

- [al0(ka)li(kr)/rli(,ka)] -krl^kr) - 2 (1 - v)Ix(kr)/kr, 

Gk(r) = -(\-2v)I(t(kr) +2(\-v)Ii(kr)/kr 

+ al0(ka)li(kr)/rll(ka), 

Hk(r) = [l-kalolktf/I^kaWoW+krl^kr), 

Jk(r) = a/0(Ara)/1(^)//1(to)-/-/0(A:r). 

Ill Results and Discussion 

(1) Maximum Values of Stresses and Some Limiting 
Cases. All the stresses should increase as z approaches to 
zero, namely, near the joined interface. In this case, by chang­
ing the integral variable from k to K ( = kz), we find that argu­
ment of F(k) goes to infinity as z approaches to zero. Thus, 
we can utilize asymptotic expansion for I0 (x) and /, (x) (see 
Whittacker and Watson (1935), for example) 

For solving the problem, we utilize Love's biharmonic stress 
function (see text by Timoshenko and Goodier (1970a)), 

I0(x)~exp(x)/\/2irX'[l + l/8x+. . . ] 

Il(x)~exp(x)/^2Trx>[l-3/8x+ . . . ]. (9) 
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Limi t ing value , i 
z->+0 Q 0 5 

Limiting value 

Fig. 1 Radial distribution of oz for various z 

Limiting value 

0 
1x10"' 

r 
0 . 2 0 . 0 1 0 . 0 2 0 . 0 5 0 . 1 0 . 2 0 . 5 1 2 5 z / a 

Fig. 2 Change of a, along axial direction at the surface of the rod 
(r = a) 

So, we get maximum absolute values for or and ae at r = 0 and 
z— + 0 by virtue of equation (8) 

lim 
«-+o 
r-0 

= lim 
2-+0 
r - 0 

sm{kz)/k>dk=-P/2. 

(2) 
These stress are compressive. In the same way, we find a max­
imum value for azair = a and z—I- 0 to be P/2. This stress is 
tensile and most critical for ceramics as already mentioned. Its 
existence was first shown by Suganuma et al. (1984) using 
FEC. Also, we can find that shear stress rrz reaches a max­
imum value of P/ir at r—a, z ~ 0 . 

(2) Comparison of the Theoretical Value With the Value 
by Finite Element Calculation. Suganuma et al. calculated 
the maximum tensile stress to be 0.94 GPa in Steel-Alumina 
joint at r = a and z—+0 (in alumina side). They used the 
following values for elastic constants shown in Table 1, on the 
condition that / = 1000°C and t0 = 25°C. Substituting these 
values for alumina or steel into the value of P/2, the max­
imum tensile stress gives the values ozmm = P/2 = [1.47 GPa 
for alumina and 0.75 GPa for steel]. 

The value of alumina is about 60 percent larger than that by 
FEC and that of steel is 20 percent smaller. The numerical 
agreement of our theory with FEC is found fairly good. 

Table 1 Values of Young's modulus (E), Poisson's ratio (c) 
and thermal expansion coefficient (a) for alumina and steel 

Material E(MPa) a (x l0 - 6 ) 

Alumina 
Steel 

372000 
196000 

0.27 
0.25 

8.1 
14.0 

- o . i 

-i 1 1 1 1 r 

0 0 . 5 1.0 r / a 

Fig. 3 Radial distribution of i „ for various z 

Fig. 4 Change of a, and of ae along axial direction at the center axis of 
the rod (r = 0) 

(3) Stress Distribution. Figure 1 shows radial distribu­
tion of oz for positive axial direction, that is, for positive z. 
Hereafter, we put Poisson's ratio v = 0.25, which is usual for 
ceramics. As can be seen for small r, namely, in the inner part 
of the rod, this stress is compressive, while it becomes tensile 
for larger r, namely, at the outer side of the rod. Also, it 
becomes very small for z over 2a. It means that the effect of 
bonding becomes negligibly small for z over 2a, corresponding 
to Saint Venin's principle. 

Figure 2 shows changes in axial direction of az at the surface 
of the rod, namely, at r = a. We can see that it approaches to 
P/2 at the boundary surface and decreases rapidly for z over 
2a. 

Figure 3 shows radial distribution of rrz for various z. As 
can be seen, it increases very rapidly as z goes to zero and 
reaches a maximum as r approaches to a. Also, it changes its 
sign at z nearly equal to a. Then, it becomes very small for z 
over 2a. 

Figure 4 shows change in axial direction of ar at the center 
axis of the rod, which coincides in value with ae in the case of v 
= 0.25. They reach a minimum (maximum absolute value) of 
-P/2 at the boundary surface and beyond 2a become 
negligibly small, as other stresses. Both ar and ae are com­
pressive almost everywhere, and their absolute values reach 
maximum at the center axis of the rod and decrease with in­
creasing r, contrary to az. 

As can be seen in the figures, no singularity is found to oc­
cur in the stress field, as already mentioned. 

IV Conclusion 
The exact analytical solution is found for the thermal 
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stresses in the joint with elastically homogeneous medium by 
treating it as a single rod with abrupt temperature gradient. 
The obtained result is found reasonable concerning stress 
distributions. Also, the maximum value of tensile stress agrees 
fairly well with that by finite element calculation conducted by 
Suganuma et al. (1984). In another paper (to be published), 
the theory will be extended to thermal stresses in a usual joint 
with dissimilar elastic medium. 
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A Study of the Effects of Baffles on Rotating 
Compressible Flows 

Max D. Gunzburger,4 Houston G. Wood,5 and Rosser L. 
Wayland6 

Onsager's pancake equation for the fluid dynamics of a gas 
centrifuge is modified for the case of centrifuges with baffles 
which render the flow domain doubly connected. A finite ele­
ment algorithm is used for solving the mathematical model 
and to compute numerical examples for flow fields induced 
by thermal boundary conditions and by mass injection and 
extraction. 

I Introduction 
In the past decade numerous papers have appeared which 

address the dynamics of rotating compressible flows in a cen­
trifuge. The primary purpose of these efforts has been directed 
towards modeling the diffusive processes in binary mixtures 
which enable the separation of species, with the chief appli-
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cation being separating the isotopes of uranium hexafluoride. 
The isotopically-altered uranium is then used as fuel for nuclear 
power reactors. 

The purpose of the work presented in this paper is to study 
the effects on the flow field, due to the inclusion of baffles 
inside the centrifuge. The flow through the baffle holes and 
the effect of the baffle on the flow field have also been analyzed 
by Kai (1977), Lopez (1977), and Soubbaramayer (1979). 

The inclusion of the baffle in the analysis of the flow field 
renders the domain to be doubly connected. The authors cited 
in the previous paragraph have used finite difference methods 
to solve the equations of motion in primitive variable form so 
that they encountered no new problems due to the multiple 
connectivity of the computational domain. However, if the 
equations of motion are formulated in terms of a stream func­
tion or a potential function as is the case for Onsager's model, 
care must be taken to assure that physical quantities such as 
the pressure are single-valued functions. This type of problem 
has been addressed for the incompressible case by Sood and 
Elrod (1974), Israeli and Ungarish (1977), Girault and Raviart 
(1979), and Gunzburger and Peterson (1985), and for the com­
pressible case by Greenspan (1981) and Viecelli (1984). 

II Mathematical Models 
In an unpublished report, Lars Onsager showed that within 

a rapidly rotating centrifuge the equations of motion can be 
reduced to a single differential equation to be solved for a 
master potential function x- This equation is 

( e M e ^ x ^ + ^ X , , ^ * ^ ) (1) 
where B1 = ReS1/2/4>l6, Re = pwQa2/n, S = 1 + P r^ 2 ( 7 -
1) /2Y, A2 = Q2a2/2RT0, pw is the density, at the outer cylinder 
wall, of the undisturbed fluid in solid body rotation, Q is the 
rotation frequency, a is the cylinder radius, y is the ratio of 
specific heats, Pr is the Prandtl number, ix is the bulk viscosity, 
R is the specific gas constant, and T0 is the temperature of the 
undisturbed fluid. The radial variable x measures scale heights, 
i.e., e-folding heights, of the ambient density and is given in 
terms of the physical radial variable r by x = A2 [1 - (r/a)2]. 
The variable y is the axial variable nondimensionalized with 
respect to a. The function F(x, y) is identically zero unless 
internal sources and sinks of mass, momentum, and energy 
are present. The derivation of (1) is described in detail in the 
papers by Wood and Morton (1980), Wood and Sanders (1983), 
Gunzburger and Wood (1982), and Gunzburger, Wood, and 
Jordan (1984). These references also give the details concerning 
the specific relation between the function F(x, y) and the 
internal sources. All of the physical variables of the flow field 
can be obtained from the master potential and these formulas 
are also described in the earlier references. 

The baffle is assumed to be the rectangle X/ < x < xn yBb 

< y < yBt. We assume that the baffle is very thin; in fact, in 
our computations, yBl differs f rom^^ by one grid length, i.e., 
the baffle is one finite element thick. The domain SD in which 
(1) holds is the interior of the centrifuge excluding the baffle, 
i.e., 

S)={0<x<xT, 0<y<y,} 

with {xr<x<xb yBb<y<yBt) removed. 

Therefore, we not only have to prescribe boundary conditions 
on the boundary of the cylinder, but also on the baffle itself. 

The boundary conditions at x = 0, the outer wall of the 
centrifuge, are prescribed temperature and the no slip condi­
tion; and the boundary conditions at x = x„ the rarefied inner 
radius position, are adiabatic and no shear. The details of how 
these boundary conditions are related to the master potential 
are given in Gunzburger, Wood, and Wayland (1987) as well 
as most of the earlier references by these authors. 

Ekman boundary layers form on the horizontal boundaries, 
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stresses in the joint with elastically homogeneous medium by 
treating it as a single rod with abrupt temperature gradient. 
The obtained result is found reasonable concerning stress 
distributions. Also, the maximum value of tensile stress agrees 
fairly well with that by finite element calculation conducted by 
Suganuma et al. (1984). In another paper (to be published), 
the theory will be extended to thermal stresses in a usual joint 
with dissimilar elastic medium. 
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A Study of the Effects of Baffles on Rotating 
Compressible Flows 

Max D. Gunzburger,4 Houston G. Wood,5 and Rosser L. 
Wayland6 

Onsager's pancake equation for the fluid dynamics of a gas 
centrifuge is modified for the case of centrifuges with baffles 
which render the flow domain doubly connected. A finite ele­
ment algorithm is used for solving the mathematical model 
and to compute numerical examples for flow fields induced 
by thermal boundary conditions and by mass injection and 
extraction. 

I Introduction 
In the past decade numerous papers have appeared which 

address the dynamics of rotating compressible flows in a cen­
trifuge. The primary purpose of these efforts has been directed 
towards modeling the diffusive processes in binary mixtures 
which enable the separation of species, with the chief appli-
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cation being separating the isotopes of uranium hexafluoride. 
The isotopically-altered uranium is then used as fuel for nuclear 
power reactors. 

The purpose of the work presented in this paper is to study 
the effects on the flow field, due to the inclusion of baffles 
inside the centrifuge. The flow through the baffle holes and 
the effect of the baffle on the flow field have also been analyzed 
by Kai (1977), Lopez (1977), and Soubbaramayer (1979). 

The inclusion of the baffle in the analysis of the flow field 
renders the domain to be doubly connected. The authors cited 
in the previous paragraph have used finite difference methods 
to solve the equations of motion in primitive variable form so 
that they encountered no new problems due to the multiple 
connectivity of the computational domain. However, if the 
equations of motion are formulated in terms of a stream func­
tion or a potential function as is the case for Onsager's model, 
care must be taken to assure that physical quantities such as 
the pressure are single-valued functions. This type of problem 
has been addressed for the incompressible case by Sood and 
Elrod (1974), Israeli and Ungarish (1977), Girault and Raviart 
(1979), and Gunzburger and Peterson (1985), and for the com­
pressible case by Greenspan (1981) and Viecelli (1984). 

II Mathematical Models 
In an unpublished report, Lars Onsager showed that within 

a rapidly rotating centrifuge the equations of motion can be 
reduced to a single differential equation to be solved for a 
master potential function x- This equation is 

( e M e ^ x ^ + ^ X , , ^ * ^ ) (1) 
where B1 = ReS1/2/4>l6, Re = pwQa2/n, S = 1 + P r^ 2 ( 7 -
1) /2Y, A2 = Q2a2/2RT0, pw is the density, at the outer cylinder 
wall, of the undisturbed fluid in solid body rotation, Q is the 
rotation frequency, a is the cylinder radius, y is the ratio of 
specific heats, Pr is the Prandtl number, ix is the bulk viscosity, 
R is the specific gas constant, and T0 is the temperature of the 
undisturbed fluid. The radial variable x measures scale heights, 
i.e., e-folding heights, of the ambient density and is given in 
terms of the physical radial variable r by x = A2 [1 - (r/a)2]. 
The variable y is the axial variable nondimensionalized with 
respect to a. The function F(x, y) is identically zero unless 
internal sources and sinks of mass, momentum, and energy 
are present. The derivation of (1) is described in detail in the 
papers by Wood and Morton (1980), Wood and Sanders (1983), 
Gunzburger and Wood (1982), and Gunzburger, Wood, and 
Jordan (1984). These references also give the details concerning 
the specific relation between the function F(x, y) and the 
internal sources. All of the physical variables of the flow field 
can be obtained from the master potential and these formulas 
are also described in the earlier references. 

The baffle is assumed to be the rectangle X/ < x < xn yBb 

< y < yBt. We assume that the baffle is very thin; in fact, in 
our computations, yBl differs f rom^^ by one grid length, i.e., 
the baffle is one finite element thick. The domain SD in which 
(1) holds is the interior of the centrifuge excluding the baffle, 
i.e., 

S)={0<x<xT, 0<y<y,} 

with {xr<x<xb yBb<y<yBt) removed. 

Therefore, we not only have to prescribe boundary conditions 
on the boundary of the cylinder, but also on the baffle itself. 

The boundary conditions at x = 0, the outer wall of the 
centrifuge, are prescribed temperature and the no slip condi­
tion; and the boundary conditions at x = x„ the rarefied inner 
radius position, are adiabatic and no shear. The details of how 
these boundary conditions are related to the master potential 
are given in Gunzburger, Wood, and Wayland (1987) as well 
as most of the earlier references by these authors. 

Ekman boundary layers form on the horizontal boundaries, 
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BRIEFNOTES 

and the boundary conditions appropriate for Onsager's pan­
cake equation have been derived using the Carrier-Maslen 
matching conditions. The boundary conditions for the top and 
bottom end caps of the centrifuge can be found, for example, 
in Gunzburger, Wood, and Jordan (1984). 

Similar to the top and bottom end caps of the cylinder, 
Ekman boundary layers form on both the top and bottom of 
the baffle. Thus, at these locations we impose Carrier-Maslen 
type conditions similar to those found in the references. Along 
the baffle bottom y = yBb we have that 

B2
Xy-lAB^(e'2

Xx)x = f ^ ^ 

and along the baffle top y = yBl we have that 

B3/2 

B2
Xy + 2AB^^/2

Xx)x = - — ^ 

forx r < x < X/. Here, 8Bb(x) anddBI(x) denote the prescribed 
temperatures along the bottom and top of the baffle, respec­
tively, and \p is the stream function on the baffle. Since we 
assume that no fluid enters or leaves the centrifuge through 
the boundary of the baffle, I/- is a constant. However, due to 
the multiple connectivity of 3D it is not possible to prescribe 
\p, since we have already set 4>(xT, 0) = 0. Thus, I/- is unknown 
and must be determined as part of the solution. An auxiliary 
condition is needed which determines î ; this condition is given 
next. 

Before doing so we note that no mention has been made of 
boundary conditions at the ends of the baffle x = xt and x = 
xr. Some authors, e.g., Viecelli (1984), assume that the baffle 
has a finite axial thickness and then impose solid wall con­
ditions at those locations. They thus ignore any interaction 
between the flow on the sides and the top and bottom of the 
baffle. We instead assume that the baffle is thin and, following 
Greenspan (1981), simply require the continuity of the flow 
variables at the ends of the baffle. 

As has been noted in (2), the value of \j/ may not be chosen 
arbitrarily; an extra condition must be imposed to ensure the 
single-valuedness of the pressure. Because the problem for x 
and \p is linear, the correct physical solution may be obtained 
in a straightforward manner. The relation between \p and other 
flow variables is given by (see Gunzburger and Peterson (1985) 
and, especially, Gunzburger, Wood, and Wayland (1987) for 
detailed derivations) 

+ = - ern_^n ( y \!f2(xx^yBt)+xAx,yBbyjdx 

This relation between the unknown stream function \p on the 
baffle and the master potential x is the necessary auxiliary 
condition which selects the proper physical value of \p. 

In deriving (2) it has been assumed that all distributed in­
ternal sources vanish in the neighborhood of the baffle. Also 
note that we make a distinction between -2A2

Xx (x, yBb) = 
<£(*, yBb) and i and between <f>(x, yBb) and ~6Bb(x) = 4>Bb(x), 
and analogously along the top of the baffle. This, of course, 
is because the barred quantities refer to values at the baffle 
while the unbarred quantities refer to values at the outer edge 
of the Ekman layers along the baffle. The latter we do not 
explicitly resolve; indeed, the Carrier-Maslen conditions enable 
the avoidance of such resolution. 

Journal of Applied Mechanics 

It will be convenient when discussing the solution algorithm 
for a doubly-connected domain to consider a more symbolic 
representation of our governing system. To this end we write 
L(x) = $ f ° r the differential equation (1), Bxix) = S for 
boundary conditions not involving \p; B2(x) = C(\p) + 3C for 
equation (2) which represents boundary conditions involving 

\p; D(x) = \p for equation (3) which is the auxiliary continuity 
condition. We note that all of the operators L, B,. B2, C, and 
D are linear and that fF, Q, and 3C represent inhomogeneous 
data, e.g., SF = F(x, y). 

Ill Solution Strategy for a Doubly-Connected Domain 
The fact that I/- is unknown makes it cumbersome to dis-

cretize directly the previously described problem, although this 
certainly can be accomplished (e.g., see Girault and Raviart, 
1979; Gunzburger and Peterson, 1985). Here we describe an 
alternate solution strategy described in the papers by Gunz­
burger and Peterson (1985), Viecelli (1984), and Gunzburger, 
Wood, and Wayland (1987). We divide the problem into a 
series of two problems as follows. First choose k ^ 0 and 
solve for xo where 

Uxo) = 0, with fi,(xo) = 0 and B2{Xo) = C(k). (4) 

Second, solve for xi where 

UXi)=S, with iMx , ) = S and fi2(x,)=3C. (5) 

Next, set k0 = D(Xo)
 a n d ^i = ^(Xi)- It can now be easily 

shown that the actual solution is x = Xi + <*Xo where a = 
* , / ( * - *o)-

We note that (4) and (5) define, for any k ^ 0, well-posed 
boundary value problems. Furthermore, (4) and (5) have the 
same left-hand sides so that we may solve for xo and xi with 
a single linear system solve. Also, the aforementioned strategy 
depends, in a crucial way, on the linearity of our problem; for 
nonlinear problems an iterative procedure in which one suc­
cessively guesses new values of k in (4) can be used. (See, e.g., 
Gunzburger and Peterson (1985).) Finally, we have only treated 
doubly-connected domains; the extension of the aforemen­
tioned strategy to general multiply-connected domains is 
straightforward. (Again, see Gunzburger and Peterson (1985).) 

IV Examples 
We have chosen to present numerical examples of flows for 

centrifuges with baffles using the same parameters as in our 
previous work. This will allow the interested reader to make 
direct comparisons and thereby ascertain the effects of the 
geometric modifications. The numerical results were obtained 
using a finite element method. For details, see Gunzburger, 
Wood, and Wayland (1987). The centrifuge parameters used 
are: length 335.3 cm; radius 9.145 cm; wall pressure 13.3 kPa; 
average temperature 300 K; peripheral speed 700 m/s. These 
parameters correspond to values of the dimensionless param­
eters Re = 1.92 x 106and,4 = 5.88. 

The baffle is usually located near an end of the centrifuge 
in order to shield the gas removal scoop. However, in our 
example, we have located the baffle at the axial midplane.This 
permits the features of the flow field to be examined without 
the necessity of refining the grid to a level required by a con­
figuration wherein the baffle is located near an end cap. There­
fore, the computational effort is kept at an affordable level. 
In the radial direction, the baffle extends from xr = 1 to xt 

= 4. 
Figure 1 shows the streamlines for the case of a linear tem­

perature profile along the outer wall with constant temperature 
on each end equal to the corresponding outer wall temperature. 
The streamlines clearly show the effects of the baffle; and, for 
this arrangement, the flow goes over the inner boundary of 
the baffle. The approximate width of the stream near the wall 
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Y/Y, 

x, SCALE HEIGHTS, X 
Fig. 1 Streamlines for linear wall temperature on a centrifuge with a 
baffle at the midplane. Uniform mass, 5 percent, is contained between 
each streamline. 

Y/Y, 

x, SCALE HEIGHTS, X 

Fig. 2 Streamlines for mass throughput in a centrifuge with a midplane 
baffle. Uniform mass, 5 percent, is contained between each streamline. 

is one scale height so the baffle does little to constrict the flow. 
Other calculations with the baffle located closer to the wall 
show that the stream can be essentially stopped. Also, for a 
baffle extending inward beyond xr = 4, the flow cannot go 
around the inner edge of the baffle. Figure 2 shows the stream­
lines for the flow induced by a four port mass drive. Mass is 
introduced at y = 0 between x = 7 and x = 8 and at y = y, 
between x = 1 and x = 2; mass is removed at y = 0 between 
x = 1 and x = 2 and at y = y, between x = 7 and x = 8. 

This calculation, without the baffle, was presented in Gunz-
burger and Wood (1982). Again, because the stream near the 
wall is about one scale height wide, the baffle does little to 
impede the flow. Also, the radial extent of the baffle is small 
enough so that the flow can go around the inner end of the 
baffle. Other calculations were performed in which the tem­
perature of the baffle was assumed to be different than that 
of the surrounding gas. It was found that these conditions 
drive very weak flows that decay almost totally before reaching 
the ends of the cylinder. 
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The Effect of Wall Compliance on the 
Behavior of a Confined Elastic Ring 

W. J. Bottega7 

1 Introduction 
The problem of a ring contained within a cavity or cylin­

drical structure is germane to a variety of applications, par­
ticularly to those concerned with protective linings for insula­
tion or environmental purposes. Most studies to date have 
considered the wall of the cavity as "rigid" and neglected the 
compliance of the substrate (see, for example, Hsu, Elkon, 
and Pian, 1964; McMinn and Chan, 1966; Bucciarelli and 
Pian, 1967; Herrmann and Zagustin, 1967; Chicurel, 1968; 
McGhie and Brush, 1971; El-Bayoumy, 1972; Lardner, 1980; 
Kyriakides and Youn, 1984; Bottega, 1988). 

In the present work we explore the effect of nonvanishing 
compliance of the cavity wall in the context of an elastic ring 
contained within a circular cavity and subject to a radially-
directed point load, with the wall of the cavity modeled as an 
elastic foundation. As for the corresponding problem involv-
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Y/Y, 
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Fig. 1 Streamlines for linear wall temperature on a centrifuge with a 
baffle at the midplane. Uniform mass, 5 percent, is contained between 
each streamline. 

Y/Y, 

x, SCALE HEIGHTS, X 

Fig. 2 Streamlines for mass throughput in a centrifuge with a midplane 
baffle. Uniform mass, 5 percent, is contained between each streamline. 

is one scale height so the baffle does little to constrict the flow. 
Other calculations with the baffle located closer to the wall 
show that the stream can be essentially stopped. Also, for a 
baffle extending inward beyond xr = 4, the flow cannot go 
around the inner edge of the baffle. Figure 2 shows the stream­
lines for the flow induced by a four port mass drive. Mass is 
introduced at y = 0 between x = 7 and x = 8 and at y = y, 
between x = 1 and x = 2; mass is removed at y = 0 between 
x = 1 and x = 2 and at y = y, between x = 7 and x = 8. 

This calculation, without the baffle, was presented in Gunz-
burger and Wood (1982). Again, because the stream near the 
wall is about one scale height wide, the baffle does little to 
impede the flow. Also, the radial extent of the baffle is small 
enough so that the flow can go around the inner end of the 
baffle. Other calculations were performed in which the tem­
perature of the baffle was assumed to be different than that 
of the surrounding gas. It was found that these conditions 
drive very weak flows that decay almost totally before reaching 
the ends of the cylinder. 
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The Effect of Wall Compliance on the 
Behavior of a Confined Elastic Ring 

W. J. Bottega7 

1 Introduction 
The problem of a ring contained within a cavity or cylin­

drical structure is germane to a variety of applications, par­
ticularly to those concerned with protective linings for insula­
tion or environmental purposes. Most studies to date have 
considered the wall of the cavity as "rigid" and neglected the 
compliance of the substrate (see, for example, Hsu, Elkon, 
and Pian, 1964; McMinn and Chan, 1966; Bucciarelli and 
Pian, 1967; Herrmann and Zagustin, 1967; Chicurel, 1968; 
McGhie and Brush, 1971; El-Bayoumy, 1972; Lardner, 1980; 
Kyriakides and Youn, 1984; Bottega, 1988). 

In the present work we explore the effect of nonvanishing 
compliance of the cavity wall in the context of an elastic ring 
contained within a circular cavity and subject to a radially-
directed point load, with the wall of the cavity modeled as an 
elastic foundation. As for the corresponding problem involv-
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Fig. 1 Confined elastic ring subjected to a point load 

ing a rigid substrate (Bottega, 1988), the present problem is 
approached as a moving intermediate boundary value problem 
in the calculus of variations with the boundary separating the 
portion of the ring lifted away from the cavity wall from its 
counterpart in contact with the "substrate" being sought as 
part of the solution. As in the aforementioned reference, the 
arch equations of El-Bayoumy (1972) are employed as the 
mathematical model for the ring, and the theorem of sta­
tionary potential energy is applied with the resulting transver-
sality condition yielding the condition which defines the in­
termediate boundary. A closed-form analytical solution is ob­
tained and numerical solutions are performed for several 
cases, in order to assess the influence of compliance of the 
cavity wall on the behavior of the confined ring. 

2 Problem Formulation and Analytical Solution 
Consider a thin elastic ring confined within the smooth wall 

of a cavity contained within a compliant substrate, such that 
the radius of the undeformed cavity coincides with the radius 
of the undeformed ring, and the ring is subjected to a radially-
directed point load (Fig. 1). Let Q0 = Q0R

2/D correspond to 
the normalized counterpart of the magnitude of the applied 
load Q0, where R and D represent the radius of the unde­
formed cavity and the bending stiffness of the ring, respective­
ly. As in (Bottega, 1988), the ring shall be modeled using an 
arch-type theory (El-Bayoumy, 1972), and thus each point on 
the ring centerline may be defined by its corresponding 
angular coordinate in the undeformed configuration. Parallel­
ing the aforementioned reference, the ring may be partitioned 
into two regions corresponding to a "lift zone" 3D, defined on 
[0, </>] and a "contact zone" 332 defined on [</>, ir], where the 
angular coordinate 0 is measured clockwise from the line of 
action of the applied load. Only half of the ring is considered 
due to the symmetry of the problem. The compliance of the 
substrate shall be incorporated by introducing a "smooth 
elastic foundation" around the perifery of the cavity. In what 
follows, all lengths are normalized with respect to the initial 
radius of the cavity. 

We begin by defining the strain energy of the substrate, Us, 
as 

Us 2 Ja (1) 

where K=E*C/h^-\ corresponds to the normalized radial 
stiffness of the substrate, E* represents the ratio of the 
"equivalent" modulus of the substrate to the elastic modulus 
of the ring, C= \2/h2 represents the normalized membrane 
stiffness of the ring, and h<K 1 corresponds to the normalized 
thickness of the ring. The quantity w,(0), i= 1, 2 corresponds 

to the radial component (positive inward) of the deflection of 
a point on the ring's centerline. 

Incorporating the functional Us into the energy functional 
II defined in (Bottega, 1988), deleting the corresponding con­
straint functional A, and paralleling the development therein 
leads to the moving intermediate boundary value problem 
defined by 

w," + (N0 + 2)w," + (1 +Kin)w, = -N0, 0€£>,. (/= 1,2) 

where 

*0) = 0, K(2)=K> 

(2a,*) 

(3a,b) 

N0 corresponds to the normalized (compressive) membrane 
force for the ring (found to be uniform on [0, ir]), and 
superimposed primes denote differentiation with respect to 8. 

The corresponding boundary and matching conditions for 
Wj are found to be 

w, "(0) + (N0 + l)w, '(0) = Q0. Wi '(0) = 0, (4a,b) 

w, (</>) = w2 (0) , w, ' (</>) = w2' (<£), (5a,b) 

Wj " (4>) + w, (4>) = w2" (<£) + w2 (<(>), (5c) 

w,'" (4>) + (N0 + l )w, ' (<t>) = w2'" (</>) + (No + l)w2 ' (<£), (Sd) 

w2'" W + (N0 + l)w2'(ir)=0, W2'(T)=0, (6a,b) 

with the associated "integrability" and transversality condi­
tions given, respectively, by 

Jo (»i-±"i'2)*+\l(»*-±»2'2)<» = *No'C. (7) 

w(0)=O. (8) 

The system (2) together with the conditions (4)-(8) con­
stitute a moving intermediate boundary value problem for the 
deflections w, (6) and w2(6), the resultant membrane force 
N0, and the interface angle 0. Solving the aforementioned 
system, while neglecting the nonlinear terms associated with 
the ring's deformation on [0, IT], we obtain the solution for 
K^z> 1 given by 

w, (6) -A0(cx,(j),Q0,K) cosad-B0(a,<j),Q0,K) cosd/a 

+ Q0F(a,d)-N0, BtDi (9) 

and 

w2(6) 
N0 f G2(p,6) 

O f 
_ ^ o r 

K L 
- 1 + [Qo&i («.*.*) 

+ NQb2(a,4>,K)]^P-, 0€2D2 (10) 

where 

a2=—[N0 + 2 + y/N0(N0 + 4)]>l or N0 = (a2 - l)2/a2, 

(Ua,b) 

P2=K,/2/2, (12) 

F(a, 0) = (a 2 s in0 /a - s ina0)a / (a 4 - 1), (13) 

ZU3,e) = Gl(f3,e)-G2W,8)GlW/G2«>\ (14) 

G^,6) = e-^cosjSfl- e-'3<2'r-9>[/1(|87r)cos/30 + sin2/37rsin/30], 

(15) 
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Fig. 2 Applied load versus crown point deflection; (a) 
K/C = 10 - f , (c) K/C = 1, (d) K/C = 103, (C = 4 x 106) 

K/C = 10 " 2 , (b) 

G2(/J,0) = e-^hmfid + e-W*-6)\f2(Pir)cosPd + cos2/3Trsm/5B], 

Fig. 3 A| 
K/C = 10 
(C 4x106) 

polled load versus lift zone/contact zone interface angle; (a) 
z, (b) K/C = 10~1, (c) K/C = 1, (d) K/C = 103, (e) K/C = 106, 

(16) 

and K(a,0) = cosa0-
coscw^ 

cos<£/a 
-cos0/a. (18) 

for all functions of the form 3(6). 

In addition, 

Aa(a,(j),Qo,K) = Q0ix.i +N0p2, 

B0(cx^,Qo,K) = [Q0^°-> 

+ (6oMi + N0ii2)cosa<j> - N0]/cos<j>/a, 

^, , wm tan<A/a ,,.. 

61(a,<M0=i*1)+/*°> — - + M,0 1 ) , 

b2(a,<t>,K) = p2VW-

1 

tan^/a 1 G2
(1) 

,*,=,*,(«,*,*) = — [[i*»+^°> 

a A- G2<°> * 

tan^/a 

(17«) 

(176) 

(17c) 

(17d) 

a 

z ( 2 ) _ ^ i n a 0 z ( 1 ) | 

a 3 ' 

H2 = H2(a,<t>,K) = -T\J-
1 G2<

2> _ ^ 

AT G2<°> + a2 Z<» 

rtan<ft/a 1 G2
(1> 

]z<2>}, 
L a K G2<°> 

^* = ix*(a,<j>,K)= V<2>Z<» - J ^ Z ® , 

/1(/37r) = 2cos2/3ir+l. 

/2((37r) = cos3/3Tr/sin/3Tr, 

(17e) 

(17./) 

(17g) 

(17/!) 

(170 

and 

The aforesaid solution had been obtained using the condition 
(8) in lieu of (5d), along with conditions (4a,b), (5a,b,c) and 
(6a,b). Substitution of (18) into the remaining conditions (5rf) 
and (7) results in a pair of coupled nonlinear algebraic equa­
tions in the parameters a (or equivalently N0), <l>, and Q0 

which may be solved to yield values corresponding to 
equilibrium states of the system for given K (or equivalently |S) 
and C. Numerical simulations corresponding to specific ring-
substrate systems will be presented in the next section. 

3 Numerical Results and Discussion 
As discussed in Section 2, the coupled algebraic equations 

resulting from (5rf) and (7) may be solved simultanenously to 
yield values of a, </>, and QQ which correspond to states of 
equilibrium of the ring-substrate system for given values of K 
and C. The "crown point" deflection A0 = w(0), associated 
with each equilibrium state may then be obtained by 
evaluating (9) at 6 = 0, thus generating the corresponding im­
age of each "equilibrium path" in the space of the applied 
load and the crown point deflection. This is done numerically 
in a manner similar to that done by Bottega (1988). Results are 
displayed in Figs. 2 and 3, for a ring with normalized mem­
brane stiffness C = 4 x 10s, for various values of the normal­
ized substrate stiffness K ranging from C x l O ~ 2 t o C x l 0 6 . 

Upon inspection of each of the load-deflection and 
load-"interface angle" curves displayed in Figs. 2 and 3, we 
note the existence of a "critical load," Qc, corresponding to 
the relative maximum of each curve, indicating the onset of 
"snap-thru" type buckling of the ring with the crown point 
deflection, A0, and associated interface angle, 4>, increasing to 
relatively large value in an unstable manner. We also note the 
existence of a minimum value of the interface angle <j>min below 
which no equilibrium states of the system exist. Both of these 
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characteristics were observed for the limiting case of a rigid 
substrate considered by Bottega (1988) and, as was pointed 
out therein, for related problems involving rigid cavity walls 
considered by Herrmann and Zagustin (1967), and McGhie 
and Brush (1971). 

It may be observed that the load-deflection curves flatten 
and Qc decreases with decreasing values of the substrate stiff­
ness K, and also that the unstable portion of each curve lies 
above those with higher K. This would seem to indicate that 
although buckling of the ring occurs at a lower load for a more 
compliant substrate, it appears to be accompanied by a less ex­
tensive "jump" in the deflection. This may be attributed to 
the smaller build up of strain energy preceding buckling for 
the more compliant system. We note here that, within the 
resolution of the figure, the curve corresponding to K/C= 103 

in Fig. 2 is effectively colinear with the analogous curve for the 
case of a rigid substrate (Bottega, 1988). Further insight into 
the "mechanisms" involved may be obtained upon considera­
tion of the load-interface angle curves displayed in Fig. 3. 

Let us first separate the systems considered into two 
categories, the first such that K> C the substrates of which 
shall be referred to as "stiff" substrates, and the second 
category such that K< C the substrates of which shall be said 
to be "compliant." One may first observe from Fig. 3 that the 
curves corresponding to the stiff substrates shift to the right as 
K increases with the curve corresponding to the stiffest 
substrate considered tending toward the corresponding curve 
associated with a rigid substrate (see Bottega, 1988). It may be 
next observed that as Q0 increases, and K>C, <j> initially 
decreases slightly (from a finite value as Q0 -»0 +) to </>min, then 
increases until Q0 = Qc at which point buckling occurs and </> 
increases in an unstable manner. This is analogous to what 
was seen to occur for the case of a rigid substrate and offers 
the interpretation that for a stiff substrate, the ring 
predominantly "shrinks" at the initial application of the load 
such that a finite value of </> (as Q0-~0 + ) is achieved. This is 
followed by 0 decreasing slightly with increasing Q0 due to the 
initial bending as a result of the stiff constraint. Further in­
creases in load are accompanied by increased flexure with the 
ring bending away from the substrate slightly (</> increasing) 
and ultimately buckling and its consequences as discussed 
earlier. The leftward tendency of the K>C curves with 
decreasing substrate stiffness would indicate that slightly more 
flexure is allowed by the more compliant of the stiff substrates 
during the "shrink dominated phase" of the ring's 
deformation. 

For the compliant substrates (K<Q we observe a shifting 
to the right, of the corresponding load-deflection and load-
interface angle curves, as K decreases. This phenomenon of­
fers the explanation that as the ring stiffness to substrate stiff­
ness ratio increases, the system (initially) tends toward the 
behavior of a rigid ring confined by a compliant substrate, 
where for a rigid ring <j> = ir/2 for all finite K. We also observe, 
for K<C, that #—<j>min as <20-*0+ and that the positive slopes 
of the corresponding Q0 - <f> curves decrease with increasing K, 
indicating that the ring bends aways from the substrate with 
increasing Q0, immediately following the initial shrink 
dominated phase and that this behavior is more pronounced as 
if decreases. 
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Approximations for Steady Waves in 
Viscoelastic Materials 

G. T. Warhola8 and A. C. Pipkin9 

Propagation of steady waves and shocks in viscoelastic 
materials has been reviewed by Nunziato et al. (1974). With 
appropriate interpretation of the particle velocity v, strain e, 
and stress a, a variety of different kinds of waves can be 
discussed in a common formalism. When each of these quan­
tities is a function of the one variable t— (x/U), where f/is the 
wave speed, integration of the strain-velocity compatibility 
condition and the momentum equation gives (Warhola and 
Pipkin (1988)) 

-Ue(t) = v(t),-Uv(t)=o-(t), (1) 

where we have now set x = 0. The variables e, v, and a are re­
quired to vanish as f— — oo. The quantity a in (1) is now the 
stress divided by the constant mass density. 

Because of the small range of strains and times involved in 
laboratory measurements of steady waves in real viscoelastic 
materials (Nunziato et al., 1974; Schuler, 1970; Kolsky, 1969) 
such observations are explained very adequately by only a 
slight generalization of the linear viscoelastic constitutive 
equation (Pipkin, 1986), in which the strain is replaced by a 
nonlinear function of strain, 

f(e)=J'*a = J*a'. (2) 

The function/(e) is asymptotic to e when the strain is small. 
For the present discussion we suppose that /(e)/e is an in­
creasing function of e, and for illustrative purposes we use the 
form 

f(e)=e[l + (e/ec)
p](P>0). (3) 

The asterisk in (2) denotes convolution over the interval ( - oo, 
+ oo), and the derivatives J' and a' are treated as generalized 
functions. J(t) is the compliance multiplied by the mass densi­
ty. It is identically zero for /<0, with initial value 
J0 = 7(0 +) = 0. For t> 0, J is an increasing function of t, with 
J' decreasing. Experimentally determined compliances for 
some real materials are given in Ferry's book (Ferry, 1970). 
Such data are given graphically in plots of log J(t) versus 
log(0- At the short times involved in laboratory experiments 
(microseconds (Schuler, 1970) or milliseconds (Kolsky, 1969)), 
the slope p of such a log-log plot is still very small. Approx­
imating J by its tangent on such a plot leads to the power-law 
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characteristics were observed for the limiting case of a rigid 
substrate considered by Bottega (1988) and, as was pointed 
out therein, for related problems involving rigid cavity walls 
considered by Herrmann and Zagustin (1967), and McGhie 
and Brush (1971). 

It may be observed that the load-deflection curves flatten 
and Qc decreases with decreasing values of the substrate stiff­
ness K, and also that the unstable portion of each curve lies 
above those with higher K. This would seem to indicate that 
although buckling of the ring occurs at a lower load for a more 
compliant substrate, it appears to be accompanied by a less ex­
tensive "jump" in the deflection. This may be attributed to 
the smaller build up of strain energy preceding buckling for 
the more compliant system. We note here that, within the 
resolution of the figure, the curve corresponding to K/C= 103 

in Fig. 2 is effectively colinear with the analogous curve for the 
case of a rigid substrate (Bottega, 1988). Further insight into 
the "mechanisms" involved may be obtained upon considera­
tion of the load-interface angle curves displayed in Fig. 3. 

Let us first separate the systems considered into two 
categories, the first such that K> C the substrates of which 
shall be referred to as "stiff" substrates, and the second 
category such that K< C the substrates of which shall be said 
to be "compliant." One may first observe from Fig. 3 that the 
curves corresponding to the stiff substrates shift to the right as 
K increases with the curve corresponding to the stiffest 
substrate considered tending toward the corresponding curve 
associated with a rigid substrate (see Bottega, 1988). It may be 
next observed that as Q0 increases, and K>C, <j> initially 
decreases slightly (from a finite value as Q0 -»0 +) to </>min, then 
increases until Q0 = Qc at which point buckling occurs and </> 
increases in an unstable manner. This is analogous to what 
was seen to occur for the case of a rigid substrate and offers 
the interpretation that for a stiff substrate, the ring 
predominantly "shrinks" at the initial application of the load 
such that a finite value of </> (as Q0-~0 + ) is achieved. This is 
followed by 0 decreasing slightly with increasing Q0 due to the 
initial bending as a result of the stiff constraint. Further in­
creases in load are accompanied by increased flexure with the 
ring bending away from the substrate slightly (</> increasing) 
and ultimately buckling and its consequences as discussed 
earlier. The leftward tendency of the K>C curves with 
decreasing substrate stiffness would indicate that slightly more 
flexure is allowed by the more compliant of the stiff substrates 
during the "shrink dominated phase" of the ring's 
deformation. 

For the compliant substrates (K<Q we observe a shifting 
to the right, of the corresponding load-deflection and load-
interface angle curves, as K decreases. This phenomenon of­
fers the explanation that as the ring stiffness to substrate stiff­
ness ratio increases, the system (initially) tends toward the 
behavior of a rigid ring confined by a compliant substrate, 
where for a rigid ring <j> = ir/2 for all finite K. We also observe, 
for K<C, that #—<j>min as <20-*0+ and that the positive slopes 
of the corresponding Q0 - <f> curves decrease with increasing K, 
indicating that the ring bends aways from the substrate with 
increasing Q0, immediately following the initial shrink 
dominated phase and that this behavior is more pronounced as 
if decreases. 
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Viscoelastic Materials 

G. T. Warhola8 and A. C. Pipkin9 

Propagation of steady waves and shocks in viscoelastic 
materials has been reviewed by Nunziato et al. (1974). With 
appropriate interpretation of the particle velocity v, strain e, 
and stress a, a variety of different kinds of waves can be 
discussed in a common formalism. When each of these quan­
tities is a function of the one variable t— (x/U), where f/is the 
wave speed, integration of the strain-velocity compatibility 
condition and the momentum equation gives (Warhola and 
Pipkin (1988)) 

-Ue(t) = v(t),-Uv(t)=o-(t), (1) 

where we have now set x = 0. The variables e, v, and a are re­
quired to vanish as f— — oo. The quantity a in (1) is now the 
stress divided by the constant mass density. 

Because of the small range of strains and times involved in 
laboratory measurements of steady waves in real viscoelastic 
materials (Nunziato et al., 1974; Schuler, 1970; Kolsky, 1969) 
such observations are explained very adequately by only a 
slight generalization of the linear viscoelastic constitutive 
equation (Pipkin, 1986), in which the strain is replaced by a 
nonlinear function of strain, 

f(e)=J'*a = J*a'. (2) 

The function/(e) is asymptotic to e when the strain is small. 
For the present discussion we suppose that /(e)/e is an in­
creasing function of e, and for illustrative purposes we use the 
form 

f(e)=e[l + (e/ec)
p](P>0). (3) 

The asterisk in (2) denotes convolution over the interval ( - oo, 
+ oo), and the derivatives J' and a' are treated as generalized 
functions. J(t) is the compliance multiplied by the mass densi­
ty. It is identically zero for /<0, with initial value 
J0 = 7(0 +) = 0. For t> 0, J is an increasing function of t, with 
J' decreasing. Experimentally determined compliances for 
some real materials are given in Ferry's book (Ferry, 1970). 
Such data are given graphically in plots of log J(t) versus 
log(0- At the short times involved in laboratory experiments 
(microseconds (Schuler, 1970) or milliseconds (Kolsky, 1969)), 
the slope p of such a log-log plot is still very small. Approx­
imating J by its tangent on such a plot leads to the power-law 
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form Ct" (Pipkin, 1986). For illustrative purposes we use the 
more general form 

J(t)=J0 + J,(t/try ( 0 < p < l ) . (4) 

Combining (1) and (2) gives an integral equation for e(t), 

f(e) = U2J'*e. (5) 

Note from (1) that v(t), which is more likely to be the ob­
served quantity, is proportional to e(t). Warhola (1988) has 
devised a numerical algorithm for the solution of (5), which is 
capable of being used with functions/(e) and J( t) given in the 
form of data. Existence, uniqueness, and monotonicity of 
solutions are discussed elsewhere (Warhola and Pipkin, 1988, 
Warhola, 1988). Here we assess the accuracy of two kinds of 
approximate solutions of (5) by using the forms (3) and (4). 

When U> U0, where U0 is the instantaneous wave speed 
defined by U$J0 = 1, the strain is zero until some time f = 0, 
say, at which it jumps discontinuously to a value e0. For / > 0 , 
e(t) increases continuously (Warhola and Pipkin, 1988). Let 
eq(t) be the intersection of the Rayleigh line a= Ifie with the 
stress-strain isochrone/(e) = J(t)a. This quasi-elastic approx­
imation is given by 

f(eq)/eq = U2J(t). (6) 

The quasi-elastic approximation furnishes a rigorous upper 
bound on the exact solution, and in cases of the type that are 
of main physical interest, the error in eq(t) is very small 
(Warhola and Pipkin, 1988). When/(e) has the form (3), (6) 
gives 

e f f ( 0 = e J £ A / ( 0 - l ] ' (7) 

When P = 1 (a quadratic nonlinearity in/ , ) the wave form has 
the same shape as </(/). Schuler's (1970) observed wave forms 
are like those given by using (7) with a power-law compliance 
(4) with small p (Warhola and Pipkin, 1988). 

The basis of the quasi-elastic approximation is that with 
J(T) defined by 

J'*e = J[T(t)]e(t), (8) 

T(t) must be approximately equal to t when the strain history 
is nearly a simple step at time zero. A closer approximation 
ea (t) can be obtained by using a more refined estimate of T, 
Since / (T) is the average value of J(s) with respect to the 
weight function e' (t—s)/e(t), we estimate T as the average 
value of s itself with respect to the same weight function. With 
an integration by parts, this leads to the prescription 

with 

t(t)T(t)=\' ea(s)ds 
J —00 

dt = dT+Tdea/ea, 

f(ea)/ea = lPJ(T). 

(9) 

(10) 

(11) 

Integration of (10) with appropriate initial conditions then 
gives t as a function of ea. This procedure gives the exact solu­
tion if J has the form (4) with p = 0 or p = 1. For real materials 
with J concave, ea lies between eq and the exact solution e if 
U>U0. 

To test the accuracy of eq and ea, in some cases in which the 
exact solution is known, we use the forms (3) and (4) in (5) to 
obtain 

e(l - IfJo) + e(e/ec)
p = U2J1(M,)"*e' . (12) 

For critical waves (Warhola and Pipkin, 1988) with lP-Ja = 1, 
the strain is zero for t^ 0 (say). For ?= 0, the quasi-elastic ap­
proximation is 
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1'p(t/trY, q=p/P. 

Both e{t) and ea(t) are proportional to eq(t): 

e(t)=Ki/pea(t)=Kl/p(l+q)"ea(t), 

where 

K=plq\/(p + q)\. 

(13) 

(14) 

(15) 

For P= 1, the factor K is unity at p = Q but 1/2 at p= 1, so 
eg(t) is accurate only at small/?. In contrast, the ratio e/ea is 
unity at both p = 0 and p= 1, and it is never less than about 
0.96 for p between these values. 

For subcritical (lPJ0 < 1) or supercritical (IPJQ > 1) waves, 
we use the scaling 

e = ec\l-U
2J0l

l/pu(r,),V = rt, 

where r is defined by 

{rtr)P = U1J,p\/\\-lJiJ<)\. 

This brings (12) into the form 

±u + up+l=Q*u', 

(16) 

(17) 

(18) 

with the upper sign for subcritical waves and the lower sign for 
supercritical waves. <2(rj) is defined as tf /p\. To test the ap­
proximation ea(t) in a subcritical case, let A{r)) be the cor­
respondingly scaled version of ea{t), and let T be the scaled 
version of T. Then, in place of (10) and (11) we have 

dr, = dT + rdA/A,Ap = Q(T)-l. (19) 

The integration can be carried out in finite form if p=l/N 
with N an integer. To lighten the notation, let us take P= 1. 
Then integration gives 

N / \ 1 
r,/ {p\)N = {A + l)N + X) ( « 0 A" + InA. (20) 

This is the exact solution when N=\(p=\). For 
N=20(p = 0.05), the exact and approximate solutions are 
compared in Fig. 1. The exact solution was obtained by 
numerical computation (Warhola, 1988). 
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Interference of a Uniform Open Ring With a 
Rigid Cylinder 

W. W. King10 

Introduction 

A common connector for fiber-optic communciation 
systems has the ends of fibers embedded in otherwise solid 
cylindrical plugs. The plugs, and hence the fibers, are aligned 
by inserting then into a split sleeve which expands to accom­
modate the plugs. The mechanical designer would like to 
know, for various combinations of diameters of plugs and in­
side diameter of sleeve, the extent of contact and the distribu­
tion of contact pressure between plugs and sleeve, as well as 
the stresses in the sleeve. This problem is formidable for other 
than numerical analysis. However, some guidance may be ex­
pected from solution of the plane-strain problem of 
longitudinally independent interference of a plug and sleeve or 
from the related strength-of-materials problem of interference 
between a rigid plug and a thin-wall open ring. 

The desire to maximize plug-sleeve contact has motivated 
J. M. Anderson of AT&T Bell Laboratories to design an align­
ment sleeve of circumferentially varying thickness (Hogan, 
1985). This is suggested by the piston-ring problem discussed 
by Timoshenko (1955) in which an appropriate nonuniformity 
of thickness yields circle-to-circle deformation of a thin ring 
under the action of uniform pressure; that is, complete contact 
is achieved between the ring and interfering rigid cylinder, and 
the interface pressure is uniform. More commonly, alignment 
sleeves of uniform thickness are employed, but, surprisingly, 
the writer has been unable to find in the literature an analytical 
solution to the corresponding ring-plug problem. Thus, the 
purpose of this note is communication of a solution to the 
problem of interference between a rigid cylinder and an 
elastic, thin, open ring of uniform thickness. 

Analysis 
Assuming frictionless contact between rigid cylinder and 

thin elastic ring, only radial loading on the ring need be con­
sidered. For this case the governing equations are taken to be 
effectively those of Fettahlioglu and Mayers (1977). 

dQ 
N-

de 
-Rp 

dN 

dd 

dM 

dd 

+ Q = 0 

+ RQ = 0 

N 
R V dO / 

(1) 

(2) 

(3) 

(4) 

M= 
EI / cPu 

R2 dd2 

dv 

~dJ )• 
(5) 

The first three of these express balances of forces and of 
moments. (See Fig. 2 for definitions of the stress resultants.) 
Equations (4) and (5) are constitutive relations in which u and 
v are the radial and transverse components of displacement. 
E,A,I, and R are Young's modulus, cross-sectional area, area 
moment of inertia, and radius, respectively. 

If the ring is taken to be of rectangular cross-section and of 
unit length and if Eis replaced by E/(\ - v2), v being Poisson's 
ratio, then equations (l)-(5) govern the behavior of a thin 
cylindrical shell in plane strain (see Timoshenko and 
Woinowsky-Krieger (1959) or Kraus (1967)). 

Elimination of N, Q, and M from equations (l)-(5) yields 
the pair of differential equations in u and v deduced by 
Fettahlioglu and Mayers (1977) by use of Hamilton's Princi­
ple. It would be entirely appropriate to follow their lead and 
generate a general solution to these equations in each of the 
regions of contact and noncontact and ultimately proceed to a 
solution of the present problem. However, some special 
features of the problem allow a less formal approach to be 
more efficient. 

Figure 1 depicts the ring with the opening angle 20 and the 
interfering cylinder. Because of symmetry, only the range 
0<6<ir — /3 need be considered. Continuous contact is im­
possible in the neighborhood of an end, 0 = 0, of the ring; this 
is because continuous contact must be associated with a 
bending moment which is constant, as will be seen shortly. 
The unknown angle </> identifies the region over which the ring 
and cylinder are not in contact. We assume continuous contact 
for 0>4>. 

The free-body diagram (Fig. 2), which shows the concen­
trated contact force, F, at 8 = 0, allows us to conclude from a 
balance of moments that M= RN everywhere. The same result 
could equivalently be deduced by eliminating Q from equa­
tions (2) and (3), integrating, and then using the fact that 
N=M=0 at 0 = 0. Combining the constitutive relations with 
this result, 

\ cP-u 1 dv M 

R2 

1 
R2 

cPu 

dd2 

cPu 
dd2 

- +u 

R2 dd EI 

R2 V 

MR2 

dd2 EI 

RN 

~EA 

1 + J-) 
AR2) 

M 

~EI 

(6) 

Now let 8 be the radial interference, i.e., the difference be­
tween the radius of the rigid cylinder and the (inner) radius of 
the undeformed ring. Then in the region of continuous con­
tact, &>4>, we specify u = 5 and the bending moment is then, 
by equation (6), the constant 

»-(-£•)/('• ;sr)-
From Fig. 2 we can see that 

M0=FR sin <j>. 

In the region of noncontact, 6<4>, 

M=FR sin 0 

(8) 

(9) 

M= 
M0 sin 0 

sin 0 
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d1u 5 sin 6 

dd2 " ~ sin</> 
(10) 
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systems has the ends of fibers embedded in otherwise solid 
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from the related strength-of-materials problem of interference 
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The desire to maximize plug-sleeve contact has motivated 
J. M. Anderson of AT&T Bell Laboratories to design an align­
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of thickness yields circle-to-circle deformation of a thin ring 
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purpose of this note is communication of a solution to the 
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elastic, thin, open ring of uniform thickness. 
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thin elastic ring, only radial loading on the ring need be con­
sidered. For this case the governing equations are taken to be 
effectively those of Fettahlioglu and Mayers (1977). 
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is because continuous contact must be associated with a 
bending moment which is constant, as will be seen shortly. 
The unknown angle </> identifies the region over which the ring 
and cylinder are not in contact. We assume continuous contact 
for 0>4>. 

The free-body diagram (Fig. 2), which shows the concen­
trated contact force, F, at 8 = 0, allows us to conclude from a 
balance of moments that M= RN everywhere. The same result 
could equivalently be deduced by eliminating Q from equa­
tions (2) and (3), integrating, and then using the fact that 
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Fig. 1 Interfering ring and cylinder 

Fig. 2 Free-body diagram 

The general solution is 

8 0 cos 0 
+ B cos 0 + Csin 0. (11) 

2 cos <j> 

The constants B, C, and <j> are determined from the conditions 

«(0) = 5 

«(*) = « 

tf0 
(* )= 0. 

Applying these in (11), there results the following transcenden­
tal equation establishing the extent of contact, 

4> + (cos <t> - 2) sin </> = 0. (12) 

The only positive root of (12) is, to four significant figures, 
2.139 radians (122.6 deg). This is the angle of noncontact on 
one side of the ring provided, of course, that the opening angle 
/3 is less than 180 d e g - 122.6 deg = 57.4 deg. 

It should be noted that it has not been necessary to resort to 
the assumption of inextensibility, so common in the analysis 
of ring problems. On the other hand, the response of the ring 
in this problem is for all practical purposes inextensible; in the 
foregoing, wherever the term (l+I/AR2) has been en­
countered, unity would have appeared had we made the a 
priori assumption of inextensibility. For a ring of rectangular 
cross-section and thickness h, 

I 1 h2 

AR2 12 R2 

and the neglect of such terms is already embedded in the 
governing equations. So for the remainder of this paper 
I/AR2 is neglected in comparison to unity. 

Returning to stress resultants and external forces, from (7) 
and (8) the concentrated force at 8 = 0 is 

Eld EI8 
F= -zr-. = 1-19 — r r - . (13) 

R1 s in <t> R3 

In the region of continuous contact, the stress resultants have 
the constant values 

F = 1.19 E I S 
R3 

Fig. 3 External forces on ring (0<57.4 deg) 

'P \ E IS 
1 / R3 V ir-/? + 3in p coup . 

Fig. 4 External forces on ring (/3>57.4 deg) 

M=FR sin <j> = 0.842 FR 

N=0.842F 

Q = 0. 

And thus the distributed contact force is 

p = 0.842 F/R. 

From the free-body diagram, Fig. 2, Q= — Fcos (j> = 0.539F 
at 6 = <f> ~ , and Q = 0atd = (t>+. Thus, the plug must exert there 
a radially outward concentrated force of 0.539F. Figure 3 
summarizes the forces exerted by the rigid plug on the ring. 

When the opening half-angle |3 exceeds 57.4 deg there is no 
region of contirious contact; rather, there is contact only at 
6 = 0 and 0 = 7r — (3 (within the half ring considered because of 
symmetry). Combining, for this case, 

cPu MR2 

+ u= —^r— (6) 

and 

then 

dd2 

M=FR sin 6, 
FR3 

u= ——— e co 1EI 

EI 

6 cos d + B cos 0 + Csin 0. 

(9) 

Letting y = ir — (3 for compactness, the boundary conditions 
are 

u = 8 at 0 = 0, 

du 
u = 8 and 

dd 
= 0 at 0 = 7. 

Applying these, there results 

FR3 ( 1 - C O S Y ) 5 

2EI y - sinY COSY 

Forces on the ring for this case are shown in Fig. 4. 

(14) 

Conclusions 
Currently, prevalent alignment sleeves have narrow slits. 

For the corresponding ring problem, forces of interaction bet-
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ween a thin elastic ring and a rigid cylinder are summarized in 
Fig. 3. The interaction is quite nonuniform—two pairs of con­
centrated forces and a region of uniform pressure. Neither 
these forces nor the magnitude of the pressure depend upon 
the ring-opening angle 2(3. The extent of contact depends upon 
this angle by virtue of the fact that the zone of no contact is in­
dependent of the angle. 

While actual concentrated forces are in conflict with results 
from elasticity theory (Dundurs and Comninou, 1979), such 
forces arise here because of the rigidity of the plug and the 
structural mechanics theory used to characterize behavior of 
the ring (see Timoshenko (1955), for example, for similar 
situations arising out of beam theory). 

The case of j3>57.4 deg (Fig. 4), for which there is only 
three-point contact, is probably of lesser importance as a 
mechanical device, but it is interesting to observe that the three 
forces are equal when /3 = 60 deg. 

Real finite-length alignment sleeves will necessarily conform 
to plugs in ways that vary longitudinally in accordance with 
both sleeve and plug geometries. However, the present 
analytical solution can, at least, provide a benchmark for 
numerical analyses designed for the more practical problem. 
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Shear Stress Concentration Between Holes 

Paul S. Steif11 

Introduction 
The longitudinal shear strength of unidirectionally rein­

forced fiber composites is occasionally found to be rather low. 
High concentrations of stress between nearly contacting fibers 
has been one suggested explanation. The problem of a large 
body containing two fibers which is subjected to longitudinal 
shear was studied by Goree and Wilson (1967), who obtained 
numerical results for the stresses at the fiber-matrix interface. 
They found that the stress became large as the fibers ap­
proached one another. Recently, this problem has been 
revisited by Budiansky and Carrier (1984); they used complex 
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function theory to show explicitly that the stress becomes un­
bounded as rigid fibers come together. 

For many composite systems, however, the fiber and matrix 
are not well bonded. As can be expected, and as shown ex­
plicitly by Steif and Dollar (1988), such a composite responds 
as if it had holes instead of fibers when the remote shearing 
becomes large compared with the interfacial shear resistance. 
Accordingly, this note is devoted to computing the average 
stress concentration between two holes in an infinite matrix 
subjected to antiplane shearing. This is done by rigorously 
proving an analogy between the solutions to problems involv­
ing rigid inclusions and those involving holes. Then, the 
average stress concentration between the holes can be found 
purely by analogy with Budiansky and Carrier's (1984) explicit 
result for the average stress between rigid inclusions. The 
stress concentration right at the hole is also considered, and it 
is compared with the analogous plane-strain problem that was 
solved by Savin (1961). 

Analysis and Results 
The problem considered here is shown schematically in Fig. 

1. Two holes of the same radius (taken to be unity) are situated 
a distance 2e apart in an infinite, homogeneous, linear elastic, 
isotropic body subjected to remote antiplane shearing ayz = T0 . 
We are interested in the distribution of stress in the body. It is 
useful to employ the complex variable representation which 
features the stress potential co(Z) (analytic in the domain in 
which the equations of elasticity are satisfied) which is defined 
by 

w = <j> + iGw (1) 

where Z = x+iy, G is the elastic shear modulus, w is the out-
of-plane displacement, and </> is the Prandtl stress function 
often used in torsion problems. The nonzero stresses are de­
rived from </> according to 

d<j> d</> 

dy n dx 
and, hence, can be computed from w by 

">' =Oyz + Wxz ( 2 ) 

where ( ) ' denotes complex differentiation with respect to Z. 
The result of interest here is derived by exploiting an 

analogy with the problem featuring an infinite body, subjected 
to a remote stress axz = T0 , which has rigid inclusions instead 
of holes. One might surmise such an analogy from the results 
of Goree and Wilson (1967), who found the stress component 
aBz at the hole to be identical to the component apz at the rigid 
inclusion, where p and 6 refer to a polar coordinate system 
with origin coincident with the center of the hole (inclusion). 
In fact, as we now demonstrate, there is a very general analogy 
between the solutions to problems involving rigid inclusions 
and the solutions to problems involving holes. The proof for 
this analogy now follows. 
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Fig. 1 Schematic of a solid with two holes 
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function theory to show explicitly that the stress becomes un­
bounded as rigid fibers come together. 

For many composite systems, however, the fiber and matrix 
are not well bonded. As can be expected, and as shown ex­
plicitly by Steif and Dollar (1988), such a composite responds 
as if it had holes instead of fibers when the remote shearing 
becomes large compared with the interfacial shear resistance. 
Accordingly, this note is devoted to computing the average 
stress concentration between two holes in an infinite matrix 
subjected to antiplane shearing. This is done by rigorously 
proving an analogy between the solutions to problems involv­
ing rigid inclusions and those involving holes. Then, the 
average stress concentration between the holes can be found 
purely by analogy with Budiansky and Carrier's (1984) explicit 
result for the average stress between rigid inclusions. The 
stress concentration right at the hole is also considered, and it 
is compared with the analogous plane-strain problem that was 
solved by Savin (1961). 
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The problem considered here is shown schematically in Fig. 

1. Two holes of the same radius (taken to be unity) are situated 
a distance 2e apart in an infinite, homogeneous, linear elastic, 
isotropic body subjected to remote antiplane shearing ayz = T0 . 
We are interested in the distribution of stress in the body. It is 
useful to employ the complex variable representation which 
features the stress potential co(Z) (analytic in the domain in 
which the equations of elasticity are satisfied) which is defined 
by 

w = <j> + iGw (1) 

where Z = x+iy, G is the elastic shear modulus, w is the out-
of-plane displacement, and </> is the Prandtl stress function 
often used in torsion problems. The nonzero stresses are de­
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d<j> d</> 

dy n dx 
and, hence, can be computed from w by 

">' =Oyz + Wxz ( 2 ) 

where ( ) ' denotes complex differentiation with respect to Z. 
The result of interest here is derived by exploiting an 

analogy with the problem featuring an infinite body, subjected 
to a remote stress axz = T0 , which has rigid inclusions instead 
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Fig. 1 Schematic of a solid with two holes 
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Let uH(Z) denote the stress function which is the solution 
to the general antiplane problem of an infinite solid that is 
subjected to remotely applied stresses ayz = T0, axz = 0 contain­
ing any finite number of traction-free holes. Note that wH(Z) 
is analytic in the multiply connected region (outside the holes). 
The remote stress implies that co//(Z) — r0Z as IZI —op. One 
only needs to specify the values of the real or imaginary parts 
of cOff(Z) on the holes to determine coH(Z) throughout the 
multiply-connected region (except for an arbitrary constant). 
The traction on the hole can be expressed in the form 

r dwH "i 
Tz = oxznx + ayzny = - Re [—^-J (3) 

where s denotes arc length along each of the holes, and Re [ ] 
denotes the real part of the enclosed quantity. Hence, the 
holes will be free of traction provided 

Re L ds J 
= 0 (4) 

at each point of each hole. Clearly, we must also insist that 
oiH(Z) is single valued. 

Now contemplate an infinite solid subjected to the remote 
stress state axz = T0 , ayz = 0 that has rigid inclusions wherever 
the solid considered above had holes. Let wR(Z), which is 
analytic in the region exterior to the rigid inclusions, be the 
solution to this problem. The correct remote stress is obtained 
if coR (Z) — ir0Z as IZI — oo. As the rigid inclusion is approach­
ed from the matrix, the displacement w—and, of course, its 
tangential derivative dw/ds—must vanish. From (1), the 
boundary condition for o>R (Z) is 

Im 
dwR 

ds 
= 0 (5) 

as each inclusion is approached from the matrix. (Im[ ] 
denotes the imaginary part.) 

From these equations it can be readily seen that 
oiR (Z) =ioiH(Z) for all Z in the matrix (actually, they differ 
by at most a constant) no matter what the number, position, 
and shape of the holes; therefore, from (2), the stresses in the 
two problems are related according to 

{ayz + ia^ xz > Rigid Inclusions = ( - f f « + ^yz) yz' Holes • (6) 

Given the result of Budiansky and Carrier (1984) for the 
average stress concentration between two rigid inclusions, one 
can immediately write down the stress concentration we seek 
here. Consider the quantity T, which is the average stress ayz 
between the holes; i.e., 

= irLff> dx. 

This must be equal to the average value of axz between rigid in­
clusions; therefore, 

T=r, 
2 + e 

(7) 

As an alternative means of derivation, one can use an 
analysis quite similar to Budiansky and Carrier (1984) to ob­
tain a solution for the entire plane. The solution involves the 
transformation 

Z-a , 
f=——- a = Vi(2T7) 

Z + a 
which maps the region under consideration into the interior of 
the annulus p< If I < 1/p where 

a-e 

a + e 
The end result is that w//(f) is given by 

Fig. 2 Maximum shear stress at hole relative to the average ligament 
shear stress 

"//(f) - [ • 
fld+n + 2a 

P2"(f"-l/fn) 
(8) 

1 - f • - - , 1 - P 2 " 

It is interesting to consider the stress concentration right at 
the holes, since it is there that one surmises the stresses to be 
highest. (Note that Goree and Wilson have calculated the 
stresses at the holes.) In fact, one can use the properties of har­
monic functions to show that this is the case. Note that the 
stresses axz and ayz are the real and imaginary parts of the 
analytic function co^(Z); therefore, they are both harmonic in 
the entire plane outside the two holes. Harmonic functions 
always take on their maximum and minimum values on the 
boundary of the region in which they are defined. Hence, the 
maximum and minimum values of axz and ayz must be found 
either at infinity or right at the holes. 

In particular, consider the stress 
calculated from 

at x = e; it may be 

Oyz(e,Q) = T0 .-•Si* £.(-.)« 
p" + — 

P" 

—P"J 

(9) 

which we have evaluated numerically. The stress concentra­
tion right at the hole relative to the average stress between the 
holes is shown in Fig. 2, where we have plotted ayz (e,G)/T\ev-
sus e. As the holes become close together, the stress between 
them becomes uniform. From the distributions of stress found 
by Goree and Wilson, it may be seen that the maximum stress 
around the hole is at the point x = e that we have just con­
sidered. Thus, from the fact that the maximum must be found 
on the hole (the stress at x— e is higher than the stress at infini­
ty) and from the stress distributions given by Goree and 
Wilson, it is extremely likely that the absolute maximum is at 
x = e, although we could not prove this from (8) directly. 

Finally, a comparison is made with the analogous plane-
strain problem solved by Savin (1961). For e = 0.5, Savin finds 
the stress concentration at x = e to be 3.264 in plane strain, 
while we find the stress concentration in antiplane strain to be 
2.594. (As far as can be seen from Fig. 2 in Goree and Wilson, 
this agrees with their result.) Recall, however, that the stress 
concentration associated with an isolated hole is 3.0 in plane 
strain and 2.0 in antiplane shear. Hence, the relative effect of 
a nearby hole is greater for antiplane shear than for plane 
strain. 
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A Note on the Efficiency of the Boundary 
Element Method for Inelastic Axisymmetric 
Problems With Large Strains 

H. Rajiyah12 and S. Mukherjee13 

1 Introduction 

A comparative study of inelastic axisymmetric problems in 
the presence of large strains by the boundary element method 
(BEM) and the finite element method (FEM) is presented here. 
The FEM (for example, Hibbitt, Marcal, and Rice (1970) and 
Yamada and Hirakawa (1978)) has been the most popular 
method of choice for the analysis of these complex class of 
problems that include both geometric and material 
nonlinearities. The work done in this area using the FEM is 
reasonably well understood at present. The FEM formulation 
presented in this paper is based on a Galerkin-type weighted 
residual approach. 

As for the BEM, Chandra and Mukherjee (1983) and 
Okada, Rajiyah, and Atluri (1988) have proposed BEM for­
mulations for material as well as geometrically nonlinear 
problems. As noted by Sarihan and Mukherjee (1982) among 
others, the modeling of axisymmetric problems by the BEM is 
far more challenging than its planar counterpart. Recently, 
Rajiyah and Mukherjee (1987) have competed a BEM study of 
inelastic axisymmetric problems with large strains and rota­
tions. This has been the first attempt of its kind to study such a 
class of problems by the BEM. An updated Lagrangian ap­
proach is adopted for both the BEM and FEM approaches. 

2 Constitutive Assumptions 
The key assumptions used in both the FEM and BEM for­

mulations are presented as follows: The rate of deformation 
tensor can be linearly decomposed into an elastic or a 
nonelastic part 

dy = df+df. (1) 

A hypoelastic material law relates df> to an objective stress 
rate 

crfj = \dn8ij + 2Gdl
1f (2) 

where CT,* is the Jaumann rate of the Cauchy stress and X and G 
are Lame constants. The Jaumann rate is related to the 
material rate by the formula 

hj = tij + tik^kj~uiktkj (3) 

where the material derivative is defined as 

tijz 

dt dxk 
(4) 

Here dty/dt is the time derivative, dty/dxk is the spacial 
derivative, and vk is the velocity of the material point under 
consideration. The nonelastic part of the deformation gra­
dient dyn) must be determined from an appropriate con­
stitutive model. The constitutive model proposed by Anand 
(1982) is used for illustrative purposes here. 
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3 Axisymmetric Boundary Element Formulation 
In the cylinder polar coordinate system R, 6, and Z, the 

nonzero components of displacements, stresses, and strains 
are uR, uz and eRR, eM, ezz, eRZ ( = eZR), aRR, aM, azz and aRZ 

( = oZR). All dependent variables are functions of/?, Z, and t. 
The notation used here is the same as in Rajiyah and 

Mukherjee (1987). The source point is denoted by {R, 6, Z) 
and the field point by (p, 6, 0- Since the problem is axisym­
metric, it is sufficient to choose the source point in the xx - x3 

plane. 
The axisymmetric BEM equations are derived by integrating 

the three-dimensional kernels UiJt Ty, etc., for the field point 
moving around a ring keeping the source point fixed. In­
tegrating d from 0 to 2TT results in (/= 1 and 3, no sum over p 
orf) 

1
 UB° 

lUpJrp + Uurf-TpJup- T{jUf]p0dco 

2 G L [u°i"d®+u^d%+uv*d® 

+ UuAf + uAt 
Po 

P0dp0d$0 

l\ UpJ,p[°ppdpp + o. K i p^uPt "rf)l + UPJ,i K A f 

+ aptdn - affcopf ] + l/jj,, [<rppwpS + apidpp + andpt] 

+ UaAa, jpt(dp!- + wpt 

Po 

Podpad f0 (5) 

where, because of axisymmetry, uR = ux,uz = ii3 and dc0 = 
^Idp2 + d£2 is an element on the boundary of the p — f plane. 
The domain B° and boundary dB° in the equation (5) now 
refer to a generator plane of the axisymmetric solid and its 
boundary (excluding the portion on the x3 axis), respectively, 
(Fig. 1 of Rajiyah and Mukherjee (1987)) so that the three-
dimensional problem is effectively reduced to a two-
dimensional one. Equation (5) is valid for the velocity at an in­
ternal source point. The corresponding boundary integral 
equation is obtained, as usual, by taking the limit/? — P which 
introduces the corner tensor C,-,-. 

The kernels Ttj and Uy, whenp i axis of symmetry, become 
singular when the source point coincides with the axis of sym­
metry. Hence, special Ty and Uy kernels need to be evaluated 
whenp 6 axis of symmetry. The explicit form of these kernels 
which appear in equation (5) are given in Rajiyah and 
Mukherjee (1987). 

The Lagrangian traction rates from equation (5) become 

r„ = / p -n p [a w c? w + <7pi.-copf)]-«j.[ffwrfrf + arfc?ff-(rffcop!.] 

*t = h~ "<> [ffPPMrf + a9(d
PP + fffAf] - "i-Kr + %t) + aKd^ 

(6) 

where tp and /? are the prescribed traction rates which take the 
following form 

h — <jppnp + b>{"f 

h-a^pnp + an'li- (7) 

Velocity gradients at an internal point are obtained, as 
usual, by differentiating equation (5) at an internal source 
point/?. The domain integrals in equation (5), in general, are 
\/r singular and special care must be taken when differ­
entiating them analytically. Free terms result from these in­
tegrals are these must be taken into consideration when 
evaluating these expressions. All such free-term contributions 
are listed in Rajiyah and Mukherjee (1987). 
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Fig. 1 (a) BEM mesh descretization, (b) FEM mesh descretization, 
(c) load versus percent of radial elongation at the end of the disc (up to 
20 percent), and (d) radial stresses in the beam at various stages of 
radial elongation. 

Stress Rates and Spin on the Boundary. The boundary 
stress rates, at any time, are best obtained from a boundary 
algorithm. The normal and tangential components of the trac­
tion rate vector are first calculated at some point P on dB (P is 
assumed to lie at a point on dB where it is locally smooth). 
Now, in the rotated local coordinate system c — n (where c is 
tangential to dB at P) 

. = - * , (8) 

where am and anc are the normal and shearing components of 
the Jaumann rates of the Cauchy stress at P. Next, the normal 
and tangential components of the displacement rate vector are 
calculated at P and the tangential derivatives of uc and u„, 
[diic/dc and dit„/dc] are obtained at P by numerical differen­
tiation along the boundary element. The constitutive equa­
tions are written as 

duc 

~dc~ 
- = dr, 

R 
- = deB = 

1 

~E 

1 

-l*o •><Sm + ln)] + dg 

laee ~ v(o c)]+4$ 

«o,=«*z = &«/2G + d W -
dc 

(9) 

4 Finite Element Formulation 
Using a Galerkin-type weighted residual of the equilibrium 

equation with a virtual velocity field as the test function, 
together with the divergence theorem, and relationships be­
tween various stress tensors, one can easily show that 
(Yamada and Hirakawa (1978)) 

\B0 tiuHdij) --±-ou5(2dlkdkj - vkJvkJ)]dV° 

U^ds°-\Bo^ FjhVjdV0 = 0 (10) 

where B° is the domain of the body and dB°F is the part of the 
boundary of the body on which tractions are applied. In­
troducing interpolating functions for velocities at the element 
level, one can rewrite equation (10) in matrix form as 

(.[K] + IKG] + [KL]){V) = {P^} + {PW} (11) 

where [K] is the stiffness matrix defined as in the case of small 
deformations and [Ka] and [KL] are the geometric and load 
correction matrices, respectively. {P ( n )) is the inelastic load 
vector and (P ( B ) ) is the load vector defined in the usual man­
ner. A six-noded triangular (T6) element was considered for 
this formulation. 

5 Comparison of BEM and FEM Results 
5.1 Radial Expansion of a Tapered Disc. A constant 

distributed rate of loading (5 MPa/s) is applied at the outer 
edge. The BEM and FEM meshes for this problem are shown 
in Fig. 1. Both quadratic and linear variation of tractions and 
displacements on the boundary are tried for the BEM mesh 
and variation between the results are found to be negligible. 
The BEM and FEM agree very well up to a deformation of 20 
percent of radial elongation at the inner surface. The BEM 
took 246 seconds of CPU time as compared to the FEM which 
took 98 seconds of CPU time. 
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Fig. 2 (a) BEM and FEM mesh descretizations, (b) pressure versus the 
percent ot radial elongation at B (see (a)), (c) hoop stresses versus the 
original distance along the z-axis at different stages of radial elongation 
of B 

5.2 Radial Expansion of a Cone. A constant distributed 
rate of loading (5 MPs/s) is applied at the inner surface of the 
cone. The BEM and FEM mesh descretizations are given in 
Fig. 2. Both quadratic and linear variations of displacement 
and tractions on the boundary and linear variation of 
nonelastic deformation rates inside the body were considered 
for this problem. Comparisons were made up to 10 percent of 
radial deflection at point A. The BEM took 217 seconds of 
CPU time as compared to the FEM which took 69 seconds of 
CPU time. 

Both of these problems were run on an IBM 3090/400 
computer. 

6 Conclusions 
Although the BEM is comparable in terms of accuracy to 

the FEM in the aforementioned class of problems, the effi­
ciency of the BEM (unlike in the linear case) seems poor when 
compared to the FEM. One obvious reason is that domain 
descretization now becomes necessary with the unknown 
velocities being present inside as well as on the boundary in 
equation (5). Also, the singular sensitive and complex axisym-
metric kernels of the BEM must be repeatedly evaluated and 
integrated with changing geometry when using an updated 
Lagrangian approach. In earlier work on planar problems 
(Chandra and Mukherjee (1983)) the kernels were simpler and 

could be evaluated in closed form. This led to the BEM com­
puter times being about half of those from the FEM calcula­
tions for planar problems when closed-form integrations were 
performed on kernel functions. The situation is obviously dif­
ferent for axisymmetric problems. 

Another difficulty with the BEM is that the presence of in­
ternal points further increases the computational burden. 
Thus, the BEM computer times are expected to increase 
substantially if the number of internal points increases as com­
pared to boundary points. Alternate mechanics formulations 
and specialized computing algorithms should be explored if 
the BEM is to become a viable numerical method for such a 
class of problems. Ideas along these lines are the use of a total 
Lagrangian formulation and/or the use of vector and parallel 
computing. 
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On the Range of Applicability of von Kar­
man Plate Equations 

You-He Zhou14 and Xiao-Jing Zheng14 

Introduction 

In the derivation of the von Karman plate equations (von 
Karman, 1910), as is known, there are two essential assump­
tions: one of which is the Kirchhoff's hypothesis and the 
other is the approximate calculations of the bending cur­
vatures. The former requires that the thickness of a plate be 
small in comparison with its smallest lateral dimension. In 
most applications, the span-to-thickness ratio of a plate is 
greater than 15, so that the Kirchhoff's hypothesis may be 
valid. The latter requires that the plate slope, or rotations, 
should be less than 0.2. According to this requirement, many 
scholars (Timoshenko and Woinwsky-Krieoger, 1959; Chien 
et al., 1954; Chia, 1980) qualitatively consider that the ratio of 
deflection-to-thickness is of the same order with the unit, that 
is, w/h~ 0(1), which cannot explain why the solutions of the 
von Karman plate equations agree closely with the experiment 
data up to the deflection-to-thickness of six (Chia, 1980). 
Strictly speaking, the range should be decided by comparing 
the solutions of the von Karman theory with those of the more 
accurate Reissner plate equations (Reissner, 1958). However, 
it is difficult if not impossible to solve the Reissner equations 
for each problem of a thin plate. The best way is to check 
whether or not the prerequisites of the von Karman plate 
equations are satisfied by their solutions (see in Fig. 3). If the 
prerequisites are satisfied, we should be convinced of the 
feasibility of the von Karman theory. 

It follows, in this paper, that a new quantitative criterion of 
the fitting range of the von Karman equations is to be derived 
from the analysis of errors caused by the approximate calcula­
tions based on the prerequisites, which shows that the von 
Karman theory in large deflection is reasonable. Finally, the 
range of the rigidly clamped, circular thin plate under uniform 
pressure will be given. 

For the sake of simplicity, we discuss here the range of ap­
plicability of the axisymmetrical equations of the von Karman 
plate theory, which the dimensionless and independent dif­
ferential equations can be written in the form (Zheng and 
Zhou, 1987; Zheng and Zhou, 1988): 

(fS l 

dy2 • = v(y)S{y)+fO>), (1) 
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dy2 2 

And the boundary conditions are 

y = 0:<p(y)=0-S(y)=0; 

(<p(y))2, je (0 , i ) . 

. . . X dtp /x dS 
y=U ,p(y) = - _ —— ; S(y) = X - l dy 

Here, 

(v)*'"-
w 

/ t - 1 dy 

dW 

(2) 

(3) 

(4) 

( 3 d - . 2 ) ) 1 ' 2 - - ; V(y)=y- — , 
h dy 

S(y) = 
3(1 - v2)a2Nry 

in which w is the deflection of a plate, r is the radial coor­
dinate, h is the thickness of a plate, a is the radius of outer 
edge of a plate, Nr is the radial stress per unit length, E is the 
Young's modulus; v is the Poisson's ratio, f(y) is a function 
represented the distribution of axisymmetric loads, X and n are 
constants dependent on the boundary condition, e.g., for the 
rigidly-clamped edge, X = 0 and /x = 2/ l - v. 

Analysis of Errors 

Since the Kirchhoff's hypothesis is held for most applica­
tions in engineering, thus, we merely discuss the errors caused 
by the approximate calculations imposed on the bending cur­
vatures, etc. From the process of establishing equations 
(l)-(2), the approximate calculations, except for those from 
the Kirchhoff's hypothesis, are in the form 

dr2 

('+(-£•)')" 
sine 1 „ 1 » tg0= 

r r r 

sin0 = 0, 

COS0 = 1 , 

cPw 

dr2 ' 

dw 

dr ' 

(5) 

(6) 

(7) 

(8) 

where 0 is the angle of rotation of a radial line element of the 
middle plane. Let en et, es, and ec be the maximum relative er­
rors of the equations (5)-(8), respectively. Then we have 

1 
e. = max 

('•(-£)') 

1 

( l + te0max)2)3 
— 1 

6, = max 

e„=max 

sin0 

sin0 

cos0max - 1 

sin0„ 

(9) 

(10) 

(11) 

From equations (9)-(ll) we find that er, et( = ec)>
 a n d es vary 

with tgdmax(= \dw/dr\max), which their numeric values are 
listed in Table 1. In this table, we can see that er is the greatest 
of these errors, next is e,(ec), and the smallest is es. Thus, it is 
feasible that er may be taken as a standard of precision to 
criticize how the prerequisites are satisfied. 

The Range of Applicability of the von Karman Theory 

According to the equation (9), we can obtain 
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other is the approximate calculations of the bending cur­
vatures. The former requires that the thickness of a plate be 
small in comparison with its smallest lateral dimension. In 
most applications, the span-to-thickness ratio of a plate is 
greater than 15, so that the Kirchhoff's hypothesis may be 
valid. The latter requires that the plate slope, or rotations, 
should be less than 0.2. According to this requirement, many 
scholars (Timoshenko and Woinwsky-Krieoger, 1959; Chien 
et al., 1954; Chia, 1980) qualitatively consider that the ratio of 
deflection-to-thickness is of the same order with the unit, that 
is, w/h~ 0(1), which cannot explain why the solutions of the 
von Karman plate equations agree closely with the experiment 
data up to the deflection-to-thickness of six (Chia, 1980). 
Strictly speaking, the range should be decided by comparing 
the solutions of the von Karman theory with those of the more 
accurate Reissner plate equations (Reissner, 1958). However, 
it is difficult if not impossible to solve the Reissner equations 
for each problem of a thin plate. The best way is to check 
whether or not the prerequisites of the von Karman plate 
equations are satisfied by their solutions (see in Fig. 3). If the 
prerequisites are satisfied, we should be convinced of the 
feasibility of the von Karman theory. 

It follows, in this paper, that a new quantitative criterion of 
the fitting range of the von Karman equations is to be derived 
from the analysis of errors caused by the approximate calcula­
tions based on the prerequisites, which shows that the von 
Karman theory in large deflection is reasonable. Finally, the 
range of the rigidly clamped, circular thin plate under uniform 
pressure will be given. 

For the sake of simplicity, we discuss here the range of ap­
plicability of the axisymmetrical equations of the von Karman 
plate theory, which the dimensionless and independent dif­
ferential equations can be written in the form (Zheng and 
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in which w is the deflection of a plate, r is the radial coor­
dinate, h is the thickness of a plate, a is the radius of outer 
edge of a plate, Nr is the radial stress per unit length, E is the 
Young's modulus; v is the Poisson's ratio, f(y) is a function 
represented the distribution of axisymmetric loads, X and n are 
constants dependent on the boundary condition, e.g., for the 
rigidly-clamped edge, X = 0 and /x = 2/ l - v. 

Analysis of Errors 

Since the Kirchhoff's hypothesis is held for most applica­
tions in engineering, thus, we merely discuss the errors caused 
by the approximate calculations imposed on the bending cur­
vatures, etc. From the process of establishing equations 
(l)-(2), the approximate calculations, except for those from 
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From equations (9)-(ll) we find that er, et( = ec)>
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with tgdmax(= \dw/dr\max), which their numeric values are 
listed in Table 1. In this table, we can see that er is the greatest 
of these errors, next is e,(ec), and the smallest is es. Thus, it is 
feasible that er may be taken as a standard of precision to 
criticize how the prerequisites are satisfied. 
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dw 

dr max 

Table 1 Relative errors versus 1 dw/dr \ max 

I dw 
e,(%) £,(%) es(%) 

1 dr max 
e,(%) es(%) 

0.0819 
0.1164 
0.1432 
0.1661 
0.1865 

1.0 
2.0 
3.0 
4.0 
5.0 

0.334 
0.671 
1.010 
1.253 
1.695 

0.112 
0.224 
0.337 
0.454 
0.566 

0.2052 
0.2226 
0.2391 
0.2547 
0.2698 

6.0 
7.0 
8.0 
9.0 

10.0 

2.041 
2.389 
2.741 
3.095 
3.397 

0.681 
0.798 
0.915 
1.034 
1.153 

WW 

Fig. 2 The Wm • • • a/h)m-m curves and the fitting range of the von Kar­
man equations of the rigidily-clamped circular plate under uniformly 
distributed pressure: v = 0.3; "*": The maximum central deflection of the 
circular plate for a pregiven a/h in the experiments (McPherson et al., 
1942) 

ifif 

"a? 
- ©" 100 loo 560 400 5oo too Y»0 ft10 ?e0 "">° 

Fig. 1 The central deflection-load curves (e = 0.3); " ": The von 
Karman theory of the rigidly-clamped circular plate under uniformly 
distributed pressure;"----": The Hencky's membrane theory (Chien et al., 
1954); "*"-. The experiment data (McPherson et al., 1942) 

Essential Prerequisites: 

1. The Kirchhqff ' s hypothes is : t h in p l a t e s ( | 5 15): 

2- ( 4 ^ ) 2 « 1 ' ** the approximate ca l cu la t ions of gy , g^, 

Sin0 , and C o s e = * £ r - £ . ( | ^ f m a x ) , £ • £ s . « * 

£ c • = * • £r < £ ° (a pre-given p r e c i s i o n ) . 

Are they satisfied? 

Assumed "Yes" 

dw 

dr 

1 dw 

dr Imax I ( l - e r ) 2/3 - 1 (12) 

The von Karman plate Eqs. 

(in dimensionless) 

Let x = — . Then we get 
a 

"he solutions of the von 

Karman plate Eqs-

that is, 

dx h dr 

dw , . . . h dW 
— = ( 3 ( l - , 2 ) ) - 1 / 2 — . 
dr a dx 

Other theories of plate 

should be applied. 

! 

No 

(13) 

(14) 

Do the solutions satisfy the prerequisites of the von 

Karman plate Eqs., that is £ <C £r ̂  

Substituting the formula (14) into the inequality (12), we have 

(3(1 -*)Y 
dW\ 

dx I 
1 

d - e r ) 2 
1 (15) 

The von Karman plate equations are suitable to describe 

the practical problems of thin plates. 

Further, we gain the following inequality 
Fig. 3 The flowsheet on the suitability of the von Karman's plate 
equations 
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\ 3 ( l - v : 

O - e , ) 2 dW I 

~dx\ 
(16) 

3 ( l - v 2 ) ( l - ( l - e r ) 2 / 3 ) , 

for all values of dW/dx in x€ [0,1]. Consequently, the inequali­
ty (16) also hold for I d W/dx I max (= max \d W/dx I), that is 

Xi [0,1] 

the inequality 

/ ( 1 - Q 2 / 3 \ m 

\3(l-v2)(l-(l-e.)2n)) 
a 

~~h 

dW 

dx 
(17) 

> 3 ( l - . 2 ) ( l - ( l - e r ) 2 ' 3 ) 

hold, in which dW/dx is decided by the formula 

~ = 2y-^<p(y)\y=x2. 

Here, <p{y) is obtained by solving the boundary value problem 
(l)-(4). On account of the prerequisites of the Kirchhoff's 
hypothesis, we have 

(18) 

a 

T >maxl \ h min / 
(19) 

The inequalities (17) and (19) make us know that the ratio of 
radius-to-thickness of a plate must satisfy them in order to use 
the von Karman plate theory to describe practical problems 
under a pregiven precision, er, which give a quantitative 
criterion on the fitting range of application of the von Karman 
plate equations. 

Example of Applications 

Here, we give the range of the von Karman theory of the 
rigidly-clamped circular plate under uniform pressure. The 
solutions of this problem have been, in detail, obtained by 
means of the analytically interpolated-iterative method (Zheng 
and Zhou, 1988), where the maximum relative errors between 
the nth and the (n + l)th iterative solutions are accurate to 1 
percent. The central deflection-load curve and the experimen­
tal data (McPherson et al., 1942) are shown in Fig. 1. Ac­
cording to the obtained values of <p(y) and Wm ( = w(0)/h), we 
have made a drawing of Wm - - - a/h\min curve in Fig. 2 in 
which the asterisks " * " represent the maximum central deflec­
tion of the circular plate for a pregiven a/h in the experiments. 
It is obvious that the extents of the experiments are all in the 
fitting range for er = 5 percent. Hence, the von Karman plate 
equations may be applied to describe the elastic deformation 
of the circular plates in these experiments. 

Conclusions 

In order to apply the von Karman plate theory to designing 
the structures of thin plates, both the values of a/h and the 
ratio of deflection-to-thickness of a plate must be in the fitting 
range of themselves; that is, the inequalities (17) and (19) have 
to be satisfied. In the meantime, there is no difficulty in 
generalizing the idea presented in this paper to other cases of 
thin plates. 

References 

Chia, C. Y., 1980, Nonlinear Analysis of Plates, McGraw-Hill Book Co., 
New York. 

Chien, W. Z., Lin, H. S., Hu, H. C, and Yeh, K. Y., 1954, Large Deflection 
Problems of Elastic Thin Circular Plates, Science Press, Beijing, (in Chinese). 

McPherson, A. E., Ramberg, W., and Levy, S., 1942, "Normer Pressure 
Tests of Circular Plates with Clamped Edges," NACA Report No. 744. 

Reissner, E., 1958, "Rotationally Symmetric Problems in the Theory of Thin 
Elastic Shells," Proc. 3rd. U.S. Nat. Congr. Appl. Mech., pp. 51-68. 

Timoshenko, S., and Woinwsky-Krieoger, S., 1959, Theory of Plates and 
Shells, McGraw-Hill Book Co., New York. 

von Karman, T., 1910, "Festigketis Problem in Maschinbau," Enzyklopadie 
der Mathematischen Wissenschaften, Vol. IV, p. 348. 

Zheng, X. J., and Zhou, Y. H., 1987, "Exact Solution to Large Deflection of 
Circular Plate under Compound Loads," Scinetia Sinica (Ser. A), Vol. 30, pp. 
391-404. 

Zheng, X. J., and Zhou, Y. H., 1988, '"Analytical Computerization Method 
of Solving a Kind of Nonlinear Equation of Plates and Shells," Computers and 
Structures, (in press). 

On the Comer Singularities in Reissner's 
Theory for the Bending of Elastic Plates 

D. H. Y. Yen1517 and Mingru Zhou161718 

Introduction 
In a recent work Burton and Sinclair (1986) studied the 

singularities at corner points along an edge in Reissner's theory 
for the bending of wedge-shaped plates. These authors began 
their singularity analysis by observing that the governing equa­
tions for the plate deflection, w, and the stress potential, x> 
have asymptotic solutions of the form w = 0(rx+'), x = 0(rx+1) 
as r — 0, where r is the distance from a corner point and X is 
an eigenvalue parameter to be determined from the plate 
boundary conditions. The corner singularity is described by X. 

As we shall next illustrate, the asymptotic solutions assumed 
above are incomplete. By beginning with the same w = 0(rK+')-
type solutions one derives x = 0(rx_1)-type solutions instead 
as r — 0. When homogeneous boundary conditions are im­
posed along the straight edges of the plate, however, terms 
resulting from the 0(/-x_1) terms in x drop out in all but the 
simply-supported cases, leaving those resulting from the 0(rx+') 
terms in x as the dominant ones. Thus most of the results by 
Burton and Sinclair (1986), i.e., with the exception when two 
simply-supported edges are involved, remain correct. The pur­
pose of this note is to present details that will clarify the analysis 
and justify and supplement the results by Burton and Sinclair. 

The issue here is one of completeness of the eigensolutions 
under various boundary conditions. Whereas we have dem­
onstrated that the analysis of Burton and Sinclair (1986) to be 
incomplete, there remains the question as to whether the anal­
ysis presented here is complete. This latter question will be 
addressed later in this note. 

Governing Equations and Asymptotic Solutions 

We use the same notations as those in Burton and Sinclair 
(1986) and consider the wedge defined by 0 < r < oo and 
- a /2 < 8 < a /2 . The governing equations in Reissner's plate 
theory reduce to the following Cauchy-Riemann equations for 
the conjugate harmonic functions x - T V 2 X and Dv2w 

dr 

1 f l 

(x - rv2x) = ~TZ (DV2W) 
r oo 

r dd dr 

(1) 

(2) 

where 7 = h2/l0. As in Burton and Sinclair (1988), the bi-
harmonic function w is taken as 

w = rx+lai cos(X + l)0 + a2sin(A + l)8 

+ «3 cos(X- 1)0 + «4 sin(X- 1)0] + 0(rx+3) (3) 

where the arbitrary constants are now named differently. 
With w given in (3) we can easily verify that Dv2w has the 

conjugate harmonic function 

,/, = 4D\r^~l [a3 sin(X- 1)0 - aA cos(X- 1) d] , (4) 
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radius-to-thickness of a plate must satisfy them in order to use 
the von Karman plate theory to describe practical problems 
under a pregiven precision, er, which give a quantitative 
criterion on the fitting range of application of the von Karman 
plate equations. 

Example of Applications 

Here, we give the range of the von Karman theory of the 
rigidly-clamped circular plate under uniform pressure. The 
solutions of this problem have been, in detail, obtained by 
means of the analytically interpolated-iterative method (Zheng 
and Zhou, 1988), where the maximum relative errors between 
the nth and the (n + l)th iterative solutions are accurate to 1 
percent. The central deflection-load curve and the experimen­
tal data (McPherson et al., 1942) are shown in Fig. 1. Ac­
cording to the obtained values of <p(y) and Wm ( = w(0)/h), we 
have made a drawing of Wm - - - a/h\min curve in Fig. 2 in 
which the asterisks " * " represent the maximum central deflec­
tion of the circular plate for a pregiven a/h in the experiments. 
It is obvious that the extents of the experiments are all in the 
fitting range for er = 5 percent. Hence, the von Karman plate 
equations may be applied to describe the elastic deformation 
of the circular plates in these experiments. 

Conclusions 

In order to apply the von Karman plate theory to designing 
the structures of thin plates, both the values of a/h and the 
ratio of deflection-to-thickness of a plate must be in the fitting 
range of themselves; that is, the inequalities (17) and (19) have 
to be satisfied. In the meantime, there is no difficulty in 
generalizing the idea presented in this paper to other cases of 
thin plates. 
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On the Comer Singularities in Reissner's 
Theory for the Bending of Elastic Plates 

D. H. Y. Yen1517 and Mingru Zhou161718 

Introduction 
In a recent work Burton and Sinclair (1986) studied the 

singularities at corner points along an edge in Reissner's theory 
for the bending of wedge-shaped plates. These authors began 
their singularity analysis by observing that the governing equa­
tions for the plate deflection, w, and the stress potential, x> 
have asymptotic solutions of the form w = 0(rx+'), x = 0(rx+1) 
as r — 0, where r is the distance from a corner point and X is 
an eigenvalue parameter to be determined from the plate 
boundary conditions. The corner singularity is described by X. 

As we shall next illustrate, the asymptotic solutions assumed 
above are incomplete. By beginning with the same w = 0(rK+')-
type solutions one derives x = 0(rx_1)-type solutions instead 
as r — 0. When homogeneous boundary conditions are im­
posed along the straight edges of the plate, however, terms 
resulting from the 0(/-x_1) terms in x drop out in all but the 
simply-supported cases, leaving those resulting from the 0(rx+') 
terms in x as the dominant ones. Thus most of the results by 
Burton and Sinclair (1986), i.e., with the exception when two 
simply-supported edges are involved, remain correct. The pur­
pose of this note is to present details that will clarify the analysis 
and justify and supplement the results by Burton and Sinclair. 

The issue here is one of completeness of the eigensolutions 
under various boundary conditions. Whereas we have dem­
onstrated that the analysis of Burton and Sinclair (1986) to be 
incomplete, there remains the question as to whether the anal­
ysis presented here is complete. This latter question will be 
addressed later in this note. 

Governing Equations and Asymptotic Solutions 

We use the same notations as those in Burton and Sinclair 
(1986) and consider the wedge defined by 0 < r < oo and 
- a /2 < 8 < a /2 . The governing equations in Reissner's plate 
theory reduce to the following Cauchy-Riemann equations for 
the conjugate harmonic functions x - T V 2 X and Dv2w 

dr 

1 f l 

(x - rv2x) = ~TZ (DV2W) 
r oo 

r dd dr 

(1) 

(2) 

where 7 = h2/l0. As in Burton and Sinclair (1988), the bi-
harmonic function w is taken as 

w = rx+lai cos(X + l)0 + a2sin(A + l)8 

+ «3 cos(X- 1)0 + «4 sin(X- 1)0] + 0(rx+3) (3) 

where the arbitrary constants are now named differently. 
With w given in (3) we can easily verify that Dv2w has the 

conjugate harmonic function 

,/, = 4D\r^~l [a3 sin(X- 1)0 - aA cos(X- 1) d] , (4) 
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and thus 

X - 7V2x = - ^ • (5) 

The solution for x consists of a particular solution Xp and a 

general solution xc of the homogeneous equation. An obvious 
choice for xP-> since x is harmonic, is 

XP = -+. (6) 

The homogeneous equation for xc 

Xc ~ YV2Xc = 0 (7) 
has the solutions 

Xc = lUar), K„(ar)} (sin vd, cos vB) , (8) 

where a = y-ln = lQ,/2/h, v is a complex number with non-
negative real part, and /„ and Kv denote modified Bessel func­
tions of order v. General solutions of (7) can be constructed 
in the form of integrals, with respect to v, involving the so­
lutions in (8) multiplied by arbitrary functions of v. However, 
as only specific values of v must be chosen, such general in­
tegrals are not needed. 

For Xc t° remain bounded as r —• oo we must discard the 
Iv{ar) terms in (8). For small r we have 

KAar) ~ Q ) " + ' l » («r)-
/ 1 \ - ,+3 

( i ) F" -l)(ar)~-+2 
(9) 

where F denotes the Gamma function. For the leading term 
in (9) to match that in xP = — ^ for small r, we must take 

-v = X - 1 . (10) 

Combining the results of (6) through (10) we now have 

-ay F ( l - X ) a x - V x - 1 [ -« 5 s in (X- l )0 

+ «6cos(X-l)0] + 4Z>X/*-1[-a3 sin(X-l)0 

+ «4cos(X-l)0] + 0(rx + I). (11) 

Thus, with w being given in (3), the asymptotic solution for 
X for small r begins with terms of the order 0(rx_1). 

Eigensolutions for Various Boundary Conditions 
The following boundary conditions are considered: 

Clamped: ft = ft = 0, w = 0 

Free: Me = M^ = 0, Ve = 0 (12) 

Simply-supported: Me = 0, ft = 0, w = 0 

where ft and ft are the plate rotations in the r- and ©-directions 
respectively, Me is the bending moment in the 0-direction, M^ 
is the twisting moment, and Ve is the shear force on a 0-face. 
When these quantities are expressed in terms of ve and x> 
contributions from the leading terms in x may cancel out when 
the homogeneous boundary conditions on 0 = ± a /2 are 
imposed as we mentioned before. To prepare for this we shall 
include the next higher-order terms in the solutions for w and 
X given below 

w = rx+1 [a, cos(X+l)0 + a2 sin(X+ 1)0 + «3cos(A-l)0 

+ a4sin(A-l)0] + rx+3[&i cos(X + 3)0 + fc2sin(X + 3)0 

+ b3 cos(X+ 1)0 + 64 sin(X+ 1)0] (13) 

x = /•x- i[-(a^+a^)sin(X-l)0 + (a4 +«^)cos(X- 1)0] 

+ /•x+1[-(&3 + ^)sin(A+l)0 + (64 + ^ ) cos (X+l )0 

- a? sin(X-l)0 + a% cos(X-l)0] (14) 

where 

a'/ = 4Z>X«„ a'j = r ( l -X)a x " 1 a / , 

"j = - (2) r ( - X ) « x + V 

b\ = 4D(K + 2)bi,b} = Q y + 2 r ( - X - l ) f l * + 1 6 y , 

/ = 3,4, y = 5,6 . 

In terms of w and x, we now have 

(15) 

ft 
2y 1 dx dw 

"s7 £(1-/*) r 30 
= - /•x-2c(X-l)[(aj+«Ocos(X-l)0 

+ (a4 + «6> sin (X-1)0] 

- rx [(X+l)[c(b^+b's) + a,]cos(X+l)0 

+ (X+l) [c(bi + bi) + «2]sin(X+l)0 

+ [c(\-l)a"5 + (X+l)a3]cos(X-l)0 

+ [c(X-l)ag + (X+l)a4]sin(X-l)0) (16) 

A 2T 3x _ i^ f 
£>(l-/x)3r r 30 

= /-x-2c(X-l)[a^+«5)sin(X-l)0 

- ( a 4 + a6)cos(X-l)0] 

+ r>-{(\+l)[c(bi+b'5) + a,]sin(X+l)0 

-(X+l)[c(b'4 + b'6) + «2]cos(X+l)0 

+ [c(X+l)a? + (X-l)«3]sin(X-l)0 

- [c(X+lK' + (X-l)a4]cos(X-l)0) (17) 

/ d2w 1 aw 1 d2w \ 

= / • x- 3Dc(X-l)(X-2)( l - /x)[(^ + a^)cos(X-l)0 

+ (ai + a'6)sm(k-l)6] 

+ /•x-1£>X{(X+l)(l-A')[c(*^ + b'a) + a!]cos(X+l)0 

+ (X+l)( l- /*)[c(6i + b'6) + a2]sin(X+l)0 

+ [ c (X- l ) ( l - ^ )a5 + (X-3-X^- / i )a 3 ]cos (X- l ) 

+ [c (X- l ) ( l - / i )a? + (X-3-Xjx-/x)a4]sm(X-l)0) 

(18) 

= r^iDc(k- 1)(X-2)(1 -n)[{a'3 +a^)sin(X- 1)0 

- («4 + «6)cos(X-l)0] 

+ rh £>X(l -^) ( (X+l) [c(6^+69 + a,]sin(X+l)0 

- (X+l) [c(b^ + b'6) + a2]cos(\+l)d 

+ (X - l)(c« % + a3)sin(X - 1)0 

+ (X - l)(ca? + a4)cos(X - 1)0) (19) 

9 30 

= /-X"2(X- 1)[(«^ +fl^)sin(X- 1 ) 0 - M + «e)cos(X- 1)0] 

Journal of Applied Mechanics SEPTEMBER 1989, Vol. 56 / 727 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

+ i*(k+l)[(bi+b'5)sm(k+l)6 - (b'A + ^)cos(X+ 1)0 

+ a"s sin(X-l)0 - a% cos(X-l)0] , 

where 

12(1+/*) 
5Eh Da2(l-,x) 

(20) 

(21) 

We observe that the dominant terms in (16) through (20) as 
well as in (14) for x depend on the constants a'it a\, a'5, and 
a'6, only through the combinations a^ + a'5 and a'A + a'6. At 
each of the edges 0 = ± a /2 , we have at least two boundary 
conditions not involving w. If such non-w boundary conditions 
from both edges lead to two or more linearly-independent 
homogeneous equations for a'i + a'5 and a'A + a'6 for any X, 
then we must have a'3 + a's = 0 and a\ + a'6 = 0. The 
dominant terms in x become 0(rx+1) and those in (16) through 
(20) all increase their order by two. One can then proceed as 
in Burton and Sinclair (1986). It turns out that this is the 
situation in all cases of boundary conditions except the one in 
which both edges are simply-supported. Thus, the first five 
entries in Table 1 of Burton and Sinclair (1986) are correct. 

The case of a plate with two simply-supported edges at 0 = 
± a /2 will now be examined. 

We apply the conditions w = 0, ft = 0 and Mg = 0 at 0 
= ± a/2. From the leading terms in (13), (16), and (18) we 
obtain 

a a 
ax cos(X+ 1) — + «2 sin(X+ 1) — 

a a 
+ «3 cos(X - 1) — + a4 sin(X - 1) — = 0 

a a 
a! cos(X+ 1) — - a2 sin(X+ 1) — 

a a 

+ a3 cos(X- 1) — - a4 sin(X- 1) — = 0 

(fl3+c7^)cos(X-l)^ + (a^ + a'6)sin(\-l)^ = 0 

( f l$+a$)cos(X- l ) | - (aj + fl£)sin(\-l)^ = 0 (22) 

( « ^ + ^ ) c o s ( X - l ) | + ( a J + a £ ) s i n ( X - l ) | = 0 

( f l^+a^)cos (X- l ) | - ( « J + a £ ) s i n ( X - l ) | = 0 

The third member in (22) is identical with the fifth, and the 
fourth member is identical with the sixth. If a3 + a'5 = 0, 
a't, + a'(, = 0, we may proceed as before and obtain the same 
sixth entry in Table 1 of Burton and Sinclair (1986), i.e., 

cos Xa = ± cos a . (23) 

On the other hand, if a, + a'5 ^ 0 we obtain from the third 
and fourth (or the fifth and sixth) members of (22) the eigen-
equation 

c o s ( X - l ) - = 0 
2 

which has the solutions for X 

(2A:+l)7r 
A = + 1 , 

a 

along with the eigensolutions 

integer 

(24) 

(25) 

s i n ( X - l ) -
sin(X + l)0 + sin(X-l)0 

sin(X+ 1) 
« t 

(26) 

+ a} cos(X-l)0 + 0(rx+3) 

ft = r*-2c(l-\)(ai + atfcos(k-l)6 + 0(rx) 

Mg = rx~3 Dc(\- 1)(X- 2)(1 - /*) 

{a'3 + a's)cos(\-l)d + 0(r^~l) . 

Since X > - 1 for 0 < a < ir for w to be bounded, we take 
k = 0 in (25) and obtain 

= - + 1. (27) 

Substituting this Xcritical into (26) yields singularities of the so­
lutions that are not covered by Burton and Sinclair (1986). 

Concluding Remarks 
By assuming the same biharmonic function for w as in Bur­

ton and Sinclair (1986) given in (3), we obtained the asymptotic 
expansion (11) for x via its general solution. The leading terms 
are of the order 0(rx~l). When homogeneous boundary con­
ditions of the type given in (12) are imposed along 9 = ± a/ 
2, contributions from the 0{rx~l) terms in x drop out except 
in the case with two simply-supported edges, leaving those 
from the 0(rx+1) terms in x as the dominant ones as assumed 
by Burton and Sinclair. The eigensolutions given in (26) and 
(27) thus supplement the results of Burton and Sinclair. Nu­
merical solutions of the transcendental equations for X have 
been discussed in Burton and Sinclair (1986) and the literature 
referred to therein. 

The analysis given here suggests that the eigensolutions here 
are complete within the class of biharmonic functions for w, 
as assumed in (3), as we have examined the general solutions 
for x governed by (1) and (2) with this assumed w. On the 
other hand, it is known that biharmonic functions other than 
those given in (3) for w are possible (for example, see Dempsey 
and Sinclair (1979)) that contain logarithmic functions. Par­
ticular solutions xP generated by such w must then be combined 
with the complementary solutions xc given in (8) to satisfy the 
homogeneous edge conditions. It is not clear whether new 
eigensolutions may result and thus the general question of 
completeness of the eigenfunctions obtained here remains open. 

The singularities considered here describe the behavior of 
solutions at corner points along the boundary of general plate 
bending problems. One may imagine that a small portion of 
a plate near a corner point has been isolated. Transverse load 
is neglected but the portion is under the action of shear forces 
and bending and twisting moments along the cut boundary. 
For asymptotic solutions for small r near the corner point the 
portion is treated as a wedge. A knowledge of such singularity 
solutions is useful in obtaining accurate solutions near a corner 
point by numerical methods. 

A more comprehensive treatment of the corner singularity 
problem in Mindlin's formulation has also been given by us 
and will be reported elsewhere (Yen and Zhou, 1989). The 
problem has been formulated so that a small parameter e is 
involved that is related to the shear deformation. By letting e 
— 0 the more complete solutions obtained there enable us to 
analyze and explain the difference in the corner singularities 
between the classical plate theory and the Reissner-Mindlin 
plate theory. 
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New Integral Equation Approach for a 
Curved Rigid Line Problem in an Infinite 
Plate 

Y. Z. Chen19 

1 Introduction 
There has been a resurgence of interest in the rigid line 

problem in plane elasticity. Many problems in this field have 
been investigated by several authors: Erdogan and Gupta 
(1972), Wang, Zhang, and Chou (1985), Chen (1986), and 
Chen and Cheung (1987). Like the crack problem in plane 
elasticity, the stress components in the vicinity of the rigid line 
tip also possess a singular character and can be expressed as 
(Chen, 1986): 

ffx = (27r/-)-,/! [ s , (cos(0/2) sin(0)sin(30/2)) 
L \ 3 + K / 

-S2( , ~K sin(0/2) + sin(0)cos(30/2))l +0(1), 
\ 1 — K 1 —K / J 

ay = (27ir) " Vl [ s , (—— cos(0/2) + —!— sin(0)sin(30/2)) 
L V 3 + K 3 + K / 

-S2( , +K sin(0/2) sin(0)cos(30/2)N)l +0(1), 
VI—K 1 —K / J 

oxy = (2vr)~v> [ s , (—— sin(0/2) + —^— sin(0)cos(30/2)) 
L \ 3 + K 3 + K / 

+ S2 (cos(6/2) sin(0)sin(30/2)) 
V 1 —K / 

+ 0(1), 

where K = (3 - v)/(\ + v) (under plane-stress conditions), K = 
3 - 4 ? (under plane-strain conditions) and v is the Poisson's 
ratio in elasticity. In equation (1), Sl and S2 are the so-called 
stress singularity coefficients and can be defined by 

S,=lim (2irr)'/2a>xfi, S2 = lim (2irr)Vlaxyfi (2) 

where ay0 and <jxyfi are the stresses in the front of rigid line tip. 
The aim of this note is to formulate a new integral equation 
with a logarithmic kernel for the curved rigid line problem in 
an infinite plate. In the formulation we take the traction dif­
ference between the upper and lower borders of the rigid line 
to be an unknown function, and the displacement to be the 
right-hand term of the integral equation. Therefore, the 
resulting integral equation has a logarithmic kernel. 

2 New Integral Equation in the Curved Rigid Line Problem 
It is well known that the resultant forces and displacement 

in plane elasticity can be expressed by (Muskhelishvili, 1953): 

f=i(X+iY)=<p(z)+z<p'(z) + t(z) + C1 

2G(u + iv)=iap(z) -Zip' (z)-^(z) + C2 

(3) 

(4) 
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where ip(z) and \p(z) are the complex potential, z - x+iy and 
G is the shear modululs of elasticity. 

Now we want to solve the curved rigid line problem as 
shown in Fig. 1(a). Assume in the problem that the remote 
rotation will be e°° = 0 and the remote stresses are expressed by 
<7™, a™, and ofy. If the curved rigid line is in a floating state, 
then the conditions along the curve rigid line L in Fig. 1(a) will 
be: 

(a) There are no resultant forces applied on the whole rigid 
line. 

(b) The rigid line has a rotation 

2G(u + iv)=iyt0At0eL) (5) 

where the rotation y is determined from the zero-moment con­
dition imposed on the whole rigid line. 

Obviously, the problem shown in Fig. 1(a) can be separated 
into two problems as shown in Fig. 1(b) and Fig. 1(c). 

The problem shown in Fig. 1(b) has a solution 
(Muskhelishvili, 1953): 

where 

2G(u + iv) = (K-l)Tz-T'z, 

r=(<x» + a")/4, r ' = (o-"-fff)/2 + iff« 

(6) 

(7) 

It is easy to see that the conditions imposed on the problem 
shown in Fig. 1(c) can be stated as follows: 

(a) There are no resultant forces applied on the whole rigid 
line. 

(b) The displacements along the curved rigid line should 
take the form 

2G(u + iv) = - (K- \)Tt0 + T ' i0 + iyt0, (t0eL) (8) 

where the rotation 7 is still determined from the zero-moment 
condition. 

It is easy to verify that the appropriate potentials in the 
curved rigid line problem have the following form: 

(9) 

(1) <p(z)= /x(s)log(z-t)ds, 

\I/(Z)=-K[ n(s)log(z-t)ds-\ (tx(s)t/(z-t))ds 
Jo Jo 

Since there are no resultant forces applied on the whole rigid 
line L, from equations (3) and (9) we obtain 

/j.(s)ds = Q. (10) 

Let z approach the upper or lower border of the curved rigid 
lineL in Fig. l , i . e . , z ^ + or z—1„ . In either case, we have 

2G(u(t0)+iv(t0))=K^ 2loglt-t0\n(s)ds 

• 1 ; - ) o ((t-t0)/(t-t0))n(s)ds + C2. (11) 

After using equations (8) and (11), and by letting 

t-t0=r(t,t0)txp(id{t,t0)), 

H(s)=ii1(s)+in2(s), (12) 

the following system of the integral equations is obtainable 

K^Q2log(r(t,to))pn(s)ds+^al-in(s)cos(20V,to)) 

-H2(s)sm(20(t,to))]ds + Re(C2) = Hi(to), (t0eL) (13a) 
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problem in plane elasticity. Many problems in this field have 
been investigated by several authors: Erdogan and Gupta 
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Chen and Cheung (1987). Like the crack problem in plane 
elasticity, the stress components in the vicinity of the rigid line 
tip also possess a singular character and can be expressed as 
(Chen, 1986): 
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+ 0(1), 

where K = (3 - v)/(\ + v) (under plane-stress conditions), K = 
3 - 4 ? (under plane-strain conditions) and v is the Poisson's 
ratio in elasticity. In equation (1), Sl and S2 are the so-called 
stress singularity coefficients and can be defined by 

S,=lim (2irr)'/2a>xfi, S2 = lim (2irr)Vlaxyfi (2) 

where ay0 and <jxyfi are the stresses in the front of rigid line tip. 
The aim of this note is to formulate a new integral equation 
with a logarithmic kernel for the curved rigid line problem in 
an infinite plate. In the formulation we take the traction dif­
ference between the upper and lower borders of the rigid line 
to be an unknown function, and the displacement to be the 
right-hand term of the integral equation. Therefore, the 
resulting integral equation has a logarithmic kernel. 

2 New Integral Equation in the Curved Rigid Line Problem 
It is well known that the resultant forces and displacement 

in plane elasticity can be expressed by (Muskhelishvili, 1953): 
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where ip(z) and \p(z) are the complex potential, z - x+iy and 
G is the shear modululs of elasticity. 

Now we want to solve the curved rigid line problem as 
shown in Fig. 1(a). Assume in the problem that the remote 
rotation will be e°° = 0 and the remote stresses are expressed by 
<7™, a™, and ofy. If the curved rigid line is in a floating state, 
then the conditions along the curve rigid line L in Fig. 1(a) will 
be: 

(a) There are no resultant forces applied on the whole rigid 
line. 

(b) The rigid line has a rotation 

2G(u + iv)=iyt0At0eL) (5) 

where the rotation y is determined from the zero-moment con­
dition imposed on the whole rigid line. 

Obviously, the problem shown in Fig. 1(a) can be separated 
into two problems as shown in Fig. 1(b) and Fig. 1(c). 

The problem shown in Fig. 1(b) has a solution 
(Muskhelishvili, 1953): 

where 

2G(u + iv) = (K-l)Tz-T'z, 

r=(<x» + a")/4, r ' = (o-"-fff)/2 + iff« 

(6) 

(7) 

It is easy to see that the conditions imposed on the problem 
shown in Fig. 1(c) can be stated as follows: 

(a) There are no resultant forces applied on the whole rigid 
line. 

(b) The displacements along the curved rigid line should 
take the form 

2G(u + iv) = - (K- \)Tt0 + T ' i0 + iyt0, (t0eL) (8) 

where the rotation 7 is still determined from the zero-moment 
condition. 

It is easy to verify that the appropriate potentials in the 
curved rigid line problem have the following form: 

(9) 

(1) <p(z)= /x(s)log(z-t)ds, 

\I/(Z)=-K[ n(s)log(z-t)ds-\ (tx(s)t/(z-t))ds 
Jo Jo 

Since there are no resultant forces applied on the whole rigid 
line L, from equations (3) and (9) we obtain 

/j.(s)ds = Q. (10) 

Let z approach the upper or lower border of the curved rigid 
lineL in Fig. l , i . e . , z ^ + or z—1„ . In either case, we have 

2G(u(t0)+iv(t0))=K^ 2loglt-t0\n(s)ds 

• 1 ; - ) o ((t-t0)/(t-t0))n(s)ds + C2. (11) 

After using equations (8) and (11), and by letting 

t-t0=r(t,t0)txp(id{t,t0)), 

H(s)=ii1(s)+in2(s), (12) 

the following system of the integral equations is obtainable 

K^Q2log(r(t,to))pn(s)ds+^al-in(s)cos(20V,to)) 

-H2(s)sm(20(t,to))]ds + Re(C2) = Hi(to), (t0eL) (13a) 
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+ 

Fig. 1(b) 

Fig. 1(c) 

Fig. 1 The original problem of Fig. (a) consists of two particular 
problems, (b) and (c). The boundary condition along L has been shown 
by equation (5) (for (a)) and equation (8) (for (c)). 

K\j'o2log(r(t,t0))fi2(s)cls+ | Q [-^(s)sm(26(t,t0)) 

+ lx2(.s)cos(2d(t,t0))]ds+lm(C2) = H2(t0)(t0eL) (13d) 

where H^tg) and H2(t0) are derived from equation (8) and can 
be expressed as 

# , ( /„) = R e ( - ( K - l ) r / 0 + r ' / ; + ry/0), (t0eL) 

H2{t0)=\m{-{K-\)Tt0+f'70+iyt0), (t0eL). (14) 

Under the condition (10) and from equation (9), the com­
plex potential ^ (z) at the remote place can be expressed as 

iHz) = (al+ibl)/z+ (a2 + ib2)/z
2 + . • . , (15) 

where ax,a2, and b2 are some integrals and 

* != («+ l)Im( [ tj^sjds). (16) 
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Meanwhile, the moment applied on a large circle or on the 
curved rigid line is equal to M = 2-wbx (Muskhelishvili, 1953). 
From the fact that the curved rigid line is in a floating state, 
then the following equation should be satisfied 

Im(f ' ijJL(sjds\=0. (17) 

From the eigenexpansion form of the stress-displacement 
field at the vicinity of the rigid line tip (Chen, 1986), one 
should take 

p. (s) =his"'/l, (at the vicinity of the left tip A) 

fi(s) = h2(i-s) ~ Vl, (at the vicinity of the right tip B). (18) 

After some manipulation, the stress singularity coefficient at 
the left and right crack tips can be expressed as 

(S, + /'( (K + 3 ) / ( / C - \))S2)A = - (3 + K)7r(27r)'/2exp(-ia)h,, 

(S ,+ / ( ( K + 3)/(K-l))S2)2J = (3 + K)7r(27r)'/iexp(-;|3)/!2. (19) 

3 Numerical Example 

In the example, the infinite plate contains a straight rigid 
line with length 2a = 2 and the remote conditions are e°° =0, 
a" = 1, a™ = 0 and a"y = 0. Under these conditions, the integral 
equations are reduced to 

I 

log\t-ta\ii(t)dt= - (K+l)t0/&K, \t0\<l (20) 

Considering equation (10), equation (20) has a solution as 
follows (Cheung and Chen, 1987): 

H(t) = ( (*+ 1 ) /8 ITK)? (1 - t2)-'A, 

S1=((/c+l)(K + 3)/8«)(Tr)l/l. (21) 

The structure of the integral equations (13a) and (13&) is 
essentially the same as mentioned in the curve crack problem 
(Cheung and Chen, 1987). Therefore, the same interpolation 
formulae which was cited in the paper (Cheung and Chen, 
1987) can be used for the function fi (s) in this paper. If 20 in­
tervals with equal space are divided along the rigid line, the 
maximum deviation of the calculated /x(0 at the discrete 
points from the exact solution is less than 2 percent. In addi­
tion, the calculated stress singularity coefficient is 

S 1 = 1.0176((/C+1)(K + 3)/8K(7T)' / 2 . (22) 

From (22) we see that, even for a coarse division in computa­
tion, the numerical solution of the integral equation already 
provides a very accurate result. 
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Approximate Decoupling of the Equations 
of Motion of Linear Underdamped Systems1 

Stephen F. Felszeghy.2 The authors examined the motions 
of linear underdamped discrete systems with n degrees-of-
freedom when these motions are expanded in the modal vec­
tors of the undamped system. They considered the error that is 
introduced when, in solving for the temporal parts of these ex­
pansions, that is, the normal coordinates from the governing 
equations of motion, the generalized damping matrix with 
nonzero off-diagonal elements in the equations of motion is 
approximated with a diagonal matrix. The authors derived 
"tight" normed error bounds for the normal coordinates qh 
i=\, . . . , n. It can be shown that under certain cir­
cumstances the error bounds can be tightened even further. 

For let us suppose that a modal vector uy), which satisfies 
the equation representing the eigenvalue problem of the un­
damped system 

KuW=u}MuU\ (1) 
also satisfies the equation representing the eigenvalue problem 
of the unsprung system (Felszeghy, 1989) 

CuW=yMuVK (2) 
Then, the y'th row of the symmetric matrix Cr is zero, and it 
follows from the authors' equation (2.7) that the error e,(0, 
associated with normal coordinate qJt is identically zero. 

By S. M. Shahruz and F. Ma, published in the September 1988 issue of the 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 55, No. 3, pp. 716-720. 

Professor of Mechanical Engineering, School of Engineering and 
Technology, California State University, Los Angeles, 5151 State University 
Drive, Los Angeles, Calif. 90032. Mem. ASME. 

Hence, the error bounds can be interpreted as applying ex­
clusively to those normal coordinates gt for which (2) is not 
satisfied. 

Lastly, Fig. 1 appears to show a zero-state response instead 
of a steady-state response. 

References 
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I l l , No. 1, pp. 77-81. 

Authors' Closure 

We have read Professor Felszeghy's discussion and would 
like to thank him for his comments. The point brought up in 
his discussion appears to be an easy consequence of the results 
presented in our paper. 

Professor Felszeghy remarked that, if for some./', the modal 
vectors uu) satisfy assumption (2) in his discussion, then the 
upper bound on the approximation error can be tightened. 
The general results presented in our paper incorporate the 
special case mentioned by Professor Felszeghy. If for somey, 
the modal vectors wU) satisfy assumption (2), then in the nor­
malized damping matrix the off-diagonal elements on the rows 
corresponding to those j are zero, and, hence, the quantities oj 
defined in equation (2.11) in our paper are zero for those j . 
Therefore, equation (2.15) in our paper obviously yields the 
same error bound as suggested by Professor Felszeghy. The er­
ror bounds derived in our paper remain the tightest possible in 
a functional form specified by equation (2.16) in our paper. 

Lastly, Fig. 1 in our paper depicts a zero-state response 
which has reached its steady state after a short transient 
behavior. 
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Buckling and Postbuckling, by J. Arbocz, M. Potier-Ferry, J. 
Singer, and V. Tvergaard. Springer-Verlag, Berlin, 1987. 246 
pages. 

REVIEWED BY I. ELISHAKOFF1 

The volume contains four lectures delivered at the Interna­
tional Centre for Mechanical Sciences (CISM) in Udine, Italy, 
in 1985. It opens with a preface by Profs. W. T. Koiter and 
M. Potier-Ferry, who note that "these lectures are to give a 
comprehensive account for the theoretical, numerical, and ex­
perimental methods which are useful to analyze the buckling 
and post-buckling behavior of structures." Indeed, four inter­
nationally recognized specialists - leaders in the field, con­
tributed lectures on different topics of buckling. These are 
"Foundations of Elastic Postbuckling Theory" (by M. Potier-
Ferry), "Post-Buckling Behavior of Structures: Numerical 
Techniques for More Complicated Structures" (by J. Ar­
bocz), "Effect of Plasticity on Post-Buckling Behaviour" (by 
V. Tvergaard), and "Experimental Techniques and Com­
parison with Theoretical Results" (by J. Singer). 

The first chapter (Potier-Ferry) represents a sound and 
definitive introduction to the elastic postbuckling theory, with 
particular emphasis on classification of singularities according 
to their "robustness" and on Koiter's imperfection sensitivity 
theory. The second chapter (Arbocz) deals with the stability of 
axially-compressed imperfect orthotropic cylindrical shells via 
numerical techniques. Complementing the simple models used 
in the first chapter to elucidate basic ideas, initial imperfec­
tions are represented here by double Fourier series and various 
approximations are illustrated. Multimode analysis, intro­
duced by the late Professor Babcock and by the author, is 
compared with the large finite difference code STAGS. The 
chapter concludes with a detailed description of stochastic 
stability analysis as developed by the present reviewer and 
Arbocz for shell structures. The author also mentions the 
development of DISDECO, the Delft Interactive Shell Design 
Code, an optimal combination of accumulated theoretical 
knowledge in the field of shell stability with advanced interac­
tive and computational facilities. One would want the code to 
be "very user-friendly." 

Whereas the second chapter is devoted exclusively to elastic 
instability, plastic effects are studied in depth in Tvergaard's 
contribution, which includes inter alia Hill's general theory of 
uniqueness and bifurcation of elastic-plastic solids and 
Hutchinson's asymptotic procedures for estimating the initial 
post-bifurcation behavior. Hypoelastic estimates, first in­
troduced by Hutchinson and Budiansky, are discussed for 
elastic-plastic cylindrical shells. Other important topics are 

Professor, Faculty of Aerospace Engineering, Technion-I.I.T., Haifa, 
32000, Israel. 

numerical analysis of plastic buckling, localization of the 
buckling pattern, and the effect of rate sensitivity. 

The three theoretical and/or numerical lectures are ap­
propriately complemented by the fourth (Singer), which ex­
amines the role of experiments in buckling and post-buckling. 
The article first deals with the motivation for experiments, 
whose aims may be summed up as follows: 

(a) better understanding of buckling and post-buckling 
behavior and of the primary factors affecting it, 

(b) discovery of new phenomena, 
(c) better inputs for computation, 
id) correlation factors between analysis and tests, 
(e) creation of confidence in multipurpose computer 

programs, 
(/) novel ideas of construction of highly complex structural 

elements, and 
(g) certification tests of full-scale structures. 
These first-class lectures are a timely contribution to better 

understanding of this ancient topic - buckling of structures. 
(There are those who believe that the first engineering struc­
ture-the Tower of Babel - buckled under its own weight.) 
This volume is, therefore, a must at every engineering depart­
ment library for the staff and students to have access to this 
elegant review of both the state-of-the-art and the latest 
developments in buckling and post-buckling. 

Elastic-Plastic Problems, by B. D. Annin and G. P. 
Cherepanov. ASME Press, New York, 1988. 250 pages. Price: 
$31.20 (ASME members); $39.00 (nonmembers). 

REVIEWED BY W. J. DRUGAN2 

This book is a survey of analytical (and some numerical) 
solutions to selected two and three-dimensional boundary 
value problems for elastic-plastic materials (primarily metals). 
It is written by two members of the U.S.S.R. Academy of 
Sciences who are accomplished researchers in solid mechanics. 
The present version is an "ASME Press Translation" of the 
Russian edition published by Nauka Publishers in 1983. The 
translation is generally quite good. I believe I speak for many 
when I encourage ASME Press to continue this valuable ser­
vice of translating books by distinguished foreign researchers; 
for example, several additional Soviet books on solid 
mechanics merit serious consideration. 

The present book is aimed at researchers and practitioners 
who are experienced in solid mechanics and applied 
mathematics; it focuses on the mathematical formulation and 
solution of problems. Little contact is made with the behavior 
of actual materials and the physical motivation and justifica-

Associate Professor, Department of Engineering Mechanics, University of 
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tion for the constitutive equations employed; indeed, the 
reader may get the impression in some problems that a specific 
constitutive equation was selected primarily because it 
facilitated a closed-form analytical solution. It would be dif­
ficult to begin learning elastoplasticity from the book, as the 
authors tacitly acknowledge, by referencing a number of in­
troductory texts on the subject. However, for a knowledgeable 
reader, the book has a number of strengths: The nonstan­
dard viewpoint occasionally adopted by the authors is il­
luminating. Analytical derivations and solutions to some quite 
complex problems are presented unflinchingly, if sometimes 
without much tutelage. Helpful comparisons are made be­
tween the structure of resulting equations and equations from 
other branches of applied science. The presentation is at times 
very general and ambitious, which this reader found in­
teresting and instructive. Many different mathematical 
methods are illustrated, such as the theory of functions of 
complex variables, conformal mapping, perturbation 
methods, integral equation theory, variational approaches, 
etc. The book contains about 250 references to books and ar­
ticles, both Soviet and Western and, hence, can provide a 
roadmap to some of the Soviet literature in this area, although 
much of it is untranslated. For many of these untranslated 
works, the book serves the valuable function of explaining and 
summarizing their contributions. I was also pleased to see 
several important Western works summarized. Additionally, 
the authors attempt in several places to give an historical 
perspective. 

The book does have drawbacks. It is not up-to-date, and the 
selection of topics is strongly influenced by the interests of the 
authors. The entire book is restricted to a quasi-static, "small 
strain," rate-independent formulation, and most of the 
research papers referenced are over 15 or 20 years old. The 
authors devote extensive space to their own work, thereby ex­
cluding some important work of other researchers; this 
governs the types of problems covered, of which crack, hole, 
and notch problems are heavily favored. Even within the 
realm of crack problems, much important work is unmen-
tioned, such as the Hutchinson-Rice-Rosengren plane near-tip 
singular fields for stationary cracks in power-law hardening 
elastic-plastic materials, and the quasi-static and dynamic 
growing crack near-tip elastic-ideally plastic solutions of L. I. 
Slepyan (and related work of Western authors). Another 
criticism of the book is that in many places it is obvious the 
authors have not strived for lucid explanations; sometimes I 
was hard pressed even to understand the rationale behind a 
problem's formulation. When the solution of problems gets 
difficult, especially as in certain plane stress and plane strain 
cases, the explanations provided are not always up to convey­
ing the material. This is exacerbated by absent or unclear 
figures that often show a bare minimum of information. The 
book also lacks an index. Finally, there are a number of 
misleading or erroneous statements. For example, in the 
chapter on torsion, it is explained that the out-of-plane 
displacement w is an unknown function of all three Cartesian 
coordinates x, y, z, while it is also stated that the out-of-plane 
normal strain component vanishes. In Chapter 6, it is stated 
that a general three-dimensional problem of ideal 
elastoplasticity is statically determinate whenever the loads on 
the boundary of the body are given. 

As regards specific content, the book has an introductory 
chapter that tersely summarizes the governing field equations 
for elastic-plastic problems and some general methods of their 
solution. Following are rather extensive chapters on complex 
(anti-plane) shear, torsion, and plane strain, and far briefer 
ones on plane stress and three-dimensional problems. There 
are two short, mathematical appendices, one on a method of 
solving problems with unknown boundaries, and one on 
nonlinear Riemann problems. 

In summary, the book should interest, and occasionally 

fascinate, fairly experienced solid mechanicians and applied 
mathematicians who know some plasticity and would like to 
see some important, difficult problems elegantly solved, but 
who are not expecting a current, comprehensive treatment of 
the title subject area. 

Wave Propagation in Solids and Fluids, by J. L. Davis. 
Springer-Verlag, New York, 1988. 386 pages. Price: $75.00. 

REVIEWED BY D. MINTZER3 

This volume, the first of two on wave propagation, em­
phasizes the mathematical structure of the subject rather than 
laying a foundation for application to various physical 
phenomena. (This volume is concerned with continua which 
do not involve electromagnetic phenomena; a second volume 
will consider waves involving a variety of electric and magnetic 
interactions, as well as quantum mechanical waves.) The book 
touches on a wide variety of areas of wave propagation (str­
ings, water waves, sound waves, waves in elastic media), con­
necting the underlying mathematical foundations of the 
various areas. Although he does not delve deeply into any par­
ticular problem, the author gives good insight into the models 
used in the derivations, so that the reader does not have the 
feeling that it is all just a mathematical exercise. Nevertheless, 
the generality of approach, the lack of specific examples, and 
the neglect of even simplified approaches to practical pro­
blems makes this unsuitable as a text for any but an advanced 
student in applied mathematics. It will be useful, however, as 
a reference work in its chosen field. 

The book starts with a chapter on "Oscillatory 
Phenomena," going rapidly through the usual expositions of 
free and forced damped vibrations of a linear mass-spring 
system, and then touching briefly on Fourier series; a brief 
section on two-dimensional motion follows. After a short ex­
position of two-body coupled oscillations, the general Af-body 
(coupled) problem is treated by means of Lagrange's equa­
tions. The eigenvalue equations for small oscillations are 
thereby derived, the matrix formulation is then introduced, 
and the normal coordinate equations are found by means of a 
similarity transformation. The paragraph which closes the 
chapter then shows that this general technique gives the same 
result for a two-body system as did the earlier exposition of 
the two-body coupled oscillation case. Although each step is 
carefully explained, this is clearly a chapter for the reader who 
has already been exposed to most of the material. 

The second and fourth chapters, both on vibrations of a 
string, again point up both the strengths and weaknesses of 
this book. The second chapter gives a brief description of 
waves on a string, emphasizing the physics of the situation. 
The fourth chapter contains the standard (Newton's law) 
derivation of the wave equation for a string undergoing small 
oscillations; the general solution to the equation is derived, 
and a few special cases are discussed; finally, the derivation of 
the wave equation as the limit of an N-body mass-spring 
system is developed. Yet nowhere is there any discussion of the 
cases of discontinuities in the physical properties of the string, 
masses attached to the string, or reactive end-supports. This 
approach, with its emphasis in the mathematical generalities 
to the virtual exclusion of subjects with a view towards even­
tual applications, is carried on throughout most of the book. 

However, the two most mathematical chapters do deserve 
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special mention. Chapter 3, on the partial differential equa­
tions of wave propagation, develops the theory of 
characteristics, gives a good discussion of the Cauchy initial 
value problem, and derives the corresponding integral equa­
tion. Chapter 9, entitled "Variational Method in Wave 
Phenomena" seems out of place in this book, being more 
suitable to a book on advanced mechanics. The application of 
the variational methods given here is deriving the wave equa­
tion, but the major content of the chapter is on deriving 
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