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The Elastic Response of Creep
Damaged Materials

A series of stress change experiments on a batch of tough pitch copper are presented
which were devised to evaluate the variation of Young’s modulus with creep
damage. Kachanov’s model is used to describe the creep response and a model

orginally proposed by Chaboche (1979) is found to adequately represent the elastic
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1 Introduction

Constitutive equations for the response of creep damaging
materials have either been developed phenomenologically
(Kachanov, 1958; Rabotnov, 1969; Leckie and Hayhurst,
1975) or from an understanding of the internal microscopic
processes that take place as the material creeps (Cocks and
Ashby, 1982; Tvergaard, 1986). Despite the differences of
these two approaches, the general structure of constitutive
laws that are obtained are very similar. In each case the strain
rate at a given instant in time is expressed in terms of the stress
o and a number of state variables, w;, which measure the ex-
tent of damage in the material. The formalism is completed by
developing laws for the rate of increase of the damage in terms
of ¢ and w;. In each of these approaches it is generally as-
sumed that the damage does not affect the elastic properties of
the material.

The objective of this paper is to investigate the effect of
creep damage on the elastic properties and examine how this
influences the predicted response of component behavior. We
limit our attention to material behavior in uniaxial tension,
and describe the material response using a single state variable
w. Following the philosophy of the modeling of the creep
response, we express the compliance at a given instant in time
in terms of w. We could follow the mechanistic approach and
assign a physical interpretation to w, such as the volume frac-
tion of voids or the proportion of cracked grain boundaries,
and use the theoretical results of Duva and Hutchinson (1984)
and Budiansky and O’Connell (1976) for the elastic response
of porous and cracked media to construct appropriate con-
stitutive relationships. Here we prefer the phenomenological
approach and define the state variable from the shape of the
creep curve for the material. Young’s modulus for a given
value of w is then determined from a series of elastic unloading
and reloading tests. The measured response is compared with
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response of the material. A simple two-bar structure is analyzed to assess the effect
of including the variation of elastic properties with creep damage in structural
analysis. In most practical situations the added complexity involved in incorporating
this effect does not strongly affect the structural response.

the proposal of Chaboche (1979) for the variation of modulus
with creep damage which is based on the physical interpreta-
tion of the damage variable proposed by Odgvist and Hult
(1961).

The proposed material model is used to assess the response
of a simple two-bar structure to a constant load in Section 4,
to give an indication of the likely effect of including the varia-
tion of Young’s modulus in component analysis.

2 A Phenomenological Description of Creep Failure in
Uniaxial Tension

The formalism adopted here was first proposed by
Kachanov (1958) and later generalized by Rabotnov (1969).
For simplicity we ignore the effects of primary creep; the in-
elastic strain rate at a given instant in time is then given by

, n
s fo(0/0,) "

(1-w)?
where n and ¢ are material constants and ¢, is the steady-state
strain rate at a suitably chosen reference stress ¢,. The state
variable w varies from a value of 0 at the start of a test to 1 at
failure. The rate of growth of damage at a given instant can be
obtained from the relationship

. yla/a,)’
aca)y @

where » and  are material constants and o, is the initial
damage rate at a stress ag,. The tests described in this paper
were conducted at constant load and the stress used in equa-
tions (1) and (2) is the nominal stress (load/original cross-
sectional area). The damage, w, in these equations then has
two contributions: from the reduction of cross-sectional
area and the growth of internal voids and cracks.

During steady-state creep, w =0 and the material creeps at a
rate é, where

b =€, (0/0,)". 3)

Figure 1 summarizes the steady-state response over a range
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A n=656
204 e n=656

€,= 11x10~% hr!
£, =2.54x1075 hr™!

Steady state creep rate £, (x10™° hr™)

L 1 T —1
20 25 30 35
Stress o (MPa)

Fig. 1 Logarithmic piots of steady-state strain, rate versus stress for
the two batches of copper

A v=631 (1) =541x1073 hr™!
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Fig. 2 Logarithmic plots of stress versus time to failure for the two
batches of copper
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Fig. 3 Normalized plots of (a) strain against time and (b) strain against
damage

of stress states for two batches of tough pitch copper tested at
300°C (designated batch A and batch B). Also indicated on
Fig. 1 are the values of # and ¢, obtained from the plots,
where ¢, was evaluated using a value of o, =30 MPa.

Integration of equation (2) between the limits w=0 at =0
and w=1 at /=1¢; at constant stress gives

1 00> v
s (1+ )i, ( 0 “
Stress-life curves for the two batches of copper are given in
Fig. 2 where the values of (1 +y) &, and » obtained by fitting
equation (4) are indicated. A value of ¢, =30 MPa was again
used in these calculations.
Integration of equations (1) and (2) between the limits
w=¢=0atf=0and w=w and e=e¢ at t=t gives
1

w=1—(1—-;;—>m )
and
¢ 1+ Naron
;tf(m [1‘(1“3;) | ®
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Fig. 4 Piot of stress ¢ against change in strain Ac¢ for a typical
unloadingireioading test

Substituting equation (5) into’equation (6) gives the relation-
ship between creep strain and damage

€ (1Y NG a oy
e'sstf_(1+¢-—¢)“ (=)o), M

When ¢ = ¢, equation (6) becomes
€r

ey (ﬁ%{)

where e =¢, is the strain at failure. Rabotnov (1969) proposed
that this equation can be used to obtain appropriate values of
¥ and ¢. Use of this equation, however, proved unsuitable for
determining ¢ and ¢ for the two batches of copper due to the
scatter in the values of ¢;. For the present material a more con-
sistent result was obtained by fitting the shape of the creep
curve by adjusting the values of ¢ and ¥ in equation (6). The
best fit was obtained by use of ¢ = 6.3 and ¥ = 7.1. Equa-
tions (6) and (7) are plotted in Fig. 3 using these values of ¢
and v.

3 The Variation of Young’s Modulus With Creep
Damage

A relationship between creep strain and the damage
parameter w was obtained in the last section, equation (7), for
conditions of constant stress. We make use of this relationship
here to develop an experimental procedure for evaluating the
way in which the modulus varies with damage.

3.1 Experimental Determination of Young’s Mod-
ulus. A constant load creep testing machine was adapted to
allow the load to be increased and decreased at a controlled
rate. This was achieved by connecting a servometer to the
jacking system located beneath the loading train. At intervals
during the creep test the specimen was unloaded to approx-
imately 40 percent of the full load at a rate of 0.6 MPa/s. and
then reloaded at the same rate. During this loading cycle the
load was measured using a load cell situated beneath the
specimen and the change in length of the specimen was
measured by a ridge located extensometer fitted with an
LVDT. '

A series of constant-load creep tests were performed on
samples of copper from batch B at a temperature of 300°C. A
stress of 32.4 MPa was selected for these tests to give a failure
time of the order of 15 days. At regular intervals during the
test the load was cycled as just described. A typical
stress/strain loop obtained from a cycle is given in Fig. 4.
Young’s modulus was determined from the slope of the
unloading curve as indicated in Fig. 4. This was found to give
the most consistent values for the modulus. It was observed
that if the specimen was held in the partially unloaded state,
negative creep occurred. This type of behavior is consistent

Journal of Applied Mechanics

Test 1
Test 2

w
Fig. 5 The variation of Young’s modulus with creep damage

with the observation of Davies et al. (1973) who have con-
ducted controlled stress drop tests on a number of materials.
Analysis of the negative creep rate suggests that the effect
could result in a maximum decrease of approximately 8 per-
cent in the measured value of Young’s modulus. This effect
was most pronounced just before failure of the specimen.
Measurements of the modulus taken over a short period of
time suggests that the method of measurement was accurate to
+ 8 percent.

The calculations of Young’s modulus did not take into ac-
count any change in cross-sectional area of the specimen dur-
ing the course of a constant-load creep test. This is consistent
with our interpretation of equations (1) and (2) and the defini-
tion of damage as described in Section 2. In the tests used to
obtain the variation of E with damage, the strain accumulated
at 1/1,=0.95 was typically 3 percent. At this time Young’s
modulus had reduced to 70 percent of its original value and,
therefore, the major contribution to this reduction of modulus
results from the growth of internal damage rather than from
the reduction of cross-sectional area of the specimen.

After completion of a test ¢, and ¢, were evaluated and the
results were presented in the form of Fig. 3(a). These nor-
malizations were chosen to minimize, as far as possible, the ef-
fects of any variation between the different test specimens.
The instances during the test when the load was cycled were
then identified on this plot and the value of damage w, was
determined from Fig. 3(b). The way in which Young’s
modulus, E, varies with « is shown in Fig. 5. The modulus
has been normalized by the modulus of the damage-free
material E measured at the beginning of the test at the test
temperature of 300°C.

3.2 Correlation of Experimental Results. The material
model of equations (1) and (2) is often simplified by assuming
that ¢ =n and ¢ =, In this instance Odqvist and Hult (1961)
assign a physical interpretation to w. They assume that w
represents the effective cracked area fraction of material on
any plane normal to the direction of loading and ¢/1 — w is the
mean stress in the uncracked material, so that the strain rate is
evaluated by using this mean stress, equation (7), rather than
the applied stress. Chaboche (1979) have extended this inter-
pretation to the elastic response and propose that the elastic
strain, €4, should be evaluated using the mean stress in the un-
damaged material and not the applied stress, i.e.

SEPTEMBER 1989, Vol. 56 495
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Table 1 Reference stresses for the two-bar structure of Fig.
6, evaluated for n=5, =4, 8=1, and A =2 assuming (@) that
Young’s modulus is constant and (b) that the modulus is a
function of creep damage.

(a) (b)

3 ag,
i 1.(()?2 o, 1.04{z a,
3 1.02 g, 1.01 0,
10 1.02 o) 1.01 o
30 1.01 g, 1.01 o,
e 42
€=
(1-w)E
Young’s modulus for the damaged material is then given by
E,=(1-«)B @®)

This equation is plotted in Fig. 5 and compares favorably
with the experimental results.

Micromechanical models of void growth during creep
(Cocks and Ashby; 1982) result in a different form of creep
constitutive law to that proposed by Kachanov (1958). The
physical interpretation of w offered by Odqvist and Hult
(1961) as used by Chaboche (1979) is therefore not strictly
valid. If we accept that Kachanov equations as an adequate
description of the creep curve then w should be interpreted as a
parameter that provides a measure of the state of the material
at a given instant in time which is determined from the shape
of the creep curve. For a given creep response equation (8)
provides a measure of the elastic response of the material.
Since we have not assigned a physical interpretation to w, it is
not possible to directly compare the result of equation (8) with
the predictions of Duva and Hutchinson (1984) and Budiansky
and O’Connell (1976) for the elastic response of voided and
cracked media.

4 Computed Failure Times for a Two-Bar Structure

In this section the time to failure of the simple structure of
Fig. 6 is computed for a material that creeps and damages ac-
cording to equations (1) and (2). The structure consists of two
bars of lengths / and N/ and cross-sectional areas A and A,
which are constrained to suffer the same extension under the
action of a constant load P. Details of the calculations are
presented in the Appendix, where, for simplicity, it is assumed
that ¢ =n and ¢ =v in equations (1) and (2). In the computa-
tions it is convenient to adopt the following normalizations

P
Y= A1+ B
and
ot
T e, (147)

for stress and time, respectively, where ¢7 is the time to failure
is a uniaxial test at a constant stress ¢,, and perform the
calculations for different values of the quantity

éot?

E=
€
where ¢é,£2 is the Monkman Grant constant (Monkman and
Grant, 1956) and ¢¢ is the elastic strain at a stress g,

e —.
e&=0,/E.

Small values of € correspond with low strains to failure, where
the elastic response becomes increasingly important in deter-
mining the overall response of the structure.

In the Appendix the effect of the variation of Young’s
modulus with creep damage is assessed by performing two-sets
of calculations. The modulus is either assumed to remain con-
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stant or vary according to equation (8). The results for these
two situations are presented in Table 1 for a range of values of
£, in terms of the structural reference stress

Op =0,

which is the stress required in a uniaxial test to give the same
time to failure as the structure.

The general trend for the two sets of results are similar, with
the reference stress decreasing with increasing values of é. For
small values of & the assumption that Young’s modulus re-
mains constant gives the higher reference stresses, while for
large € the two sets of calculations yield the same value of g5.

These results can best be explained by examining the
bounding results of Ponter (1977) for the life of creeping
structures. Ponter (1977) proposed a global damage measure

1 (I~
—75 v ot Y ©)

where V is the volume of the structure, which grows at a rate
. @ g\"’
9:—-% C-)dV
Viv \g,

when the loading is uniaxial. Initially a structure responds
eclastically and the stresses redistribute with time due to creep
and damage accumulation in the structure. This changing
stress field must be taken into account in the evaluation of 2,
equation (10). Ponter (1977), however, identified an
equilibrium stress field that results in the absolute minimum
value of Q. The appropriate stress field is the steady-state field
for a creeping material with creep exponent equal to (v— 1).
Assuming that the damage always grows at this minimum
gives an upper bound to the life of a component, and thus a
Iower bound to the reference stress og.

Ponter (1977) has also demonstrated that use of a limit-load
stress distribution for a perfectly-plastic material in equation
(10) also provides an upper bound to the time to failure. More
recently Cocks and Ponter (1989) have shown that the rate of
change of Q remains virtually constant during the life of a
component, and extrapolation of the initial rate of growth
provides a good approximation of the time to failure. In this
study the effects of elastic deformation were ignored and the
stress field employed by Cocks and Ponter (1989) in equation
(10) was the steady-state distribution.

The calculations which led to the results of Table 1 were
conducted using »=4 and n=35. For large values of é the
stresses have redistributed to the steady-state distribution
before there is any significant growth of the damage, and the
stresses are at or near the steady-state values for the bulk of
the life. The time to failure is then close to that obtained by us-
ing the steady-state stress distribution in equation (10). For
small values of &, however, significant damage accumulation
occurs as the peak elastic stresses relax and the steady-state
stress distribution may never be achieved. In this instance the
damage always accumulates faster than the minimum rate and
a higher value of o results. When the variation of Young’s
modulus with damage is included in the analysis the stresses
are caused to relax faster in the initial highly stressed regions
as the material becomes more compliant. This smoothing out
of the stress field results in a lower global damage rate and a
lower reference stress.

(10)

5 Conclusions

The variation of Young’s modulus with a phenomen-
ological measure of creep damage has been obtained for a
batch of tough pitch copper. It was found that the relationship
proposed by Chaboche (1979) (equation (8)) adequately
describes the results.

The effect of including the variation of modulus with
damage in the analysis of creeping structures was assessed by
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fA

A

¥

Fig.6 Two-bar structure analyzed in Section 4. Bar 1 is a length of / and
cross-sectional area A and bar 2 is of length M and cross-sectional area

analyzing the simple two-bar structure of Fig. 6. It was found
that its inclusion only affected the results for materials of low
creep ductility. In these situations a conservative estimate of
the life is obtained by assuming that the modulus remains con-
stant. We would expect this result to apply, in general, to
structures composed of materials which damage according to
an effective stress criterion under multiaxial states of stress
(Leckie and Hayhurst, 1974). It is not possible, however, to
extend these results to materials which fail according to a max-
imum principal stress criterion, as the stress field that gives the
minimum global damage rate (Ponter, 1977) can differ
significantly from the steady-state creep stress distribution
(Cocks and Ponter, 1989).

Monkman and Grant (1956) have analyzed the creep data
for a range of engineering materials and find values of ,#°,in
the range 0.02 to .40. In practical situations the reference
elastic strain €,° is of the order of .001, giving values of ¢in the
range 20 to 400. For these values of & inclusion of the variation
of Young’s modulus with creep damage in structural analysis
has an insignificant effect on the predicted response of the
structure.
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APPENDIX

Failure Analysis for a Two-Bar Structure

When analyzing the two-bar structure of Fig. 6, it is conve-
nient to use the following normalized variables:

14
=", S=0/0,(1~w)and 7=—
o 143

o f
where
0,= P and 19 = !
°TA(1+P) S e, (14
Equations (1) and (2) for the creep response then become
d c
b= = €, 198" (A1)
T
and
v
_ﬂz__s__ (A2)
dr (1+v)

where the dots now indicate differentiation wers¢+ 7. The total
strain rate at any instant is a combination of the elastic and

creep responses
E=E €8, (43)

The compatibility requirement for the two-bar structure is that

the two bars must extend at the same rate, i.e.,
€1 =Né;y (A4)

where a subscript refers to the bar under consideration. The
equilibrium condition can be expressed as

L, 485, =1. (45)

Here we analyze the situations where the modulus E remains
constant and varies according to equation (8).

A.1 Analysis for Constant E. When the modulus re-
mains constant the elastic response can be expressed as

fe=elk (A6)
where
e =0,/E.
Combining equations (A44), (43), (A1), and (46) then gives
AL, =%, =&S% —\S%) (A7)
where
= éot;"
€

¥, can be expressed in terms of i)z using the rate form of equa-
tion (45). Equation (A7) then becomes

L, = &S — ASL)/ (M +B). (A8)
This equation must be integrated along with
. Sy
and D) 49
v
= Ty

to give the variation of stress and damage with time.
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An Eulerian integration scheme was adopted in the present
analysis with the variation of a quantity, such as w,, during a
time increment A7 being given by

(A10)

where the quantities &;, ®,, and Zz are evaluated using the
values of §; and S, at the start of the increment. A bar is taken
to fail when w=0.9, and the time to failure of the structure,
77, is evaluated by summing all the time increments A7 up to
the instant when the second bar fails. The normalized
reference stress is then given by )

Aw; =0, AT

Le=ry " (1)

A.2 Analysis When E is a Function of w. When E varies
with w according to eqn. (8), the elastic response becomes

498 /Vol. 56, SEPTEMBER 1989

é,=elS (A412)
Combining this with equations (44), (43), and (A44) gives
AS, — §; = &S — \S%).

Substituting for §, using the relationship of equation (A5)
gives

§ = (E(ST—NSD+(BS3H! + S+ 1)/ (1 +»)(1 - w)))

i 1481 —w)/(1-w)) '
This equation was integrated along with equations (49) using
the Eulerian scheme described in the last section. The
reference stress was again evaluated using equation (411).

Computations were performed using n=35, v=4, =1 and

A=2 for a range of values of &. The results of these calcula-
tions are summarized in Table 1.
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An Anisotropic Hardening Rule for
Elastoplastic Solids Based on
Experimental Observations
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A hardening rule is described based on yield and memory surfaces. A memory sur-
Sace indicates the extent of loading, and a yield surface is the locus of the elastic
region. We define a hardening modulus curve which relates the change in size of the
yield and memory surfaces to the tangent modulus of the material at the maximum

load. The evolution of the yield surface is described for both the proportional and
nonproportional loading paths. Both quasi-static and stable cyclic loading is con-
sidered. An attractive feature of this nonlinear hardening law is that the material
constants associated with it are limited—three in all—and they can be easily deter-
mined from a simple test. The predictions of the proposed hardening law are com-
pared with the experimental data for proportional and nonproportional loading
paths, and are found to be in good agreement.

Introduction

Mechanical/structural systems in modern industrial plants
are generally subject to complex loadings. Because of the
functional requirements, design details, and manufacturing
process, local plastic flow takes place in almost all of the im-
portant mechanical/structural components. Most design
codes recognize the inevitability of such an occurrence and
allow for the local stresses to exceed the elastic limit of the
material under operational conditions (see, for example,
ASME Boiler and Pressure Code (1983)). Furthermore, vital
components, such as safety devices, have to be designed to
withstand overload or prescribed accident/emergency condi-
tions. Generally, elastic-plastic analysis is carried out to
demonstrate compliance with the requirements. However, the
predictions of this type of analysis are only as good as the
model assumed for the material behavior.

The unprecedented advances in the computational methods
and increases in the computer memory, now permit us to use
more realistic hardening models, to some extent, indicative of
the true material response. It is the objective of this paper to
present a hardening model which is based on the observations
made from the experimental data. An attractive feature of this
hardening law is that the previously proposed classical harden-
ing rules can be derived as particular cases. Furthermore, the
parameters required to specify the proposed model can be
easily obtained from a simple test.
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It is not within the scope of this paper to review the con-
tributions made by numerous investigators on the yield sur-
faces. Review articles such as Paul (1968), Ikegami (1975),
Hecker (1976), and Phillips (1986) could be consulted for a list
of such contributions.

Background

The constitutive relations of solids in the multiaxial stress
states are generally extensions of observations made from the
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Fig. 1 Uniaxial stress-strain curve of an elastic-plastic material
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Fig. 2 Yield and memory surfaces in two-dimensional stress space for
shear prestrain of commercially-pure titanium, specimen Q

uniaxial tension (or compression) tests. It may therefore be in-
structive to review briefly the material response to simple
loading and unloading in the uniaxial stress state. Figure 1
shows a typical stress-strain curve of a strain-hardening
material. Up to 0A the response is linear and the process is
reversible. Upon further loading, permanent deformations set
in as a result of the irreversible plastic flow. For example,
when the loading is reduced at point B, the initial response is
linear up to point C, and it is essentially parallel to 0A. When
the unloading is further continued, an irreversible domain is
entered (CD). Reloading from D we again observe a linear
portion DF#2(0A) followed by a nonlinear response FB’,
Two important observations are: (a) the curve following
reloading does not pass through the unloading point B and
(b) the linear portion BC following the unloading is not equal
to the sum of the linear portions in tension and compression,
i.e., BC#2(0A). The latter is generally known as the
Bauschinger effect. Another observation to note is that the
linear portion upon unloading and reloading, C'F’, depends
on the maximum loading point B’.

To define the linear response regions (0A, BC, DF, etc.) ex-
perimentally, one has to load beyond it, and enter into the ir-
reversible region. The imposed amount of plastic strain, &e,
has to be larger than the zone of measuring accuracy and small
enough not to cause a change in the orientation of the
crystalline structure. In experiments performed by Ellyin and
Grass (1975), this limit was set equal to 20x 10~ cm/cm
(0.002 percent). The points A, F, C, etc., are then obtained
from the back extrapolation of the tangent and the linear
response (Phillips et al. (1972); Ellyin and Grass (1975)).

The generalization to the biaxial stress state is shown in Fig,
2. Two types of surfaces are shown in this figures. One which
corresponds to point B in Fig. 1, hereinafter termed the
memory surface; it indicates the extent of the maximum
loading. The other surfaces corresponding to points A, C, F’,

in Fig. 1, are called yield surfaces, which indicate the locus of

the elastic response. The surface corresponding to point A is
the initial yield surface whose shape in the stress space is
generally elliptical.

Existing incremental theories of plasticity differ from one
another in the choice of the hardening rule which specifies the
change of the yield surfaces during plastic deformation. In an
effort to better describe the experimentally observed evolution
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of the yield surfaces than the classical isotropic or kinematic
hardening rules, ‘‘multi-surface’’ theories have been pro-
posed. For example, in Mroz’s model (1967) a family of con-
centric hypersurfaces were introduced in the stress space cor-
responding to constant hardening moduli. The evolution
equation was derived by assuming that the initial and subse-
quent surfaces were translated along the loading path without
intersecting one another.

The above model was subsequently simplified by Kreig
(1975) and Dafalis and Popov (1975). In these models the
family of constant moduli surfaces of Mroz were replaced by
two surfaces: an outer bounding surface and an inner yield
surface. The evolution equations then describe the motion of
yield and bounding surface. For example, in Dafalis and
Popov’s (1975) model the motion of the yield and bounding
surfaces is coupled, and is of a Ziegler (1959) type. A bonding
or limiting surface simplifies the analysis, but its interpreta-
tion from a physical point of view can only be made at a
limiting case.

Interpreting the experimental observations, Phillips and Lee
(1979), and Ellyin et al. (1975, 1983) arrived at similar conclu-
sions with some variation in details. It is to be noted that
Phillips’ experiments were in the small deformation range,
while those of Ellyin are extended into the finite deformation
domain. In Phillips and Lee’s experiments on commercially-
pure aluminum, the evolution of the yield surface was explain-
ed in terms of a loading surface expanding isotropically in the
stress space and passing through the maximum loading point.
The motion of the yield surface was deduced to be in the direc-
tion of the prestress, do, when the angle with the normal n to
the yield surface is small. If the angle between the two is large,
then the motion is between de¢ and n with do being the
predominant factor. The experimental investigation on
commercially-pure titanium by Ellyin et al. will be described
next.

Experimental Observations

As mentioned earlier, experimental determination of yield
surfaces requires special care and instrumentation. Generally,
thin-walled tubes are subjected to combined axial force and
torsion (or internal pressure). A strict determination of the
yield point (limit of the material’s elastic response) at various

Transactions of the ASME
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stress paths from a point inside the yield surface, is an essen-
tial prerequisite. The residual strain (accumulated plastic
strain along various paths during determination of the yield
surface) must be small enough to insure a closed yield surface
corresponding to a given prestrain or prestress.

Figure 2 shows the initial and subsequent yield surfaces cor-
responding to various torsional prestrains. Each surface is
identified by a set of letters and numbers, I' (Q-ia) where Q
identifies the specimen and i = 2-5 denotes the subsequent yield
surfaces; I' (Q-1a) being the initial yield surface. The sequence
of loading for this test was ABCDEFGH. Two types of sur-
faces can be identified in this figure. A set of seif-similar sur-
faces passing through the maximum loading point which are
termed memory surfaces.! The memory surface at first coin-
cides with the initial yield surface and expands uniformly and
remains self-similar with the increased deformation; thus it
obeys the isotropic hardening model. On the other hand, each
subsequent yield surface (locus of the elastic domain) changes
in shape and moves in the direction of loading, but it always
remains inside the corresponding memory surface. In the case
of quasi-static loading, the subsequent yield loci gradually
contract and tend towards a limiting value. Therefore they do
not, in general, follow the kinematic hardening rule. In Figs.
2, 3, and 5, the mean normal stress is identified by Q, and the
mean shear stress by Q,;. In the case of thin-walled tubes,
Q.=o,and Q,=17,,.

To illustrate further the evolution of the yield surface, let us
examine specimen ‘““N’’ which is pretorqued initially, follow-
ing a path similar to that of the specimen Q (path ABC-
DEFGHIJK"), Fig. 3. The last surface corresponding to the
torsional path J is denoted by I'(N-6a). Note that in both
cases, specimen Q and N, there is a strong cross effect, i.e.,
decrease in the elastic limit in shear is accompanied by a
similar decrease in tensile elastic limit. In Phillips’ investiga-
tions (1986) no such cross effect was observed. The reason is
most probably due to the small magnitude of the prestrain in
Phillips et al.’s experiments. In Figs. 2 and 3, the proportional
part of the strain path is up to plastic shearing strains:

(% )N=8.5 percent, and (v%;) o = 13 percent. ,

When the specimen N is further subjected to a nonpropor-
tional strain path K’KMM'LNPQRSS’, the corresponding
yield loci are denoted by I'(N-7a) to I'(N-10a). It is seen that
the subsequent yield surfaces change in shape and rotate, but

IThe term memory surface was used by Ellyin (1983) and independently by
Tseng and Lee (1983), as opposed to Phillips loading surface.

Journal of Applied Mechanics

always remain inside the memory surface. However, once the
loading exceeds the previous maximum effective stress, (point
J) the subsequent yield loci I'(N-9a) and I'(N-10a) move almost
parallel to the prestress path, QS.

It is to be noted that the experimental data in Fig. 2 and 3 in-
clude whatever effect shear deformation (large or small) has
on the material behavior.?

Expressions for Memory and Yield Surfaces. As mention-
ed earlier, the memory surface obeys the isotropic hardening
rule, and we use the stress as a parameter of loading history.
Thus, the loading function is given by

P =fm(‘7ij)”‘c(0*):0r ey

where f,, (0;;) is the yield function, and ¢(¢*) is the maximum
value achieved by the function f, (¢;) during the plastic defor-
mation. In particular, in the case of the von Mises yield condi-
tion we get:

fm(aij)sz and ¢(0™) = (J2) max» 2

where J, =s;5;/2, and s;=0;—0,40,/3, is the deviatoric
stress.

For the subsequent yield surfaces, we use a combination of
the kinematic and isotropic hardening models, i.e.,

d’y:fy(aij_aij)—qzoa (3)

where o;’s are the coordinates of the centers of the subsequent
yield surfaces, and ¢ is a measure of the yield surface
contraction.

In most two or multi-surface theories, the function g in (3)
is taken to be proportional to the length of the plastic strain
trajectory,

) 172
&= S (Tde’,?jde‘,?j) , @)

e.g., Mroz (1967), Dafalias and Popov (1975). In Tseng and
Lee (1983) g is related to the plastic strain trajectory and
plastic work, but no explicit relation is given. McDowell
(1987a) advocates a constant value of ¢ based on experimental
data which is more appropriate for the stable cyclic loading.
Note that a constant ¢ indicates that the elastic regions does
change with the imposed plastic strain history which generally
may not be the case (e.g., see Figs. 2 and 3).

ZSee Drucker (1985) for a discussion of treatment of the continuum rotation
associated with the shear deformation.
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An investigation of the experimental results reported by
Ellyin et al. (1975, 1983) indicates that there exists a relation-
ship between the tangent modulus, F,, of the material and the
ratio of the yield surface area (or memory surface) to that of
the initial yield surface (see Fig. 4). This relationship will be
termed the ‘‘hardening modulus curve.”’

Expression for the Hardening Modulus Curve

As discussed earlier, experimental results for a number of
metallic materials indicate that the shape and size of subse-
quent yield surfaces do not generally remain constant with the
increased plastic deformation. Therefore, it is suitable to use
the area of the yield surface in the II-plane to indicate its rate
of change. In Fig. 4, A is the area of the memory surface or
the subsequent yield surface: A, is the area of the initial yield
surface (loading from a virgin state), and E, is the tangent
modulus at the point of the initial yield. When A/4,>1, the
curve represents the relationship between the memory surface

and the tangent modulus at the maximum load, E,. For-

A/A, <1, the curve depicts the relationship of the subsequent
yield surface with the same tangent modulus. Generally speak-
ing, the slope of the curve at the A/4, <1, is steeper than that
at A/A,> 1. Note that the tangent modulus is constant when
moving on a given memory surface.

For the hardening modulus curve, the following relation-
ship would apply (Ellyin and Wu (1987))
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Table 1 Material Properties of Commercially-Pure Titaninm
50A

Young’s Shear Equation (18) Equation (6)
Modulus Modulus
E, (GPa) G (GPa) K (MPa) 1/n k
103.6 40.7 607 6.936 0.3
+1.2 +1.3 +70 +0.9 +0.05
— (w—12726%
E (v, k)=Ee" , 5)

where w=A/A, represents the area ratio of the memory or
yield surface relative to the initial value, and k& is a parameter
indicating the extent of hardening. In general, 0<k=1, and it
controls the slope of the hardening modulus curve. Two dif-
ferent values for k can be chosen to represent the dissymmetry
of the curve about the A/A4, =1 axis. For a given material, k is
constant and it can be determined through a suitable experi-
ment involving loading and unloading (see Fig. 1).

The loading (strain) path program of the commercially-pure
titanium is shown in Fig. 5 and the material properties are
given in Table 1. The experimental results of specimen R (axial
loading followed by partial unloading and subsequent tor-
sional loading) are depicted in Fig. 4, as well as the curve
predicted by equation (5). For this case, k=1 for A/A,=1
and k=0.3 for 4/4,<1.

It would be useful to analyze further the hardening modulus
curve. Equation (5) can be written as,

w=1xk(In(E,/E,)?2. 6

If the stress-strain relation of the material is known, then at
any given stress, we can calculate E,, and determine the RHS
of (6). The positive sign in (6) is for the memory surfaces and
the negative sign and, in general, is associated with the subse-
quent yield surfaces. For expanding yield surfaces one can use
the positive sign with a different k value.

It is clear from equation (6) that the rate of change of the
subsequent yield and memory surfaces depend on the material
parameter k. For smaller values of k, there would be smaller
dispersion of the hardening modulus curve, with respect to the
vertical line, w=A/A, = 1. In the limit when k—0, the harden-
ing modulus curve collapse to line 4/4,=1, and we obtain
the kinematic hardening rule, Fig. 6(b). On the other hand,
when the hardening modulus curve is symmetric with respect
to line w=1, we then recover the isotropic hardening rule, Fig.
6(a). It is, therefore, clear that the hardening modulus curve
Fig. 4, (equation (6)) can be viewed as a general description of
the material hardening process, and the isotropic and
kinematic hardening laws are but two particular cases of it.
Whether equation (6) applies to more complicated strain paths
than those shown in Fig. 5, remains to be verified. One
limiting case could be a class of materials whose stable cycle
curve is not unique (see section on cyclic loading).

Evolution of Yield and Memory Surfaces

The hardening modulus curve described in the previous sec-
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tion indicates the relationship between the size of the memory
or yield surfaces and the tangent modulus at the maximum
load, E,, of the stress-strain curve. It does not, however, give
the change of the position of the yield surface during the
loading process.

It was indicated earlier that subsequent yield surfaces move
along the prestressing path for the proportional loading, Fig.
2. For the nonproportional loading, the motion of the subse-
quent yield surface is more complex (see Fig. 3). The direction
of its motion deviates from that of the loading path. Ellyin
(1983), based on the analysis of the experimental results,
deduced that the motion of the subsequent yield surface is as
follows: The center of the yield surface moves parallel to the
direction of the vector, connecting the starting point of the
stress path (on the current yield locus) to a point on the cor-
responding memory surface whose exterior normal is parallel
to the outward normal of the instantaneous yield surface at
the start of loading. The above rule applies as long as the yield
surface remains inside the memory surface. Figure 7 is a
schematic representation of the motion of the subsequent yield
surfaces with various prestressing paths (Q, and Q, are
averaged principal stresses, Q, =0, and Q,=o, in a thin-
walled section). For example, the motion of the subsequent
yield surface I, when prestressed along DF is obtained by
finding point E on the memory surface whose exterior normal
ng, is parallel to the outward normal at D, ny. The center of
the subsequent yield surface then will move in the direction
parallel to DE and will remain inside the memory surface.

The evolution law thus described is, in a sense, a generaliza-
tion of that of Phillips. That is, in the case of monotonic
loading, the yield surface moves along the stress path and re-
mains tangent to the memory surface. However, once there is
a reversed loading, the motion is according to the rule de-
scribed by Fig. 7, which is of the Mroz type. The necessity of
describing two hardening rules is well described in the con-
cluding part of Phillips (1986) review of his experimental
work. This, of course, could not be done by plasticity theories
with either a single surface or those with limit surfaces. To
describe the aforementioned evolution equation we note, from
Fig. 7, that when the loading path remains inside the memory
surface, the motion of the center of the subsequent yield sur-
face may be expressed as,

daU=d”[(ay)m_ (alj)y]a (7)

where (o;;), is the stress point on the yield surface at the begin-
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ning of the loading increment, e.g., point D in Fig. 7 and
(0;;) m is the corresponding point on the memory surface, ¢.g.,
point E in Fig. 7.

For a monotonic or reloading path exceeding the current
memory surface, the memory surface will expand and the yield
surface will move in tandem with it, having the same tangent
at the loading point. This condition is mathematically ex-
pressed as:

d[afy(oij_aij) —p afm(o'ij)] =0
doy; day;
where p is a proportionality factor.
Returning to Fig. 7 and relation (7) we note that the direc-
tion of outward normals at points D and E must be the same.
Since the starting point of loading, i.e., (o) p is known, our
task therefore is to find the corresponding point (o;) £ on the
memory surface. The point on the memory surface is obtained
from the solution of the following equations:

®

fm(0y) =)\6fy(0,-j—a,-j ©)
60,-j 05 =0 m 6a,~j 9 =)y ’
and
S (03) Yoy — (g —€(0%) =0, (10)

Equation (9) specifies the condition that the gradient of the
memory surface at E is proportional to that of the subsequent
yield surface at D (Fig. 7). The coefficient A in (9) is a propor-
tionality constant. The supplementary condition (10) ensures
that (o;;),, is on the memory surface and thus satisfies equa-
tion (lﬁ. Note that in the aforementioned equations (o;;),,
Jm(0y), [y (0 —ay) are known, and thus we have ten equa-
tions in ten unknowns (o) ,, and A.

To determine the scalar du in (7), we use the consistency
condition, i.e., when the stress point D remains on the yield
surface during the loading process, then d¢, =0. From (3),

ad
do, = f:y (doj;—day) ~dg=0. (11)
ij
Substituting from (7) we get,
a
Y/, do;—dq
a()'ij
(12)

du= .
(o) — (0ir) 101, /00y
The description of the hardening rule when the stress path
remains inside the memory surface, is now complete through
specification of four relations (7), (9), (10), and (12).
Similarly, from (8) and (11), we get du;; and u which com-
pletes the description of the hardening rule when loading ex-
ceeds the current memory surface. Note that in the previous
formulation the function ¢ is kept general, and a special form
of it will be discussed in the following section.

Particular Case: Plane Stress Condition

Let us now consider the plane-stress case in more detail. The
motivation for this stems from the fact that most experimental
investigations are carried out on thin-walled tubular specimens
loaded by a combination of tension-torsion. A state of plane
stress then exists at the exterior surface of the tube. For the
sake of illustration, we will assume that the material obeys von
Mises’ condition, then the memory surfaces (1) with condition
(2) are given by,

b= (03'*'37%\9')_ (62)max:0 (13)

where &°=3J,. The above relation indicates a family of
ellipses similar to von Mises yield criterion.

The subsequent yield surfaces have a slightly distorted ellip-
tical shape. We may represent them by an anisotropic yield
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function, or use a number of other proposals, for example,

Phillips and Weng (1975), Eisenberg and Yen (1984), and

Budinansky (1984). Since the purpose of this section is to il-

lustrate the proposed theory, for the sake of simplicity we will

use von Mises-type yield criterion as a first approximation.
In this case, (3) will be represented by,

¢y=(ox—ax)z+3(7’xy—-axy)2—q=0. (14)

It can be shown that in the case of both the von Mises and
Tresca yield conditions,

Algq)

A,(®
and thus g=¢(E,) can be found from the hardening modulus
curve (6), i.e.,

q(E)) =al[l —kNIn(E,/E)]. (16)

Substituting from (16) into (14), the subsequent yield loci are
given by,

¢, = (0, — ) +3(1,, — )2 — 02[1 - kVIn(E,/E,)*1=0.(17)

The value of the tangent modulus, E,, for a monotonically in-
creasing load can be obtained, for example, from Ramberg-
Osgood type relation,

é=(6/E,) + (6/K)V"

1s)

q
T
o}

(18)
which results in:

E,=E,/[1+(E,/nK) (5/K) =1/ (19)

In the previous equations n and K are parameters chosen to
provide the best fit to the stress-strain curve of the material,
E, is the elastic modulus.

To find the corresponding point of the memory surface, we
use conditions (9) and (10). Noting that the gradient on the in-
stantaneous yield surface, ¢,, is taken at a definite point (D),
substitution from (13) and (17) into (9) yields,

(ox)m :A(ox_a’x)y)

(Txy ) m= >‘(Txy Oy )y . (20)

The coordinates of the loading point, D, and the center of the
current yield surface (see Fig. 7) are known and consequently,
the magnitude of the terms in the parentheses on the RHS of
(20) can be calculated. Substituting from (20) into (13), the
value of the X is then determined; thus, the coordinates of the
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corresponding point on the memory surface are obtained from
(20).

Comparison with Experimental Results

Let us now examine some of the experimental results for the
paths shown in Fig. 5. The results for the axial prestrain path,
(specimen R) are shown in Fig. 8. As to be expected, the direc-
tion of the motion is along the prestress and the predicted
coordinates from equation (20) are exactly the same as points
F and H in Fig. 8.

In the next two examples, the loading path is first propor-
tional and then a nonproportional path is imposed. For exam-
ple, in Fig. 9, the initial loading path is along the torsional axis
(pretwist) followed by a nonproportional tensile prestrain
(c.f., Fig. 3). The first subsequent yield surface in the non-
proportional path is I'(N-7a) with its center at 0,. Now the
loading path is from D to F. The experimental yield surface is
T'(N-8a) with its center at 0,. 0,0, is the actual direction of mo-
tion. If a line parallel to 0,0, is drawn from D (loading point
on yield surface I'(N-7a)), it will intersect the memory surface
at E. The point obtained from equations (20) is E’; the max-
imum deviation in parallelism in this case is about seven per-
cent. Similarly, in the case of combined (oblique) proportional
loading followed by a nonproportional pretension path, Fig.
10, the maximum deviation in the parallelism is about ten per-
cent. We therefore observe the agreement between the observ-
ed motion and the predicted direction is fairly good, not-
withstanding the von Mises shape approximation.
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Plastic Flow Rule

In this section, we will derive an incremental law relating the
increment of the strain components to those of the stress and
stress increment for the case of small deformations. The usual
assumption regarding the total strain increment decomposi-
tion will be made, i.e.,

dey =de%; +dey. @1)

The increment of the elastic components of strain are

related to the stress increment through the generalized
Hooke’s law,

1

dE‘fJ:—E'—[(l +V)6lk6JI_V61_/5kI]d0k1 (22)

For the increment of the plastic strain components, the con-

sistency condition will impose that they be proportional to the
quantity (Kachanov, 1971):

df, = &y

ao'k[

day,, (23)
where the increment df), is carried out while the plastic strain is
held constant. In addition, we can use von Mises flow rule
which states that the increment of the plastic strain rate lies
along the exterior normal of the yield surface, i.e.,

9 i)
def; = g Sy df, for /; doj, =z 0 and ¢,=0,
aoij 30k1
@4
dell?j =0 for dUk/ < 0; or ¢y<0’
a(fk[

kRl

where the proportionality factor “‘g”’ is a function of the
material hardening. The relations in equations (24) along with
the yield surface (3) completely determine the plastic strain
increments.

To determine the hardening function g, we proceed as
follows: For metals, the plastic strain increment is not nor-
mally influenced by the hydrostatic pressure, thus:

o, _ o,

de?, =0, = . 25
i aaij asij ( )
Substituting from (25) into (24) we obtain,
af, af,
det; = 2 2 ds,,. 26
GU & 3S,~j Gsk, Ski ( )

By specializing (26) to the uniaxial tension case, and noting
that

Jy(o;—ay) =q, and do/de? = EP , we get,

1 1 1 1
= e | — — -1 27
E=44Er 4 (E, Eo)q @7
where the value of the tangent modulus £, can be obtained
from (19).
An alternative and more general expression can be found by
multiplying (26) by itself, and using definition (4) which yields

g:d?/[gQLEZL<aﬂymMJZ]1Q.

Baij aO’U 30k1

(28)

It is to be noted that the hardening function (27) or (28) con-
tains the loading history through the change of ¢, and E, is a
function of the current stress level. Thus, g is a function of the
loading history, and the current stress. A more restrictive
assumption was made by Ziegler (1959) and retained by
Dafalias and Popov (1975) in relating the stress and strain in-
crements. It was assumed that the projection of do; and of
doy; on the normal are the same. Substituting from (27) or (28)
into (26) the increment of the plastic strain components is
completely determined.
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If we employ (28) for the hardening function g, then func-
tion g in (3) could also be related to the length of the plastic
strain trajectory, &. However, using (27) and (16) simplifies
calculation considerably.

Combining (26) and (22) we obtain,

1 of, o,
dey = {101+ 95,0~ 90,001+ c8 o 5 Yo, 29
where,
ad
¢ =1 for /y do, =0 and ¢, =0,
Aoy
a
¢ = 0 for /s doy <0, or ¢, <0, 30)
aokl

It may be more convenient to express (29) in its inverse
form, i.e.,

€2)]

where L, can be found after certain algebraic manipulations
(Ellyin and Xia (1987)). By suitable definition of stress and
strain rates, (31) can be generalized to the finite deformations
(see Neale (1981)). However, this is beyond the scope of this
paper and will not be discussed further.

doij :Lijkldékl

Reversed and Stable Cyclic Loading

The hardening modulus ¢‘g”’ given by (27) requires calcula-
tion of the tangent modulus, E,. As pointed out earlier for the
monotonically increasing load, this can be calculated from
(19). Also, when the stress path is inside the yield surface, the
tangent modulus is E£,. Thus, for any stress path outside the
yield surface and inside the memory surface, the tangent
modulus must have a value between the two aforementioned
values. For example, we note from Fig. 11 that for every point
on the yield surface, there is a definite distance § between it
and the memory surface, e.g., D, E. We seek a relationship
between § in the stress space and d of the uniaxial stress-strain
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curve, (c.f., Fig. 11(a) and (b)). Referring to Fig. 11(a), an
elastic unloading will take place from B to C. Continuing the
reversed loading, the plastic flow will occur and the yield sur-
face will move as shown in Fig, 11 (b). We note that the ratio,

_ dl _ 5,

d, 8
uniquely determines the corresponding point on the reversed
loading path. At C, d,=0 and r= oo, thus E,=FE, and at E’,
dy=0,r=0and E,=E". Thus, r will be chosen to correlate
the tangent modulus (and E, for any loading path inside the
memory surface). From (18) we get,

(32)

E,
E = : (33)
+ Eo [ O max + ro-o:l (n—1)/n
nkK L (1+rK

In the multiaxial stress state, §, is the distance between the
current stress point D and the corresponding stress point on
the memory surface whose outward normal is parallel to that
at point D. The distance 8, is measured from the point of the
onset of the plastic flow D,, to the point D (see Fig. 11(b)).
The distance between two points is measured in the stress
space and its projection in the deviatoric space, 8, is given by
the Euclidian metric,

6=[(s?P — sDY(sP —sP))'72, 34

The rule of determining the tangent modulus has certain ad-
vantages to those proposed by Dafalias and Popov (1975), and
Tseng and Lee (1983), i.e.,

EP=EP (1 +h ) (35)

n
where §,, is the value of é at the initiation of yield for each
plastic loading. Since §,, changes for plastic loading and
unloading, then one may encounter a situation whereby
8> 6;,. In addition, the value of 4 has to be found through fit-
ting by a number of material parameters. McDowell (1987)
has discussed various proposals for the hardening modulus 4,
and concludes that one should normalize § with a parameter
which is a function of history of loading. The parameter r, as
defined by equation (32), satisfies such a requirement. It is to
be noted that the proposed theory is an incremental formula-
tion and, as a result, no jump discontinuities are experienced
during any elastic unloading process where dg=0.

Figure 12 is an example of the stable hysteresis loops for a
proportional biaxial cyclic loading. In this test a circular cylin-
drical specimen was subjected to cyclic axial load and constant
external and fluctuating internal pressure. (For the description
of the experimental setup, see Ellyin and Valaire, 1982). The
specimen was subjected to equi-biaxial strain (e, =¢,) under
deformation-controlled mode with zero mean strain. The
material is ASTM A-516 Gr. 70 steel and all the pertinent
mechanical and cyclic properties are given elsewhere (Ellyin
(1984)). It is to be noted that the stable uniaxial cyclic curve is
used to predict the biaxial stable response. The experimental
hysteresis loops are very similar to those predicted by the
theory and only the maximum and minimum values are in-
dicated on the figure.

It may be pertinent to mention that the motion of yield sur-

faces for stable proportional loading is similar to that of the.

monotonic loading (see, for example, Ellyin and Neale
(1979)). For the cyclic loading, the monotonic stress-strain
curve has to be replaced by stable cyclic loading curve whereby
the strain hardening or softening of the material is taken into
account. In the case of nonproportional cyclic loading, some
materials show additional hardening (e.g., see Lamba and
Sidebottom (1978)). While the evolution of the yield surface
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Fig. 12 Stable hysteresis loops for an equibiaxial proportional strain-
controlled loading and comparison with experimental values

can be described by (7) and (8), the transient response cannot
be predicted from the uniaxial cyclic curve alone. This type of
behavior will require specification of additional material
parameters (see, for example, Kremple (1984), McDowell
(1985), and Ellyin and Xia (1988).

Conclusions

The elastoplastic response of solids is modeled based on two
types of surfaces, memory and yield loci. A memory surface,
¢, indicates the extent of the loading, and a yield surface, ¢,,
portrays the locus of the elastic region. Based on the ex-
perimental observations, a hardening modulus curve is de-
fined which establishes a relationship between the memory
and vyield surfaces in the II-plane with the tangent modulus of
the material at the maximum load. Thus, it becomes possible
to predict change in size of the subsequent yield surface from
the stress-strain relation of the material.

The evolution of the yield surfaces is predicted from the
position of the loading on the yield surface. The motion of the
center of the yield locus is parallel to the direction connecting
the starting point of the stress path to the point on the memory
surface whose exterior normal is parallel to the outward nor-
mal of the instantaneous yield surface at the start of plastic
deformation (see Fig. 7) as long as the stress path remains in-
side the memory surface. This evolution is described
mathematically and the hardening rule of the solid is given by
three equations (7), (9), and (12). When the stress path moves
outside the memory surface, then the motion of the center of
the yield surface is given by (8) and (11).

An attractive feature of the proposed hardening rule is that
it contains only three material constants which can be easily
obtained from a simple test. The prediction of the proposed
theory are compared with test results for various proportional
and nonproportional loading paths, and the agreement is
found to be fairly good (see Figs. 8-10).

The change of tangent modulus during reversed loading is
described by relations (32)-(34) and an example of stable
cyclic loading is given in Fig. 12.

Based on the proposed hardening rule, an explicit relation-
ship is given relating the increment of the plastic strain to the
stress and stress increments, equations (29)-(31).
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On the Inversion of Residual
Stresses From Surface
Displacements

When plastic damage regions are accumulated in a material, there exist residual
displacements on the surface of the material after all the loadings are removed. The
residual displacements are defined as the difference between before and after
loading, and can be measured experimentally without destruction of the material.
This paper addresses the problem of evaluating the residual stress field caused by the
accumulation of the plastic damage regions in a subdomain of the material. The
problem is formulated as a system of integral equations relating the surface
displacements to the unknown plastic strains. The damage domain, which appears
as the domain of integration of the integral equations, is also unknown. Determina-
tion of the shape of the damage domain, together with the plastic strains, is a very
complicated nonlinear problem. In addition to the residual surface displacement
data, it requires more information about the loading history or other restrictive
assumptions. However, the residual stress field in the vicinity of the damage domain
is obtained after the equivalent damage domain and the equivalent plastic strains are
introduced. The problem is an inverse problem, which is substantially different from
the conventional forward analysis of structural mechanics. Special attention is given

Zhanjun Gao

T. Mura
Fellow, ASME
Department of Civil Engineering,

Northwestern University,
Evanston, IL 60208

to the uniqueness and stability of the solution.

1 Introduction

The term “‘inverse’’ or ‘‘ill-posed’’ problems includes a
huge variety of problems of different sorts and origins. Usual-
ly it implies identification of inputs from outputs, or deter-
mination of unknown causes from known consequences.

Inverse problems are becoming more and more important in
many fields of science and engineering. Stanitz (1988) studied
the problem of designing a channel for arbitrarily prescribed
velocity distribution along the channel walls. Dulikravich
(1988) presented a methodology to determine shapes, sizes,
and location of coolant flow passage in an internally cooled
turbine if temperature and heat fluxes are specified. The
problem of determining the coordinates of an airfoil for a
given surface pressure distribution was investigated by Sobiec-
zky (1988). The recent progress of inverse problems related to
structural mechanics has been reviewed by Kubo (1988). Other
typical examples of inverse problems include reconstruction of
a tomographic image from X-ray shadow pictures, inverse
scattering for detecting defects of materials, determination of
mass distribution of mechanical structures by their natural fre-
quencies, estimation of the properties of the earth, identifica-
tion of heat conductivity from boundary temperature distribu-
tion, etc.
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In our previous papers (Mura, Cox, and Gao (1986), Gao
and Mura (1988a), and Gao and Mura (1988b)), we have con-
sidered the inverse problem of damage evaluation from the
residual surface displacements. A numerical scheme has been
developed to solve the corresponding ill-posed integral equa-
tions of the first kind. The problem is essentially a nonlinear
problem since the shape of the damage domain is unknown to
us. The concept of equivalent damage domain and equivalent
plastic strains was introduced to avoid the nonlinearity of the
problem. The equivalent damage domain can be chosen as any
domain covering the real damage domain. The equivalent
plastic strains are the fictitious plastic strains inside the chosen
damage domain, which generate the measured residual surface
displacements. This enables us to compute some characteristic
quantities associated with the damage of the material. These
quantities include lower bounds of the strain energy or any
other quadratic functions of the plastic strains, etc. In this
paper, we extend the previous results to the inversion of the
residual stresses caused by the plastic damages. In the
engineering problems of damage evaluation, we are very much
interested in the residual stress field in the vicinity of the
damage domain because it determines whether the damage do-
main is going to be stable or begin to propagate.

2 Fundamental Equations

Plastic strains 2, are accumulated in a subdomain © of the
given body D (see Fig. 1) after a series of unknown loading.
The subdomain £ is called the damage domain, and its shape
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Fig. 1 The domain occupied by the material is denoted by D. Plastic
strains are accumulated in @, a subdomain of D

Fig. 2 An equivalent damage domain Q* is chosen to cover the actual
damage domain @

and location are generally unknown. We use the residual sur-
face displacement data to evaluate the residual stresses caused
by the unknown plastic strains ef;. The residual surface
displacements are relative and are defined as the difference
between before and after loading.

The displacements and stresses due to €}, are denoted by u;
and oy, respectively. The equations for equilibrium are

6,;=0,in D. (1)
The boundary conditions for free surface forces are
g; n;=0, ondD, 2)

where »; is the exterior unit normal vector on dD, the boun-
dary of D. The continuity conditions of tractions on 4%, the
boundary of Q, are

[041n;=0, on 4Q, 3)

where [ ] = (out) — (in).
By using Hooke’s law

0y = Cyraltty, — €f), €]
we rewrite (1), (2), and (3) as
Cijua U= Cijy €y in D, &)
Ciiwr (g —~efy) n;=0, on 3D , ©6)
and
[Cyur (uy;—eR)In; =0, on 92, )

respectively. Cy, in the previous equations are the elastic
modulus tensor of the material.

We will find a relation between the residual surface
displacements and the plastic strains.

Journal of Applied Mechanics

Due to the symmetry of the elastic moduli Cy,, the Betti-
Maxwell reciprocal relation holds,
Cijet Grmy (X—X"Wu;; (X) — € (x))

=Cyy (U (X)— e} (X)) Gy (X—X7),

where Gy, (x—x") is Green’s function for an infinite elastic

medium and satisfies the equation of equilibrium for a point
force with the unit magnitude,

®

Cijri ka,[j (x—-x")=—§;,6(x—x"). &)

8, is the Kronecker delta and 8(x—x’) is Dirac’s delta
function.

When (8) is integrated in the domain D with respect to x and
the integrations by parts are applied, we have

Sau Ciits G (X—X") u;(X)n; ds (x)
- SD Ciir Grmyy (X—X" )y, (X)dx
- SD Cijxt Grmy (X=x") € (x)dx
SBD Cut (U (X) — €8, (X)) G (x— X)11;dS(X)

~ |, Con Gy 0t () G x-xrax (0

where ds is the surface element of 4D and dx is the volume ele-
ment of D. The boundary integrals on dQ disappear due to the
continuity of #; and o;n;. Equation (9) is substituted into the
second integral in the left-hand side (10). The right-hand side
in (10) is zero due to (5) and (6). Finally, (10) becomes

| ot Gum s (x=x) epyax=
an
SBD Citt G, 1 (X=X (X)n;ds(x)+ B u,, (x")

since e = 0in D—Q, where 8=1forx’ ¢ D and 8=1/2 for x’
e 8D (see Kinoshita and Mura (1956)).

When x’ is considered on 3D, the equation (11) is the
Fredholm integral equation of the first kind for unknown e
under given u;(x’) on dD. Since plastic strains are incom-
pressible, the condition

=0 (12)

is imposed to (11).

3 Discussion on Uniqueness

When the surface displacements are measired experimental-
ly, the left-hand side in (11) is known. The equations (11) are,
therefore, equations for unknown plastic strains e%. The solu-
tion is, however, not unique. This nonuniqueness is easily
shown by the existence of the impotent eigenstrains (see
Furuhashi and Mura (1979)). If compatible plastic strains are
defined in Q and the corresponding displacements vanish on
09, these plastic strains are impotent eigenstrains which do not
cause any elastic field in D. Therefore, the addition of these
plastic strains to e} provides the same surface displacements
on aD,
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Fig. 3 Displacements and surface tractions are zero on $,, a part of
the boundary of R

Although determination of €} is not unique, it can be shown
that the stress field caused by €% is uniquely determined in
some parts of the material from the surface displacement data.

Choose a domain 2* such that Q* covers Q (see Fig. 2). Find
proper plastic strains e£(2*) in @* which provide the same sur-
face displacements as those caused by €}(2) in Q. Then, the
displacement and stress fields caused by ef({) and those
caused by e ({2*) are identical in the domain D—Q*.

This identity is based upon the following lemma.

Lemma: Let S, be a part of boundary of an elastic body R
(see Fig. 3). If surface displacements and force tractions are
zero on S, the displacements and stresses in R are identically
Zero.

The difference between the elastic field caused by €£(Q) in
and that caused by € (£)) in 9* is an example of this lemma,
where R = D—-Q* and S, = 4D.

In the proposed inverse problem, the unknowns are not only
€7 but also the location and size of Q where €} are caused.
However, the identity of the stress field mentioned previously
leads to a new idea to evaluate the residual stresses in D— Q*
uniquely if @* can be chosen properly.

The lemma has been proved by Gao and Mura (1988b) for
the two-dimensional case. The lemma may be proved for the
three-dimensional case as follows.

Let u; and o; be the displacements and the stresses which
give the zero displacements and the zero force tractions on S;.
Consider another set of displacements u; and stresses ¢;; which
give the zero displacements on S, but arbitrary force tractions
on S;. Assume that both of ¢; and o are in equilibrium.
Then, the Betti-Maxwell reciprocal relation yields

o;Uuin;ds (13)

!
av-u-n-ds=S
SS;+SZ e S{+82

where n; is the outward normal vector on the boundaries S,
and S, and S, + S, =aR. It is obvious that the right-hand side
in (13) is zero from the conditions of the problem. Therefore,
(13) leads to

SSZ ojunds =0. (14)
The integral on S, vanishes since 4; = 0 on ;. By choosing
proper gjn; on S, we can assign any value of ojn; on S,. It
means that o/n; on S, can be chosen arbitrarily. Then, it is
concluded. that u; = 0 on §,. Consequently, u; is zero
everywhere in R.

510/ Vol. 56, SEPTEMBER 1989
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Fig. 4 The equivalent damage domain Q* are partially intersected with
the actual damage domain @

This lemma can be extended to the case when Q* and Q are
partially intersected as shown in Fig. 4. In this case R is the do-
main bounded by 3D and QR+ Q*). The lemma can be further
extended to the case of steady-state elastic wave, where the
Green’s function gy, (x — x') is defined as (see Mura (1982)):

C,-jk,gkm,,j(x—x')-f-pw?‘gim (X—X')+6im6(x—x') =O(15)

where p is the density and « is the frequency.

Accordingly, the uniqueness theory for the residual stresses
may be properly modified.

Any domain covering the damage domain Q can be chosen
as an equivalent damage domain Q*. However, we want to
choose Q* as close to 2 as possible so that the stresses near the
boundary of @* provide a good representation of the stresses
in the vicinity of the actual damage domain . The residual
stresses in the vicinity of the damage domain are very impor-
tant quantities in the engineering problems of damage evalua-
tion. They determine whether the damage domain is going to
be stable or begin to propagate.

4 The Variational Problem

We have proposed to solve the integral equation

| Cots Gim s (x=x") e (0lx=
(16)
1
[, Comt Glom (X=X (Il () + 2, (')
for x* € D, where Q* is chosen properly and ¢}, = 0. The

equation (16) is written as follows for the two-dimensional
case:

Sﬂ. Kx,x" ) VX)dx=U(x"'), x'e¢ dD a7
where
K&xx')= {Ciju Giu s Cij22 Gil,j"‘cijll Gil,j } (18)
Cij12 GIZ,/' s CijZZ Giz,j“‘ciju Giz,j

VX =78y, 17, v8, =26,
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Ux’)=

- Sap Cijr Gy, 1 (X=X")u; (X)n; (x)ds(x) +0.5u, (x)”

- SaD Ciu G, ,(x—x’)ui(x)nj(x)ds.(x)+0.5u2(x’)‘

19
1

G(x—x")=
O —x";) (x;—x))
R% = (x; = X{)* + (%, — x3)*.
Further simplication leads to
1

47(1 - »)R*

{xz [(2v = 3)x} + 2v — 1)F]], X, [4(1 — »)%} — 4]
X

B1Qr =375 + Qv — DR, %,[40x1 - 4(1~»)X3] } (20)

Kx, x)=

where
X, =X —X{ Xy =Xy =X3.
Of all the V(x) satisfying (17), we look for the one which has
the smallest L, norm, i.e., we pose a new minimal problem

V&) 2
@1
1 K, x9Veax-Ue)112=0,

Min

subject to

where |]+112 is the square of the L, norm, i.e., the inner
product of the function with itself on the domain it is defined,

HV®I12= Sn* VT (x)V(x)dx

and

H Sﬂ K&, x)WV&)dx—U(x")1i?
= SBD {[Sn K(x, x’)V(x)dx—U(x’)] "

X [Sn' K(x, x’)V(x)dx—U(x’)de’,

where the superscripts ‘T’ indicate the transposes of the
matrices.

For an engineering problem, our experimental meas-
urements always contain error. U(x’) is only an approxima-
tion of the exact displacements U° (x’) such that

HU)-0%x)H112 <,

where e is a small, positive number. Therefore, the problem
(21) is changed into

Min HV®E) 2

@2)
Nl Sn' K, x)Vx)dx ~UX) | 12 =¢,

subject to

Journal of Applied Mechanics

Y, A

Qx*

v X,

Fig. 5 Unit plastic strains (see (28)), are distributed in the damage do-
main . The equivalent damage domain 2* is chosen to recover the
residual stress field outside 0*

The problem (22) has the unique solution and the solution is
stable to the small perturbation of the input data U(x'). The
detailed discussion can be found in Gao and Mura (1988a).

The problem (22) is equivalent to its Euler equations

SQ‘ K*(x,8)V(x)dx + aV(s) = U*(s)

se* (23)
and
S(a)=0, (24
where
K*(x,s) = Sap K7 (s,x)K(x,x")dx’
s e Q% (25)
U*(s)= gD KT (s,x")U(x")dx’
SeQ* (26)
and
fla)y=11 Sn' K&,x )VOX)dx—Ux’)| 12 —e. 27

V@ (x) in the equation (27) is the solution of (23).

S An Example

Numerical results are given for the problem shown in Fig. S.
Domain D is the half space x, = 0 and 4D is the free surface
x, = 0. After a series of unknown loading, plastic strains are
accumulated in domain

Q={xlr=0.2}, (28)
where
r=~x3 + (x, — 2.0)2.

The rest of the material remains elastic. The distribution of the

plastic strains in Q is
{652 =—ef =1,
Y =1

Our goal is to solve (23) and (24) for €%, by using the surface
displacement data caused by the plastic strains (29). Once e,

29
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Table 1 Comparison of the computed plastic strains with the actual
plastic strains from (29). @ is given in (28) and Q* = {xIr=<0.3}, where ?
= x§ + (xp— 2.0)%,

ELEMENT . COMPUTED ACTUAL
Coordinate  Element # ‘yp12 ep22 yp‘z ep22

0<6<r/3; 0<r<0.1 1 1.0 1.0 1 1
n/3<0<2n/3; 0<r<0.1 2 1.0 1.0 1 1
2n/3<0<n; 0<r<0.1 3 1.0 11 1 1
n<0<47/3; 0=r<0.1 4 1.0 1.1 1 1
4n/3<0<5n/3; 0sr<0.1 5 1.0 1.1 1 1
5n/3<8<2m; 0sr<0.1 6 1.0 1.0 1 1
0<0<n/6; 0.1<r<0.2 7 0.68 0.64 1 1
n/6<0<n/3; 0.1<r<0.2 8 0.82 0.64 1 1
n/3<0<n/2; 0.1<r<0.2 9 0.90 0.74 1 1
n/2<6<2n/3;0.1<r<0.2 10 0.81 0.82 1 1
2n/3<0<57/6; 0.1<r<0.2 i1 0.65 0.79 1 1
5n/6<B<m; 0.1<r<0.2 12 0.60 0.75 1 1
R<0<7r/6; 0.1<r<0.2 13 0.71 0.81 1 1
Tn/6<0<4n/3; 0.1r<0.2 14 0.80 0.89 1 1
4n/356<37/2; 0.15r<0.2 15 0.77 0.83 1 1
3n/2<0<5n/3; 0.1<r<0.2 16 0.80 0.76 1 1
5n/3<0<11n/6; 0.1sr<0.2 17 0.78 0.80 1 1
117/6<6<2m; 0.15r<0.2 18 0.67 0.78 1 1
0<0sn/8; 0.25r<0.3 19 -0.18 -0.07 0 0
n/8<6<w/4; D.2<r<0.3 20 0.18 -0.14 0 0
7/4<6<37/8; 0.2<r<0.3 21 0.53 0.04 0 0
3n/8<0<n/2; 0.25r<0.3 22 0.66 0.29 0 0
n/2<€0<57/8; 0.2<r<0.3 23 0.49 0.40 0 0
5n/8<0<3n/4; 0.2<r<0.3 24 0.12 0.29 0 0
3n/4<6<Tn/8; 0.2<r<0.3 25 -0.20 0.03 0 0
Tr/8<0<n; 0.2<r<0.3 26 -0.24 -0.16 0 0
m$0<9n/8; 0.2<r<0.3 27 0.06 -0.06 0 0
9n/8<0<5m/4; 0.2<r<0.3 28 0.39 0.27 0 0
5m/4<6<11n/8; 0.2<r<0.3 29 0.25 0.35 0 0
117/8<6<3n/2; 0.2<r<0.3 30 -0.05 © 0 0
3n/2<6<137/8,; 0.2<r<0.3 31 0.13 -0.18 0 0
3n/8<6<7n/4; 0.2<r<0.3 32 0.36 0.18 0 ¢
n/4<05150/8; 0.25r<0.3 33 0.08 0.46 0 0
15m/8<6<2n; 0.2<r<0.3 34 -0.24 025 0 0

27

13 4 6 18

34

Fig. 6 Grid pattern and element numbers of the equivalent damage do-
main 9* .

are obtained, we can compute the stress field on the boundary
dQ* and outside of Q*.

In applying our method to an engineering problem of
damage evaluation, we need to measure the residual surface
displacements experimentally, There are many techniques
available for this purpose. For example, the sterescopic
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Q

-

o

0.4

-0.8 F

Fig.7 Residual stress atoy atr/a* = 1.1, where r-vyZ 4 (x, - 2)2.

The solid line is the computed resuit and the dashed line is the one in-
duced by the plastic strains in (29).

0.6 L.

04 |
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0.4 -

-0.6 r—

Fig. 8 Residual stresses o,, and o,y and r/a* =1.5

" 265 43

-0.4

-0.8

Fig. 9 Residual stresses o, and oy at 0 =7/2

analysis of optical micrographs (Cox and Morris (1986,
1988)), determines the relative displacement fields by compar-
ing a pair of optical micrographs, one taken before the
loadings are applied, and the other is taken afterwards. The
objective of this paper, however, is to demonstrate the
numerical inversion of the stresses if the experimental data are
provided. Therefore, instead of measuring the surface
displacements experimentally, we plug (29) into (16) and solve
(16) for the surface displacements u,, (x'). This is a well-posed
conventional forward analysis. The domain Q* in (16) is
chosen as  given in (28). The computed surface displacements
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should be the same as the one obtained from experiments. We
use this computed surface displacement data in our inverse
computation. That is, we solve (17) for unknown €%, by using
the computed surface displacement data.

The equation (16) is equivalent to (23) and (24). Therefore,
the equations we need in the inverse computations are (23) and
(24).

For any chosen positive «, the equation (23) is a well-posed
Fredholm integral equation of the second kind, and can be
solved by using conventional techniques. An interation pro-
cedure is utilized to make « satisfy the equation (24).

It has been proved (Gao and Mura (1988a) that f(«), de-
fined in (27) is an increasing function and

lim f(a)>0, ligr}r Fla)<O.

a—+o
Therefore, the following algorithm is employed to solve (23)
and (24):

1 e is chosen from our knowledge on the accuracy of the
displacement data. & is a small positive number for con-
vergence criterion.

2 Choose positive numbers «; and «, such that a; < a,
Sf(a;) <0and f(a,) > 0.

3 Let o= +a,/2 and solve (23). If |f(a)! <6 then taken
V@ (x) as the solution and stop. Otherwise, go to the next step.

4 If f(a) > 0, let &y = oy, @y = . Otherwise, let o) = «,
Oy = Oy,

In any case, go to Step 3.

Figure 6 shows the meshes of discretization for Q*. Table 1
shows the actual and computed plastic strains. The actual
plastic strains are those from (29), while the computed ones
are obtained by solving (23).

Figures 7-9 illustrate the residual stresses. The dashed lines
are the actual stresses. The solid lines are the computed
stresses.

This example indicates that the equivalent plastic strains in
the equivalent damage domain Q* may be substantially dif-
ferent from the actual plastic strains in Q. However, the
stresses induced by the equivalent plastic strains are equal to
the actual ones outside Q* (the deviations between solid and
dashed lines in Figs. 7-9 are due to the errors of numerical
computations). This confirms our prediction in Section 3 of
this paper.

6 Conclusion

In this paper, the surface displacement data are utilized to

Journal of Applied Mechanics

evaluate the residual stress field in the vicinity of the damage
domain caused by a series of unknown loading. It has been
shown that the equivalent plastic strains, though different
from the actual ones, induce the actual stresses outside of the
equivalent damage domain.

The plastic strains e, in this paper can be interpreted as
eigenstrains. Eigenstrain (Mura (1982)), is a generic term
representing nonelastic strains caused by thermal expansion,
geometric misfit, phase transformation, etc. The existence of
cracks and inhomogeneities can be simulated by appropriate
distributions of eigenstrains in the homogeneous materials.
Therefore, the results of this paper can be extended to the in-
version of residual stresses caused by cracks and in-
homogeneitics, etc.
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This paper discusses the application of an internal variable, creep constitutive

model, where the concept of piecewise linearity in the effective stress-creep strain
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rate relationship is utilized. Since the concept of piecewise linearity is assumed, an
explicit functional form for creep strain rate at all levels of stress and temperature is
not required. The aforementioned constitutive model is used to predict the creep
response of an aluminum alloy (2618-T61) at 200°C and subjected to multiaxial

loading. The results are compared with available experimental results. The model
shows excellent agreement in the trend of creep response. The quantitative values
also agree quite good with the experimental results.

Introduction

Many researchers (Besseling, 1953; Garaflo, 1965; Hender-
son, 1979; Kocks, 1976; Krans, 1980; Krempl, 1974; Laften
and Stouffer, 1978; Odqvist, 1974; Ostrom and Lagneborg,
1976; Rabotonov, 1969; Robinson, 1978) in the past have
presented phenomenological theories to describe transient and
steady-state creep behavior of materials. These models
generally assume the creep strain rate to be a specified func-
tion of the applied stress, the time elapsed after the application
of stress and the current temperature, if the model is
temperature-dependent, as such they can not satisfactorily
predict the instantaneous increase in creep strain rate caused
by stress reversal. It has been experimentally observed that
stress changes cause transient noncoaxiality between the stress
tensor and the creep rate tensor. Reliable prediction of creep
response needs constitutive models with the desired internal
variables related to physical mechanisms which govern the
behavior of the material under stress.

Kujawski and Mroz (1980), Leckie and Ponter (1974),
Malinin and Khadjinsky (1972), Hart (1976), Miller (1976),
Larsson and Storakes (1978), Chaboche (1977), and Faruque
(1985) proposed phenomenological theories in which the creep
strain rate is assumed to be dependent on the applied stress as
well as on a number of hardening parameters.

Mroz and Trampczynski (1984) proposed a constitutive
model based on the concept of kinematic hardening and tak-
ing account of the memory of minimal prestress on the back
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stress space. In their formulation, they assumed the existence
of a creep potential whose gradient with respect to the stress
tensor yields the creep rate tensor.

A constitutive model based on the two-surface kinematic
and isotropic hardening concept of the plasticity theory was
proposed by Chaboche et al. (1979). This concept was later ex-
tended by Murakami and Ohno (1982) and Ohno et al. (1985).
Certain models developed based on the visco-plasticity theory
are proposed by Kujawski and Mroz (1980), Bodner and
Merzer (1978), and Cernocky and Krempl (1980). Viscoelastic
models were proposed by Cho and Findley (1980, 1981, 1982,
1983a, 1983b, 1984), Ding and Findley (1984a, 1984b, 1985),
and by Lai and Findley (1980, 1982). Krieg (1977), Hart
(1976), Miller (1976), Paslay and Wells (1976), Ponter and
Leckie (1976), and Robinson et al. (1976) have proposed
unified creep and plasticity models. Krieg et al. (1978),
Swearengen and Rhode (1977), Swearengen et al. (1976), and
Lagneborg (1971, 1972) considered thermally-activated
mechanisms such as dislocation climb and mass diffusion in
their models.

In most of the creep models described, it is assumed that a
single creep strain-rate equation is applicable over all levels of
temperature and stresses. Hence, the predicted response does
not always agree with the experimental results.

Faruque and Zaman (1988) recently proposed an internal
variable creep constitutive model in which the concept of
piecewise linearity in the effective stress-creep strain-rate rela-
tionship was utilized. Since the piecewise linearity concept is
assumed, the creep strain rate need not be expressed by an ex-
plicit functional form. The present paper is concerned with the
application of this model to predict the creep response of an
aluminum alloy (2618-T61) under multiaxial loading. The
results are compared with the available experimental results.
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Fig. 1(a) Typical é° - R response curve showing piecewise linear ap-
proximation (¢ = equivalent uniaxial creep strain rate)
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Fig. (b} Actual and approximate creep moduli between two con-
secutive modes (¢© = equivalent uniaxial creep strain rate)

Description of the Model

The general description and the formulation of the model
are presented in a recent paper by Faruque and Zaman (1988).
A summary of the model is presented in this section.

The creep strain-rate tensor €¢ is expressed as follows:

1
= —— AR 1
€= M

where, FE is a secant creep modullus associated with the creep
surface F=0and A is a unit tensor defined by
Grad F

A= | IGrad FI1 ° @

F =0 defines the creep surface in the effective stress space as
3
F= - tr(+9)—R?=0. 3)

The effective stress tensor 7 is defined by
T=S—-« 4

where S and « are deviatoric stress tensor and back stress ten-
sors, respectively.

An important feature of the proposed model is the piecewise
linear approximation of the actual (equivalent uniaxial) effec-
tive stress (equivlaent uniaxial) creep strain-rate relationship
as shown in Fig. 1(a). Referring to Fig. 1(b), secant creep
modulus, E, for any (equivalent uniaxial) effective stress (R)
can now be written as

1 I[R,-_l
E;_,

(R—R;_,) ( R, R, )]
(Ri=R;_)) \ E, E;_,
where R; and R;_, are (equivalent uniaxial) effective stresses
and E; and E;_, are the secant creep modulii at nodes / and
i— 1, respectively.
In equations (1) and (3) R is the radius of the creep surface
at any instant £ and is defined by

E R

R2= —;— tr (12). )

The time rate of back stress o may be expressed as
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= 7 =B (as—a) (6)
where, «; is the saturated back stress tensor defined by
a,=v h(lIsll, T) @)

T being the absolute temperature and » being a unit tensor
defined by

»=S/11SI1, ®)

In equations (6) and (7) the specific form of A4 for
polycrystalline materials are chosen as follows:

hA=H(IISI) [1-G(T)] ®

where, H is an unknown function of the applied stress, and
G(T) is temperature-dependent function having the expres-
sions:

H=A(lISI)m (10)
G(T) =exp(— Q/RT). an

_In equations (10) and (11), A and m are material constants, Q
is the activation energy, R is the universal gas constant, and 7’
is the absolute temperature.

Evaluation of Model Parameters

For uniaxial creep, the constitutive equations for o, and «
can be written as:

a,=A lo]™[1 —exp(— Q/RT)]sgn(o)

&=B(a;—a)

(12)
(13)

where A, m, Q, R, and B are unknown material constants.
For a set of uniaxial creep tests at the same temperature

o, =A lo1"sgn(o) (14)

where A = A[1 — exp(— Q/RT)] is a modified parameter which
combines 4, Q, and R. To predict creep response at a
temperature other than the test temperature, the parameters,
A, Q, and R needs to be determined explicitly.

The parameters A and m can be determined directly if the
back stresses at saturation, oy, are known for a number of
uniaxial creep test. By using the data reported by Krieg et al.
(1978) and least-square fit of equation (14), the material con-
stants were determined to be A=0.6 and m=1.0. Note that
because experimental values for the o, was not available for
2618-T61 aluminum, the data (15) for < 111> aluminum was
used here. The secant modulii values, E, obtained from 7—¢é¢
curve for aluminum 2618-T61 and reported by Faruque and
Zaman (1988) are used to predict the creep strain rate.

Discussion of Results

The model discussed in the preceding section is used to back
predict the creep strain of aluminum alloy 2618-T61. The
model-predicted creep strain rates are integrated to obtain the
creep strain at any instant of time. The time-independent
elastic strains are added to the creep strain to obtain the total
axial or shear strain. Two sets of results are reported:

(1) multiaxial creep under proportional loading and
(2) multiaxial creep under side steps of tension and torsion
and stress reversal.

The results are compared with the experimental results
reported by Ding and Findley (1984) and Findley and Lai
(1981). Loading histories or sequences are shown in each
figure. Figure 2 shows the temporal variation of axial strain
under tensile loading. In the experiment, the direction of
loading remained constant and the magnitudes were changed
abruptly. The tensile load was applied instantaneously and
maintained for 48 hours. The load was withdrawn abruptly
and a period of recovery followed. The load was then taken
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Fig. 4 Shearing strain under torsion loading

abruptly to original level. The next steps comprised of
gradually lowering the tensile load until all loads were re-
moved. In the next steps the load was gradually increased to
the original level. The results compare favorably with the ex-
perimental result. The trend is in excellent agreement. Quan-
titatively, the predicted values deviate in the successive loading
steps. The maximum difference between the predicted and
observed responsé was approximatély 13 percent. The devia-
tion may be due to the effect of isotropic hardening which was
not included in the model.

Figure 3 presents the variation of creep strain-rate with time
for the loading case shown in Fig. 2. It is observed that any
change in the state of stress causes a jump discontinuity in the
creep strain-rate. This is similar to experimental observations.

Figure 4 shows shear strain variation with time under pure
torsional loading. Here, also, the experimental results and the
predicted values show consistent trend. Figure 5 shows the
creep strain-rate under the same torsional loading. In both
Figs. 2 and 4, the removal of load was followed by a period of
creep recovery. The reloading steps always resulted in tran-
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Time, hrs
Fig. 5 Shearing creep strain-rate variation with time under torsional
loading
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Fig. 6 Tensile strain under proportional combined tensile and torsion
stress
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Fig. 7 Shearing strain under proportionai combined tensile and torsion
stress
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Fig. 8 Creep strain-rate variation with time under proportional com-
bined tensile and torsional stress
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Fig. 10 Shearing strain for combined tension and torsion creep under
side steps of loading, unloading, and recovery

sient creep strain. Partial unloading resulted in creep recovery
if the unloading was substantial, otherwise it resulted in tran-
sient creep as may be seen in the fourth load step in Fig. 2. The
experimental results also showed similar trends.

Figures 6 and 7 show the axial strain versus time and shear
strain versus time relationships, respectively, for the combined
proportional tension and torsional loading. In both cases the
predicted and experimental results agree very well both
qualitatively and quantitatively. Figure 8 shows the variation
of axial and shear creep strain with time under the same
loading.

Figures 9 through 12 show creep behavior of aluminum
alloy 2618-T61 under side steps of tension, torsion, and stress
reversal, Figure 9 shows the total strain versus time response.
In Step 2, when the axial stress ¢ was increased keeping the
torsional stress, 7 constant, there was a small increase in creep
rate; however, increase in 7 at constant ¢ resulted in a large in-
crease of creep rate. Reducing 7 at constant ¢ decreases the
creep rate significantly. In the next step, the decrease of ¢ at
the constant 7 did not significantly reduce the creep rate. This
behavior is similar to experimental observations. Creep
recovery occurred when o was completely removed.

Figure 10 shows the result of the same test with plots of
shear strain versus time. The creep rate in shear increased
significantly when = was increased at a constant ¢. Partial
unloading of 7 did not result in creep recovery. Full unloading
of 7 resulted in creep recovery of shear strain component.
Another observation in both the figures is that the complete
unloading of one component keeping the other component
constant did not affect the behavior of creep associated with
the constant component. This is exactly the trend observed in
experimental results as well.

Figures 11 and 12 show the strain (axial or shear) versus
time relationship for combined tension and torsion under side
steps, partial and complete reversal of torsion. It is observed
that initial torsion with no tension induced only shear creep
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Fig. 11 Tensile strain for combined tension and torsion creep under
side steps, partial and complete reversal of torsion
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Fig. 12 Shearing strain for combined tension and torsion creep under
side steps, partial, and complete reversal of torsion

strain, Reversal of torsion did not affect the recovery of axial
component after the tensile loading is fully removed. In Fig.
12 it is observed that partial unloading did not result in creep
recovery. Full unloading resulted in creep recovery with creep
rate decreasing with time, Unloading of the tensile component
did not affect the creep recovery process in shear. Reverse tor-
sion induced a larger creep rate decreasing with time. Step up
of shear load increased the creep rate. The trends are in all
cases similar to experimental results.

Conclusions

An internal variable creep-constitutive model is used to
predict the response of aluminum alloy 2618-T61. Piecewise
linearity of effective stress-creep strain-rate is assumed and the
results are compared with experimental results., The model
shows excellent agreement with experimental trends and
results. The quantitative results show good agreement and
may be improved by considering another internal variable, D
(Drag stress) which represents isotropic hardening and by in-
corporating creep strain-rate explicitly into the evolution law
for the back stress and drag stress.
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1 Introduction

Several solutions for extrusions of complicated shapes from
cylindrical billets have been presented in the literature. These
solutions involve three-dimensional finite element calculations
(Boér and Webster, 1985) or are upper-bound solutions based
on kinematically-admissible velocity fields (Juneja and
Prakash, 1975; Nagpal and Altan, 1975; Basily and Sansome,
1976; Nagpal, 1977; Yang et al., 1978, 1979, 1984, 1986; Boér
et al.,, 1979; Prakash and Khan, 1979; Hoshino and
Gunasekera, 1980; Gunasekera and Hoshino, 1982, 1985; Cho
and Yang, 1983; Kiuchi et al. 1983, 1984; Kiuchi, 1984; Han et
al., 1986).

A new method of analysis of three-dimensional extrusions
using asymptotic perturbation method is presented in this
paper. We consider the extrusion of metal rods through
lubricated dies to form a final shape with a different cross-
section from the initial shape. A restriction placed on the
analysis is that the cross-section of the die varies slowly down
the extrusion axis. In practical situations the slope of the die is
small when either the area reduction is small or the length of
the die is large compared to the radius of the original cross-
section. The asymptotic expansions are based on a small
parameter ¢ which can be defined as the ratio of the total
reduction of a characteristic dimension of the original cross-
section to the length of the reduction region.

Similar asymptotic techniques have been used by Onat
(1954) and recently by Johnson (1987) and Smet and Johnson
(1988) for the analysis of two-dimensional problems. Onat
(1954) considers a rigid perfectly-plastic material that obeys
Tresca’s yield condition with the associated flow rule and us-
ing a linearized version of the governing equations constructs
axially-symmetric stress and velocity fields. Johnson (1987)
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on the first and second invariants of the stress tensor and covers a wide range of con-
stitutive models commonly used for the analysis of metal-forming operations. It is
shown that the three-dimensional extrusion problem can be approximated, to
leading order, by a problem of generalized plane-strain. The results of the asymp-
totic analysis together with the finite element method are used to obtain approx-
imate solutions for extrusions of elliptic or square cross-sections from round billets.

and Smet and Johnson (1988) consider a rigid plastic material
that obeys the von Mises yield criterion with the associated
flow rule and analyze axisymmetric extrusion and plane-strain
rolling. In these treatments, the partial differential equations
of two-dimensional problems are reduced to ordinary dif-
ferential equations by a regular perturbation scheme. Johnson
(1987) and Smet and Johnson (1988) identify different regimes
in the asymptotic analysis, controlled by the slope of the die
and the coefficient of friction between the die and the
workpiece, and show that, in some of those régimes, the
leading order approximation involves ‘‘slab flow,”’ as as-
sumed by von Karman (1925) in the analysis of plane-strain
rolling.

In this paper, we are concerned with the analysis of fric-
tionless three-dimensional extrusion problems. The plasticity
model used depends on the first and second invariants of the
stress tensor and covers a wide range of constitutive models
commonly used for the analysis of metal-forming operations.
The flow rule is described in terms of a plastic potential which
is, in general, different from the yield function. Using a
regular perturbation method, we show that the three-
dimensional problem can be approximated, to leading order,
by a problem of generalized plane-strain. The leading order
approximation involves slab flow, but in contrast to the com-
mon assumption of uniform stressing and deformation on
each cross-section used by the so-called ‘‘slab methods,”” the
leading order stress and deformation fields are, in general,
functions of position on each cross-section. Using the results
of the asymptotic analysis together with two-dimensional
finite element analysis we obtain approximate solutions for ex-
trusions of elliptic or square cross-sections from round billets.

Standard notation is used throughout. Boldface symbols
denote tensors, the order of which is indicated by the context,
and the summation convention is used for repeated Latin
indices.

2 DeScription of the Method
2.1 Formulation of the Problem. We consider the extru-

sion of metal rods through lubricated dies to form a shape
with a different cross-section. To simplify the discussion we
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(a) (b)

Fig.1 (a) One quadrant of the doubly-symmetric cross-section show-
ing the unit vectors nand t; (b) projection BB showing the longitudinal
profile of the die, thé unit vectors n, M m and k and the small angle ¢

consider shapes which retain the same two orthogonal sym-
metry axes during extrusion, although the method is ap-
plicable to more general situations. Let Z be the direction of
extrusion and X and y be the axes of symmetry. The dies taper
at a maximum angle which is of order e (¢ being a small
positive number) but the taper may be nonuniform. A typical
quarter cross-section is shown in Fig. 1 along with a projection
of section BB illustrating the angle ¢, which is defined by

anb=t0 [(2) 4 (2] w00,

where F(%, 7, 2) = 0 is the equation of the die surface.
The equations for quasi-static equilibrium in the absence of
body forces are

3y | 00y | 00y _ @
ax 3y 0z ’
a0, 46,, 86,

- et — =0, 3
ox oy 0z @
0y | 08y 30y o @

ax ay 9z
where ¢ is the stress tensor.

The material is assumed to be rigid plastic with a yield sur-
face of the form

I 7 0%
@( ) ,Ha)=0 with ——=0
0y 05 ol;
and >0, (%)

2

~ where ¢ is a dimensionless function of dimensionless
arguments, I, = &y, J, = §; §,;/2, § is the stress deviator, 6,
is the yield stress, and H, (@ = 1, 2, . . . , n}is a set of dimen-
sionless scalar state variables.

The flow rule is given by

D=3, N=-28 pug(Jh i p), ©®
66 Jg 6% ¢

where D is the deformation rate defined as the symmetric part
of the spatial velocity gradient, A is a non-negative scalar flow
parameter, and g is a dimensionless plastic potential.

The constitutive model is completed by describing the evolu-
tion of state variables with continuing plastic straining:

dH, . '
2 = (D,5,H,), 7
T (D,d6,Hg) %

where 7 is time. For a rate-independent material, h, must be a
homogeneous function of degree one in D, so that

dH, cn oA
dt:* =\h, (N,8,Hp). (8)
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The boundary conditions are that the normal velocity and
the shear traction are zero on the die-metal interface, i.e.,

M.v=0, ®

and
Meget=M-6+m=0, (10)

where M is the unit vector normal to the die surface, t is the
unit vector tangent to the die profile on the X— y plane, and m
is the unit vector tangent to the die surface as shown in Fig. 1.
When the geometry of the die is slowly varying in one direc-
tion, a simplification of the problem can be brought about by
stretching one coordinate direction with respect to others (Van
Dyke, 1975). For slowly tapering dies (¢ = small), the coor-
dinate stretching is carried out by making ¥ and y dimen-
sionless by normalization of position in that plane by AR, the
total reduction of a characteristic dimension of the original
cross-section, i.e.,
X= xA and y= yA .
0 0
Distance down the extrusion axis is made dimensionless by L,
the length of the reduction region, so that

(11)

Z Z
I=—F=¢—=,
L AR,
where e is defined to be ARy/L. The following non-
dimensional parameters are also introduced

(12)

v i g »~n L 4
vV=—, U_AL3 = 9 t’D= ~ D)
Uy 0y L Uy
. L .
N=GoN, A=—=—X, (13)
Oolty

where i, is the entrance velocity.
In terms of the non-dimensional variables, the equilibrium
equations become

+ +e 0, 14
ox ay 0z (14)
doy, 0o, ~ doy,
+ +e =0, 15
0 i) a9z (15)
and
30, . 90y, a0, —0. (16)
ox ay 0z
The flow rule is written as
D-N, N=_—8__ 08, 02
dao al, aJ,
g:g(ll !J27Ha), (17)
where I is the second-order identity tensor, or
ou
W = E)\Nxx, (18)
av
_By_ =€eAN,,, (19)
ow
P =AN,, 20)
ou v
—— +—=2e\N,,, 21
dy  ox ANy @1
aw du
o + € Fra 2e\N,,, (22)
ow v
ay + G-a— 26>‘Nyz’ (23)
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where v = (4, v, w) are the dimensionless velocities in the (x,
¥, z) directions. The evolution equations of the state variables
become

dg" =h, (D,0,H;) where

ho(D,0,Hg) = h,(D,5q,0,Hj), . (4

and the yield condition is written as
&(1,,J,,H,)=0. 25)

Taking into account that ¢ = O(e), we can write
M =cosén + singk = n + tangk + O(e?), (26)
and

m = cospk — singn =k — tanén + O(e2), @7

where n is the unit vector normal to the die profile on the X— 3
plane as shown in Fig. 1, and k is the unit vector along the z-
axis. Using equations (26) and (27) we can write the boundary
conditions (9) and (10) as

v, +ewtang + O(e?) =0, 28)
oy +ea,tang + O(e2) =0, 29

and
Oz +€(a,, —a,,)tang + O (e2) =0, 30)

where tan ¢ = tan ¢/e = O(1) is the corresponding slope on
the normalized (x, y, z) space.

2.2 Perturbation Expansion. We now seek a perturba-
tion expansion in e for the solution to the problem, such that

v=vO 4 ev® 31)
0=00 4oV 4., ., (32)
H,=HO+eHP+ .. ., (33)
and
A=NO+NO 4 (34)
Using equations (31)~-(34) we write
L= +elP+ .., 35
S, =IO +eJP+ ..., 36)
D=DO+DW+ |, ., 37
=00 M+ ., (38)
h,=h® +ehP+ ..., 39)
N=NO 4+ ,ND 4 (40)
where
1
IfM =g, J50)=_2__S§JO)S§J())’ Jg):Sf,(»Sf}),
1 o vl
DY = ( ! _J >, 41
v 2 ax; ax; “h
0® P
30 = (&), V= <__) Ny (_) b
(®)o a1, /o i aJ, /0 %
< ad
+ HY, 42
a; (aH) & “42)
ah
0 — (1) — « 3710
HO = (ho)o P = ( L ), D
ah < oh
+{—=2) oW+ (———" ) D, 43
(a,;)o” ﬁ‘\;l 38, /o 1 “3)
ag ) ag
©= , N0 = <__) o),
N ( do /o do /o 7 @4
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In equations (41)-(44) the scalar product of two second-order
tensors is defined by A:B = A4;B;, and the notation (func-
ti?n)0 indicates the value of the function at (¢®, H /@,
DO,

Substituting the expansions into the governing equations
and the boundary conditions, and collecting terms having like
powers of e, we obtain the following hierarchy of problems.

For the leading order problem we have

0 (0)
000 | 909

=0, 45
0x ay “43)
30y s
—t—=—=0, 46
ax ay (46)
3cQ a5y
— ¥ =9, 47
ox ay “n
u®
=0, 48
p (48)
av(o)
=0, 49)
ay
aw
5 =NONE, (50)
u®  §y©
=0, 51
ay ox ¢
Iw®
=0, (52)
ax
(0)
W7 o, 53)
ay
dH®
—2 = pO, 54
i o (54
and '
0 =0, (55)
with boundary conditions on the die-metal interface
v© =0, (56)
a9 =0, 57)
and
0 =0. (58)
At O (¢) the problem is given by
ol dol) d0Q
+ + =0, 59
ox ay az 9
dal) dall) L)
+ + =0, 60
ax ay 9z (60)
doll) dolD 30
+ + =0, 61
ox ay 0z 1)
ud
pye =\0 Ng‘) , (62)
v
% =NOND), (63)
owh
P AOND + \ONQ, (64)
O gy
ou
G =2N\ONO, 65
6y ax xy ( )
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aw  gu®
=2N\ONO, 66
ax az Xz (68)
awd  gy©®
+—=20ONO, 67
dy az 7 S
dH®
e o, 68
dt * %)
and
o =0, (69)
with boundary conditions on the die-metal interface
i) = — wOtan ¢, 70
of) = ~ o tan ¢, 1
and
o) = — (0§ — of)tan ¢. (72)

2.3 Solution of the Problem. We start with the leading
order problem. Equations (48), (49), (52), and (53) imply that

u®x,y,2) =u9(0,y,2)=0, (73)
v0(x,,2) = v9(x,0,2) =0, (74)

and
wO = (0 (Z) (75)

Equation (75) shows that the leading order approximation in-
volves slab flow as assumed by von Karman (1925) in the
analysis of plane-strain rolling. The slab translates down the
extrusion axis, experiences a reduction in area, a change in
shape, and thickens uniformly. It should be noted, however,
that in contrast to the common assumption of uniform stress-
ing and deformation on each cross-section used by the so-
called slab methods, the leading order stress and deformation
fields are, in general, functions of x and y on each cross-
section.

Using the aforementioned results and some equations aris-
ing at O(e), we find that the leading order problem becomes

o | 0y (76)
ox ay
a0 30l
———2 =0, 77
ox ay 77
6 3
e | % o, 78
ox ay %)
u®
ux =AONO, (79)
2 _yon© (80)
ay yyo?
dw®
P AONQD, (81)
gy
W)
—= NONO, (83)
Fw)
—‘a—y— - 2)\(0)N§g), (84)
dHO
—d;“'— =hO, (85)

and
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0 =, (86)
with boundary conditions on the die-metal interface
) = — w@tang, 87
o =0, (88)
and
o® =0, (89)

The problem now separates into an antiplane problem at each
position z:

30Q 30
ox ay ©0
WO ONO 2)\(o>( o8 ) © 91
ax = XX = —J; 0 Oxz s ( )
awth dg
—_— = 2\ON©O) = 2)\© <___) (0),
3 NOND = 2% 5,/ o 92)
with
0@ =0 on the perimeter, 93)
and a generalized plane-strain problem at each position z:
30 00
—¥ o, 94
ox ay ©4)
b0y 0o
—+ = 0’ 95
0x oy ©3)
dut)
T AONO, 96
ax X 6)
FO)
;’ = NON© ©7
'y
auM  Ju®
+ ———=2\ONO, 98
dy ax ¥ ©8)
1 dw®
(1) S A,
2z )\(0) dZ ’ (99)
with
i) = — wOtan¢g and ¢ =0 on the perimeter. (100)

The two problems are coupled by the common functions A\©
and H®, and the requirements that
dHY
— 2 =pO, and O =0. (101)
dt
Using the principle of the virtual velocities for the antiplane
problem, we find that

ag 2
)\<0)< ) 02 4 504 = 2
EA(Z) aJ, /0 (0" + 0,0 )dA =0, (102)
where A (z) is the cross-sectional area of the die on the nor-
malized x—y plane. In general, (3g/8J,), #0, and since the
whole cross-section is flowing, we infer that @ 0, so

¢® =@ =0
pv4 yz

and the generalized plane-strain problem remains. Equations

(91) and (92) now imply that
wl) = w(‘)(z). (104)
The previous analysis shows that the determination of the
leading order stresses of the three-dimensional problem
reduces now to a two-dimensional calculation. In the follow-
ing we discuss the solution of the remaining generalized plane-

strain problem for the cases of incompressible (3g/0f;, = 0)
and compressible materials (3g/01; #0).
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2.4 TIncompressible Materials. For the case of an incom-
pressible material, w(®(z) can be easily calculated by means of
mass conservation. The original cross-section is distorted in a
manner free of shear on the perimeter through the series of
shapes along z involved in-the extrusion die while the cross-
section thickens uniformly in such a way that A4 (z)A(z) =
constant, where A is the thickness which is chosen arbitrarily at
the outset. .

At each position, z, the solution of the generalized plane-
strain problem determines, to within a hydrostatic stress
PO(2), the leading order stress components o2, o{?, ¢ and
0, as well as 4 and v, Let &, £O, £O, and L$) be a
solution to the generalized plane-strain problem. Then, the ac-
tual leading order solution is

o0 =29 + pO(z), (105)
o9 =0 + pO(z), (106)
o) =L +p9@), (107)
and
o9 =XQ. (108)

The function p©@(z) can be determined as described in the
following. Using the O(e) equilibrium equation (61), we find

!‘ < ao(l) ag(l) ) .
A(z) ax a_y

Using Gauss’ theorem and taking into account the boundary
condition (72), we can write equation (109) as

[
Alzy 0%

3¢

109
gA(z) 0z ( )

- S (E© — £O) taneds, (110)
T(z)

where I'(z) is the perimeter of the cross-section of the die and
ds indicates infinitesimal arc length on I'(z). Finally,
substituting equation (107) into equation (110) we find that

dp©®
; -f(2), (111)
where
1 aTo®
- © _ 70 _ 2z
f(@) A(z) Hr(z) (&%~ Entangds SA(z) dz dA]
(112)

is known from the solution of the generalized plane-strain
problem. Integration of equation (111) yields

PO(D)= Sozf(z)dz+c, (113)

where ¢ is a constant. Since the net force at the exit of the die
in extrusion is equal to zero, we have (z = 1 at the exit in nor-
malized coordinates)

Sm dQdA=0 (114)
which implies that
- swaa-| rod a1
AQl) Jaw 0
Finally, substituting the value of ¢ into (113) we find
PO = —ﬁ&m) EOdA - Sl f2)dz, (116)

and this completes the solution.

Journal of Applied Mechanics

2.5 Compressible Materials. For the case of a compressi-
ble material, w®(z) cannot be determined from mass conser-
vation considerations alone, and its calculation becomes part
of the solution of the generalized plane-strain problem. As
discussed in the previous section, the original cross-section is
distorted in a manner free of shear on the perimeter through a
series of shapes along z involved in the extrusion die while the
cross-section thickens uniformly. At-each position z, an addi-
tional boundary condition is needed for completeness, and
this is the specification of the axial force

POZ) =\SA(Z) d9dA,

(117)

which is determined as described in the following.
Using the definition of P¥(z) and taking into account that

202

— ©) . 50
S‘Am e A SI‘(z) (6 — oi\tangds, (118)
we can easily show that
dpP©
7 =g(z), (119)
z
where
_S (0 — 6O)tandd +S %% O 4 a0
2(@) =, (7 ~ omtandds A J 0z (120)

In equation (120) J is the Jacobian of the transformation that
carries a material point from position (X,Y) at z = 0to (x, »)
at each z.

Integration of equation (119) yields

PO@)=PP + S: q(z)dz, (121)

where P is the leading-order extrusion force.

With PO(z) defined by equation (121) the sequence of
generalized plane-strain problems is solved, and the solution is
determined in terms of the as yet unknown P{’. Finally, the
extrusion force P is determined by enforcing the condition
of zero axial force at the die exit, i.e.,

S 0QdA =0, (122)
A1)

and this completes the solution.

The results of the asymptotic analysis can be used together
with two-dimensional finite element calculations to obtain the
leading order solution of three-dimensional extrusion
problems. The proposed new approach for the analysis of
three-dimensional extrusions is particularly attractive because
the lengthy three-dimensional calculations are now avoided
and the accuracy of the obtained approximate solution can be
easily estimated.

Several applications of the proposed method are presented
in the following.

3 Applications

In the examples presented in this section we consider a rigid
perfectly-plastic incompressible material which yields ac-
cording to the von Mises criterion and obeys the Lévy-Mises
equations, i.e.,

b=g=3J,—1.
3.1 Axisymmetric Extrusion. A simple special case of
the three-dimensional problem discussed in the previous sec-

tion is the extrusion of circular rods through slowly converg-
ing axisymmetric curved dies. This problem has been solved by

' SEPTEMBER 1989, Vol. 56 / 523

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



slab methods, but here we show that such solutions are correct
to leading order. As mentioned in Section 2, the slope of the
die is small when either the area reduction is small or the
length of the reduction region is large compared to the radius
of the original cross-section. In such cases an appropriate
definition of the parameter e is e = AR/L, where AR is the total
radius reduction.

As discussed in Section 2, the leading order stresses can be
determined from the solution of a generalized plane-strain
problem over the cross-section of the billet at each position z
with boundary conditions ‘

v = — wOtang and ¢ =0 on r=R

where (r,0) are normalized polar coordinates, R(z) is the nor-
malized radius of the die,

dR(z)
tang = a
and
R?(0)
© = !
"TTRG

The solution of the generalized plane-strain problem is dis-
cussed in the following.

Because of axial symmetry, there is no f-dependence and the
only nonzero velocity and stress components are vV, w®, and
L0, 2, £ Using the incompressibility condition

Wl v dwO
—+
ar r dz

H

we find that
) R20) dR(z)
v = 3 —_—
R3(z) dz
The flow rule, together with the yield condition, imply that the

solution of the generalized strain problem to within a constant
pressure is given by

1 2
Eg(,)) = Eg%) = ——T and Zgg) = ‘—"3—.

The function f(z) defined by equation (112) is now found to
be

2  dR(2)
f(z)= R de
and the additional pressure p© (z) is given by
2 R(z)
O(z)= ———21 .
| PR 3 L)
Finally, the leading order stresses are
R(z)
059) =U§%) =-—1-21ln T(l'j——,
and
00 = 210
2z R(1)

It is interesting to note that leading order stresses are constant
over each cross-section and coincide with the results of the so-
called slab method. The analysis shows that such results are
first-order accurate and that calculations based on slab
methods are suitable for slowly varying axisymmetric dies with
zero friction between the die and the workpiece. )

3.2 Round-to-Ellipse Extrusion. An approximate solu-
tion for extrusion of elliptic shapes from round billets through
gradually tapering dies is presented in this section. The
parameter e can now be defined as e = (R, — b)/L, where R, is
the radius of the original cross-section, and b is the length of
the minor semiaxis of the final elliptic cross-section.

524/Vol.56, SEPTEMBER 1989

Fig. 2 Deformed finite element mesh superposed on the undeformed
mesh (dashed lines)

The shape of the die on the normalized (x, y, z) space is
given by

F(x,y,2)= [—&2—)] : + [bi)z) ] ’ -1=0,

a(z) =Ry —zAa,
b(z) =R, —zAD,

where Ry — Aa and R, — Ab are the lengths of the semiaxes of
the elliptic cross-section at the end of the die.

The leading order stresses for this problem are obtained by
solving a sequence of generalized plane-strain problems over
the cross-section of the die with boundary conditions

v® = — w@tane and o =0, (123)
where

X2 3 %) P2\ -2

tang = <—-‘—1—3——Aa + '—bTAb> (—21-4— + —-—b—4—) s
and
2
wO = RO__,
a(z)b(z)

The solution of the generalized plane-strain problem is ob-
tained by using the finite element method.The ABAQUS
(Hibbit, 1984) general purpose finite element program is used
for the computations. Because of symmetry we need to
analyze only one quarter of the cross-section. Eight-node
generalized plane-strain isoparametric elements with 2x2
Gauss integration are used. An elastic-perfectly-plastic model
is used in the calculations; the effects of elasticity are not im-
portant in this case and the obtained solution is a very close
approximation to the solution of the rigid-perfectly-plastic
problem. The analysis is done incrementally using an updated-
Lagrangian formulation and Newton’s method is used to solve
the overall discretized equilibrium equations.

The results presented in this section are for Aa/R, = 0.1
and Ab/R, = 0.4. Figure 2 shows the deformed finite element
mesh at the end of the calculation superposed on the
undeformed one. The analysis was completed in 80 equal in-
crements. ABAQUS provides a general interface so that the
user may introduce his own ‘‘multi-point-constraints’’ in a
“‘user subroutine.”’ The displacements of nodes A and B in
Fig. 2 are prescribed and the user subroutine is used to con-
strain the degrees-of-freedom of the boundary nodes in such a
way that they always remain on the ellipse defined by the posi-
tion of points A and B. One constraint equation per boundary
node is used and this is equivalent to imposing the boundary
conditions (123) in a discretized manner. The finite element
solution provides the stress field £©@; the function f(z) and the
additional hydrostatic stress p©®(z) are obtained numerically
using equations (112) and (116). Finally, the complete leading
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Fig. 3 Contours of the equivalent plastic strain ¢* at the end of the
calculations

Fig. 4 Contours of the normalized hydrostatic stress component af?}l3
at the end of the calculation

Fig. 5 Contours of the normalized axial stress component agg) at the
end of the calculation

order stress field ¢© is obtained by adding p©@(z) to the finite
element solution ZO,

Figure 3 shows contours of the equivalent plastic strain é° at
the end of the calculations; the equivalent plastic strain is
defined as

) 172

&= S 0 <_3_ D{;Dﬁ) dt,
where D” is the plastic part of the deformation rate. Figure 4
shows contours of the hydrostatic stress component ¢{)/3 at
the exit of the die. It is clear from Fig. 4 that the hydrostatic
stress component is compressive everywhere on the end cross-
section; an examination of the complete solution reveals that it
always remains so in the process of deformation. Contours of
the axial stress component o at the exit of the die are shown
in Fig. 5; 09 is compressive over most of the cross-section and
it changes to tensile near the end of the longer semiaxis so that
the net axial force over the cross-section at the exit of the die
vanishes. The extrusion pressure is found to be 1.20 times the
yield stress.

3.3 Round-to-Square Extrusion. An approximate solu-
tion for extrusion of square shapes from round billets through
slowly varying dies is presented in this section. The cylindrical
billet deforms to the final square section rod through the die
defined by an envelop of a number of straight lines. The

Journal of Applied Mechanics

Fig. 6 Deformed finite element mesh superposed on the underformed
mesh (dashed lines)

parameter e can be defined as e = (I?O —d)/L., where ﬁo is the
radius of the original cross-section, and 24 is the length of the
sides of the final square cross-section.

The shape of the die on the normalized (x, y, 2) space is
given in this case by

R
ety =y= (-2 ~az=0,

where r=(x? +»?)1”2, R, is the normalized radius of the
original cross-section, and 2a is the length of the sides of the
final square cross-section on the normalized x —y plane.

The leading order stresses for this problem are obtained by
solving a sequence of generalized plane-strain problems over
the cross-section of the die with boundary conditions

~

V0 = — wOtang and oY =0,

where

tan ¢ = (@——a) [[(l—z) Roxy ]2

P
RS RV
r? )] ] ’

+[1—(1—z)RT°(1—

and
TR}
A(z)

The solution of the generalized plane-strain problem is ob-
tained in a way similar to that described in Section 3.2 by using
the finite element method. Because of symmetry we need to
analyze only one-eighth of the cross-section. The results
presented in this section are for a/R, = 0.6.

Figure 6 shows the deformed finite element mesh at the end
of the calculations superposed on the undeformed one. The
analysis was completed in 80 equal increments. Contours of
the equivalent plastic strain €” are shown in Fig. 7. A strain
concentration near the corners of the final square cross-
section is evident. Figure 8 shows contours of the hydrostatic
stress component ¢f)/3 at the exit of the die. The extrusion
pressure is found to be 0.82 times the yield stress.

Near the corners of the square, tensile tractions are induced
across the metal-die interface, and this is the reason for the ap-
pearance of tensile hydrostatic stresses in that region (see Fig.
8). This indicates that separation would occur and that the
traction would vanish. In our calculations the boundary nodes
were forced to stay on the die surface, but since tensile trac-

wO =
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Fig. 7 Contours of the equivalent plastic strain ¢® at the end of the
calculations

tions appear only in a very small region near the corner, this is
not expected to affect the rest of the solution significantly.
The effects of such separation and any subsequent contact will
be addressed in a future publication.

4 Closure

A new method of analysis of three-dimensional extrusion
has been presented in this paper. Using asymptotic techniques
we have shown that the determination of the leading order
stresses of the three-dimensional problem reduces to a two-
dimensional calculation. The constitutive model considered
covers a wide range of plasticity models and the proposed
method of analysis can be used to study the development of in-
ternal damage in the billet as it moves through the die. The
asymptotic solution shows that the leading order approxima-
tion involves slab flow, and this is consequence of the plastic
potential being a function only of the first and second in-
variants of the stress tensor and the frictionless conditions at
the die-metal interface.

It should be noted that the proposed asymptotic method can
be used for the analysis of three-dimensional metal-forming
operations other than extrusion and that anisotropic plasticity
models as well as friction at the die surface can be allowed for,
but at the expense of a more complicated two-dimensional
leading order problem requiring a different method of solu-
tion (Johnson, 1988). Frictional effects are certainly impor-
tant and will be addressed in a future publication. However, in
many cold-forming operations lubrication is used and the ef-
fective coefficient of friction is small (say, of order €) and,
therefore, a nonzero friction on the metal-die interface affects
the problems of order e or higher but leaves the leading order
problem unchanged.
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Adiabatic Shear Banding in Plane
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Strain Problems

Plane strain thermomechanical deformations of a viscoplastic body are studied with

the objective of analyzing the localization of deformation into narrow bands of in-

De-Shin Liu

tense straining. Two different loadings, namely, the top and bottom surfaces sub-

Jected to a prescribed tangential velocity, and these two surfaces subjected to a
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Engineering and Engineering Mechanics,
University of Missouri-Rolla,
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preassigned normal velocity, are considered. In each case a material defect, flaw, or
inhomogeneity is modeled by introducing a temperature bump at the center of the
specimen. The solution of the initial boundary value problem by the Galerkin-
Adams method reveals that the deformation eventually localizes into a narrow band

aligned along the direction of the maximum shearing strain. For both
problems, bands of intense shearing appear to diffuse out from the center of the

specimen,

1 Introduction

Adiabatic shear banding is the name given to a localization
phenomenon that occurs during high-rate plastic deformation
such as machining, explosive forming, shock-impact loading,
ballistic penetration, fragmentation, ore crushing, impact
tooling failure, and metal shaping and forming processes. The
localization of the deformation has been observed in steels,
nonferrous metals, and polymers. Practical interest in the
phenomenon derives from the fact that progressive shearing
on an intense shear band provides an undesirable mode of
material resistance to imposed deformations, and the bands
are often precursors to shear fractures. Of the many processes
just stated in which adiabatic shear bands have been found to
occur, flat sheet rolling and certain forging operations can be
modeled as plane strain operations.

Since the time Zener and Hollomon (1944) recognized the
destabilizing effect of thermal softening in reducing the slope
of the stress-strain curve in nearly adiabatic deformations,
there have been numerous studies aimed at delineating
material parameters that enhance or retard the initiation and
growth of adiabatic shear bands. Most of the effort has been
concentrated in analyzing the simple shearing problem. Clif-
ton (1980) and Bai (1981) studied the growth of infinitesimal
periodic perturbations superimposed on a body deformed by a
finite amount in simple shear. Burns (1985) used a dual
asymptotic expansion to account for the time dependence of
the homogeneous solution in the analysis of the growth of
superimposed periodic perturbations. Merzer (1982) used the
constitutive relation proposed by Bodner and Partom (1975)
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to study the problem of twisting of a thin tubular specimen
having a notch in its periphery. He concluded that the band
width depends upon the thermal conductivity. Wu and Freund
(1984) used a different material model and studied wave pro-
pagation in an infinite medium. They concluded that the ther-
mal conductivity has essentially no effect on the width of a'
shear band. Other works analyzing the initiation and growth
of adiabatic shear bands include those due to Clifton et al.
(1984), Wright and Batra (1985), Wright and Walter (1987),
Batra (1987), and Batra and Kim, (1989). Rogers (1979, 1983)
and Timothy (1987) have reviewed various aspects of adiabatic
shear banding, especially from a materials point of view.

Experimental studies dealing with adiabatic shear banding
include those of Zener and Hollomon (1944), Moss (1981),
Costin et al. (1979), Lindholm and Johnson (1983), and Mar-
chand and Duffy (1988). Marchand and Duffy have given a
detailed history of the temperature and strain fields within a
band.

Needleman (1989) has recently studied the initiation” and
growth of shear bands in plane strain deformations of
viscoplastic materials. He studied a purely mechanical
problem and approximated the effect of thermal softening by
assuming that the stress-strain curve has a peak in it. He
modeled a material inhomogeneity by assuming that the flow
stress for a small amount of material near the center of the
block was less than that of the surrounding material. We study
herein the thermomechanical plane strain deformations of a
thermally softening viscoplastic solid and model the material
inhomogeneity by introducing a temperature bump at the
center of the block. The block boundaries are assumed to be
perfectly insulated. Two different deformation states, namely,
that of a simple shearing of the block, and the block deformed
in simple compression are analyzed. In each case a shear band
develops along the direction of maximum shearing strain.
Whereas the deformation localizes at an average compressive
strain of 0.059 when the block is deformed in compression, the
average shear strain equals 0.227 when the block is de-
formed in simple shear.
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2 Formulation of the Problem

We use a fixed set of rectangular Cartesian coordinate axes
to describe the thermomechanical deformations of the body.
In terms of the referential description the governing equations
are

(o) =0, , W
(2] l)i = T'ie(,a’ ) (2)
pOé =- Qm,cx + T‘iozvl',o(’ (3)

and a suitable set of initial and boundary conditions. Equation
(1) expresses the balance of mass, (2) the balance of linear
momentum, and (3) the balance of internal energy. In these
equations, p is the current mass density, p, the mass density in
the reference configuration, J is the determinant of the defor-
mation gradient, v; the velocity of a material particle in the x;
direction, Q, the heat flux, e the specific internal energy, T},
the first Piola-Kirchoff stress tensor, a superimposed dot
stands for the material time derivative, and a comma followed
by an index « () implies partial differentiation with respect to
X, (x;). Also x denotes the present position of a material parti-
cle that occupied the place X in the reference configuration,
and a repeated index implies summation over the range of the
index. For plane strain deformations, x; = X, and the indices i
and o take on values 1 and 2.
For the constitutive relations we take

= —p(p)1+2uD, T,-a_. Lox, o @
2= (1=38)(1 + BN, 2Dy =, ;+ ©)
1 .. = 1
P=—trD?, D=D-—(tD)1, ©)
2 3
o
=B(*_1), 7
FORUICE) ™
Q.= —kb,,, ®
é=ch+pp(p)/ (ppo). )

Here, g, is the yield stress in simple tension or compression, ¥
is the coefficient of thermal softening, parameters b and m
represent the strain rate sensitivity of the material, B may be
thought of as the bulk modulus, & is the thermal conductivity,
and c the specific heat. Equation (7) is a part of the Tillotson
(1962) equation wherein the dependence of the pressure upon
the changes in temperature has not been considered, and equa-
tion (8) is the Fourier law of heat conduction.
Defining s as

2
s = o+ <p——35trn>1, (10)
= 2uD, {11
equations (4) and (5) give
1 Ve g,
_—trSZ) =—2(1— o)1 + bI)™, (12
(5 - )

which can be viewed as a generalized von Mises yield surface
when the flow stress (given by the right-hand side of (12)) at a
material particle depends upon its strain rate and temperature.
The linear dependence of the flow stress upon the temperature
change has been observed by Bell (1968), Lindholm and
Johnson (1983), and Lin and Wagoner (1986). A constitutive
relation similar to equation (4) has been used by Zienkiewicz et
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al. (1981) in analyzing the extrusion problem, by Batra (1988)
in studying the steady-state penetration of a viscoplastic target
by a rigid cylindrical penetrator, and by Batra and Lin (1989)
in studying the steady-state axisymmetric deformations of a
cylindrical viscoplastic rod upset at the bottom of a
hemispherical rigid cavity. Equation (4) may be interpreted as
a constitutive relation for a non-Newtonian fluid whose
viscosity p depends upon the strain rate and temperature.
We introduce nondimensional variables as follows:

§=0/0y, D=p/0g,§=8/00,V =V/0y, {=tvy/H, T=T/q,,

) _ - U _

X=x/H, §=0/6,, b=bﬁo_, 5=, p=p/py, X =X/H,
8=pov2/0y, B=k/(pocvoH), 0y = 6o/ (pgc), B=B/a,. (13)

Here, 2H is the height of the block, v, is the imposed velocity
on the top and bottom surfaces, and p, is the mass density in
the unstressed reference configuration, Substituting from
equations (4) through (9) into the balance laws (1) through (3),
rewriting these in terms of nondimensional variables, denoting
the partial differentiation with respect to x; (X,) by a comma
followed by an index i(«x), material differentiation with respect
to ¢ by a superimposed dot, and dropping the superimposed
bars, we arrive at the following set of equations:

b +pv;,;=0, (14)

80; = Tin 0 (15)

0=P8,0 + [1/(V3I0)I(1 ~ vO)(1 + BIY" DDy, (16)
o=—B(p~D1+——(1+bD"(1-»0)D.  (17)

\/’1

It is simpler to state boundary conditions for the specific
problem studied. We analyze plane strain thermomechanical
deformations of an initially-square block of dimension
2H x2H. The X, — X, plane, with the origin of the coordinate
system located at the center of the block, is taken as the plane.
of deformation. For the simple shearing problem the boun-
dary conditions are taken to be

vy = xf(4), v, =0, Q,N, +H,

n; TiaNa( = 0’ &

L =0atX,= (18)

T, N, =h(t), O,N, =0at X, = +H, (19)

where n is a unit outward normal and e is a unit vector tangent
to the surface in the present configuration and N is a unit out-
ward normal in the reference configuration. Equations (18)
and (19) imply that the boundaries of the block are perfectly
insulated, the top and bottom faces are placed in a hard
loading device and are subjected to a known velocity field. On
the other two faces of the block, zero normal tractions are
assigned and the tangential tractions are such as to equilibrate
the ones acting on the top and bottom faces. For a known
function f, the values of 4 depend upon the constitutive rela-
tion for the material of the block, and hence, are not known a
priori. As discussed in Section 3, we solve the resulting system
of equations iteratively and find # as a part of the solution of
the problem.

For the simple compression problem, we restrict ourselves
to the deformations that remain symmetric about both X, =0
and X, =0. The boundary conditions for the quadrant ana-
lyzed numerically are

v, =0, Ty =0, Q,(Ku), =0, at x; =X, =0, (20)
v,=0,T,=0,0,=0,atx,=X,=0, @1

T N,=0,Q,N,=0,at X, =H, 22)
v,=U(t),eT,N,=0,Q,N,=0,at X,=H. (23)
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That is boundary conditions resulting from the assumed sym-
metry of deformations are applied to the left and bottom
faces, the right face of the block is taken to be traction free,
and a prescribed normal velocity field and zero tangential trac-
tions are applied on the top face. All four sides of the block
are assumed to be perfectly insulated.

In each of the two problems, a material inhomogeneity or
flaw is modeled by adding a temperature bump at the center of
the block to the temperature field that corresponds to a
homogeneous deformation of the block.

3 Finite Element Formulation of the Problem

In order to avoid having to deal with a severely distorted
finite element mesh within the region of localization of the
deformation, we employ an updated Lagrangian formulation.
Thus to find the deformed shape of the body at time ¢ + At, we
take the configuration at time ¢ as the reference configuration,
and denote the region occupied by the body at time ¢ by Q. At
subsequent times the current locations of the nodes are com-
puted and Q equals the union of the 9-noded quadrilateral
elements obtained by joining these nodes. No attempt was
made to ensure that when the deformation localizes, the ele-
ment sides will be aligned along the direction of the maximum
shearing strain (cf., Needleman, 1989). However, for the sim-
ple shearing problem, the element sides are so aligned at the
initiation of the localization of the deformation.

We first rewrite equations (14)-(16) so that terms involving
the partial derivative with respect to time ¢ only are on the left-
hand side and then use the Galerkin method and the lumped
mass matrix (e.g., see Hughes (1987)) to derive the following
semi-discrete formulation of the problem.

d=F(, s, B, b, m, ).

Here, d is the vector of nodal values of the mass density, two
components of the velocity, and the temperature. Thus the
total number of unknowns or the number of components of d
equals four times the number of nodes. The vector-valued
function F on the right-hand side of equation (24) is a
nonlinear function of d and of the material parameters 8, 3, b,
m, and ». For a given set of initial values of p, v and #, one can
deduce the initial conditions on d. The nonlinear coupled set
of ordinary differential equations (24) are solved by using the
backward-difference Adams method included in the IMSL
subroutine LSODE. During the solution of these equations,
the tangential traction on the current position of the faces
X, = & H as determined from the immediately preceding solu-
tion, is applied. The subroutine LSODE has the option to use
the modified Gear method appropriate for stiff equations.
This could not be used because of the limited core storage
available on the local FPS164 processor attached to IBM 4381
computer. For the Adams method, the subroutine LSODE ad-
justs the size of the time increment adaptively until it can com-
pute a solution of the nonlinear equations (24) to the prescrib-
ed accuracy.

249

4 Computation and Discussion of Results

We took the following values of various material and
geometric parameters to compute numerical results.

b=10,000 sec, »=0.0222°C"~!, o, = 333MPa, m =0.025,
k=49.22Wm~!1°C-!, c=473]kg~!°C~1, py=7,800 kgm 3,
B=128GPa, H=5mm, v, =25 msec™!. 25)

For these choices, 6, =89.6°C, the nondimensional melting
temperature equals 0.5027, and the overall applied strain rate
is 5000 sec~!. We assigned a rather large value to the thermal
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Fig. 1 (a) The shape of the block in the reference configuration and
after it has been detormed unitormly in simple shear, (b) Stress-strain
curve in simpler shear, and (c) Stress-strain curve in simple
compression

softening coefficient » to reduce the CPU time required to
solve the problem.

Figure 1 depicts the block in the undeformed referencecon-
figuration and its shape after it has been deformed uniformly
in simple shear. Also plotted are the stress strain curves for the
material defined by parameters (25) when the block is de-
formed in simple shear and simple compression. It is obvious
that the softening caused by the heating of the material ex-
ceeds the hardening due to strain rate effects right from the
beginning. This is due to the rather high value of the thermal
softening coefficient assumed for the material of the block.
Once the deformation begins to localize, equations (24)
become stiff and the maximum size of the time step -one can
use and still integrate these equations to the desired degree of
accuracy becomes extremely small, Ideally, one should then
use the Gear method. But, as stated previously, we could not
do so because of the limited core storage available. The results
presented and discussed next are up to the moment when the
deformation has localized into a narrow band. Results com-
puted earlier for the one-dimensional problem (Batra (1987),
Batra and Kim (1989), and Wright and Walter (1987)) suggest
that the presently computed results represent essentially all of
the salient features of the localization of the deformation. We
first discuss results for the simple shearing problem, and then
the compression problem,

(a) Results for the Simple Shearing Problem. The square
region in the configuration at time £ =0 is divided into 16 X 16
uniform 9-noded square elements. The velocity field

(26)

that corresponds to steady shearing of the block, and the
temperature field

V=X, 0,=0

0=0 27

are taken as the initial conditions at time f=0, and for the
boundary conditions we take

S(t)=1.0,¢>0.

Thus, the effect of initial transients is assumed to have died
out. This reduces the computational effort required without
altering noticeably the computed results. Subsequent calcula-
tions with zero-initial conditions for v;, v,, and § have given
essentially similar results,
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At time £=0, a temperature bump given by

A0=0.2(1~r})%exp(—5r?), r* = X} + X3 (28)

was introduced and the resulting initial boundary value
problem solved. The temperature bump (28) simulates a
material inhomogeneity or defect; the height of the bump
represents, in some sense, the strength of the singularity.
Without the temperature bump or some other mechanism to
make the deformation nonhomogeneous, the block will
undergo unlimited simple shearing deformations and no
localization of the deformation will occur. We note that other
ways to model an initial imperfection in the body include hav-
ing a notch (Clifton et al., 1984) and a small region with a

0.
.25
.004
.25 9

.50
~1.

=

-0

o o

.50
.25 4
.00 4

50 5

0.50

.25
.00 4

0

()

-0.25 4
0.50 4~
-1.0

0.50

0.25 §
0.00 4§

-0.25 {
-0.50

-0.25 §

T T
-0.5 0.0 0.5 1.0

() (d)

X, - CODRDINATE

(e)

e ML LI

-1.0 -0.5 0.0 0.5 1.0
Xl - COORDINATE
Fig. 2 Isotherms plotted in the reference configuration at different
values of the average strain for simple shearing deformations of the
block; (a) vavg =0) Omax =0.2, — 0.15, « » + « 0.10, —+—+—+ 0.15, 0.05,
(B) Yavg =013, Opay =0.344, — 0.15, « + .« 0.20, —+—+—- 0.25,
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Omax =0.463 (see part (c) for values of é corresponding to ditferent
curves)
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slightly lower value of the yield stress (Needleman, 1989). For
strain hardening materials the introduction of a temperature
bump, a notch or a softer region does not, in general, lead to
the localization of the deformation. The average strain at
which a shear band forms depends upon, among other factors,
the amplitude and shape of the temperature bump.

- Figure 2 shows isotherms in the reference configuration of
the block at four different values of the average strain vy,,. In-
itially, these isotherms look elliptical because of the different
choice of scales along the horizontal and vertical axes. The
temperature bump is symmetrical in x; and x,. A reason for
selecting different scales along the two axes is that the
isotherms eventually flaten out and spread to the vertical
boundaries of the block. Thus, larger scale is chosen along the
vertical axis to decipher these isotherms. The initial
temperature equals 0.20 only at the origin. At an average
strain of 13 percent, the isotherms have changed shape; those
for a lower temperature look like a rhombus and the ones for
the higher temperature resemble closed polygons. Because of
the plastic working and zero heat flux boundary conditions the
temperature rises everywhere, The heat is continuously being
conducted outwards from the central hotter region. Near the
corners of the block deformation is nonhomogeneous (e.g.,
see Fig. 5) and the temperature rise there is more than that at
other points except possibly near the center of the block. The
nonhomogeneity of the deformation near the corners is a
numerical artifact rather than due to the physics of the
problem. The use of a very fine mesh should reduce the effect
considerably, but a mesh finer than the one employed here
could not be used because of the limited core storage
available. Once the deformation begins to localize, the
temperature rise within the band is significantly more than
what it is elsewhere. The temperature contours at average
strains of 20.8 percent, 21.5 percent, and 22.7 percent bear
this out. At an average strain of 22,7 percent the maximum
temperature at the center equals 92 percent of the presumed
melting temperature of the material. The isotherms are quite
narrow in the vertical direction and progressively become nar-
rower as the deformation localizes.

Figure 3 depicts the v,-velocity field in the reference con-
figuration of the block at average strains of 0 percent, 18.5
percent, 20.8 percent, and 22.7 percent. Because of the initial
temperature bump, the deformation becomes nonhomo-

SIS
SIS
S SCICICIIOS
353535
S5353
e

Fig.3 Velocity field in the diréction of shearing at several values of the
average strain; (a) yayg =0, (b) “Yavg = 0185, (€) vayg =0.208, and (d)

Yavg = 0:227
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geneous. This nonuniformity becomes perceptible at an
average strain of 18.5 percent and is quite noticeable when the
average strain equals 20.8 percent and 22.7 percent. The
nonhomogeneity in the deformation at the corners is not
noticeable in these plots probably because of the scale chosen
to plot the data. The v,-velocity field appears to stay anti-
symmetric in x, even through the localization of the deforma-
tion. At an average strain of 20.8 percent the shearing strain
rate at the center is noticeably higher than what it is within the
region Ix,|=0.1. During the ensuing deformations of the
block, the region near the center undergoes intense straining
and that outside of the domain Ix,| <0.1 deforms at a strain
rate much smaller than the imposed strain rate of 5000 sec~!.
With a finer mesh one could sharpen a bit more the boun-
daries of the two domains.
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Fig. 4 Contours of the second invariant | of the deviatoric strain rate
tensor at different values of the average strain; (a) yayq =0.185,
Imax =847, — 1.5, + o e e v 20, —e—2—- 3.5, (b} vayg =0.198,

Imax =445; — 1.5, + s+ e oo 25, —e—e—e 3.5, (€) 7vayg =0.208,
Imax =551 — 25, + s s s e 375, —e—e—s 50, (d) ya,g=0.215
Inax =6.23; — 2.5, « ¢ 0 ¢ o s 3.75, —«—«—« 5.0, and (e) Yavg =0.227,
Imax =8.45; — 25, + + + + ¢ + 50, —e—e—+ 7.5
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In Fig. 4 we have plotted the contours of the second in-
variant I of the deviatoric strain rate tensor D at different
stages of the localization process. At an average strain of 18.5
percent the peak value of I equals 3.47 and it equals 4.45 when
the average strain is 19.8 percent. We note that these are plot-
ted in the reference configuration. It is clear that during the
deformation of the block from 18.5 percent average strain to
19.8 percent average strain, the contour of 7=2.5 has spread
out horizontally and become narrower in the vertical direc-
tion. The various plots in Fig. 4 give the impression that there
is a kind of source term for 7 at the center. Once the deforma-
tion has started to localize, contours of successively higher
values of I seem to originate at the center and fan out. They
spread out in the direction of shearing. As noted earlier, severe
deformations of the block occur now in this narrow region.

Figure 5 depicts the distribution of the effective stress s,,
defined as being equal to the right-hand side of equation (12)
within the block at average strains of 0 percent, 18.5 percent,
20.8 percent, and 22.7 percent. Initially it looks like an in-
verted hat because every material point is assumed to lie on its
yield surface. We note that for the simple shearing problem
being studied, o, is the only component of stress having
significant values. Because of the higher temperature at points
near the center, the flow stress there is reduced. As the body
continues to be deformed, the stress distribution within the
block, and especially in the region surrounding the center of
the block, alters. The nonhomogeneity of the deformation
near the corners is now evident. The temperature rise within
the block reduces the flow stress needed to deform the
material. Consequently, the value of s, drops at all points.
Even though the strain rate invariant I assumes very high
values at points within the region of localization, the softening
caused by the temperature rise exceeds the hardening due to
strain rate effects and the stress drop in the severely deforming
region is enormous. For very high rate of drop of s,, an
unloading elastic wave emanates outwards from the shear
band (Batra and Kim, 1989). No such unloading wave was
observed in this case. It could be due to the coarseness of the
mesh, the integration scheme used, or the rate of the drop of
s, was not too high.

The deformed mesh at average strain of 22.7 percent is
shown in Fig. 6. The relatively severe deformations within the
region of localization, and nonuniformity of deformations
near the corners, is evident.

(b)

7
Fig. 5 Distribution of the effective stress within the block at ditferent
values of the average strain; (a) Yavg =0, (b) Yavg = 0.185, (c) Yavg = 0.208,

and (d) yayg =0.227
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Fig. 6 Deformed mesh at an average strain of 0.227 (simple shearing
deformations of the block)
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Fig. 7 Isotherms plotted in the reference configuration at different
values of the average compressive strain; (a) vayg =0.0, 0y =0.2,
— 005, » .-+ 0.10, —+—+=- 0.15, (b) vayg =0.035, Oy =0.286,
— 0.10, « ¢+ + + 0.15, —e—es—+ 0.20, ~ - - - 0.25, (€) y5yg =0.040, 6.
ax = 0.313, see part (b) for values of 6 corresponding to different curves,
(d) vayg =0.045, 69 =0.353, — 0.10, « - « « » 0.15, —e—e—- 0.20,

0.25, — — — 0.30, (6) vayg =0.055, Opmax =0.426, — 0.15,
seesee 020, —e—o—+ 0.25, 0.30, — — — 0.35, and (f)
Yavg = 0.059, 0,2 = 0.448, (see part (¢) for values of # corresponding to
different curves)

(b) Results for the Compression Problem. Because of
the assumed symmetry of the deformation field, the deforma-
tions of the block within the first quadrant are analyzed.
Several trial runs without introducing any temperature pertur-
bation yielded the following values of the steady-state
solution:

v =0.37x, v, = — X, (29)

for an average applied strain rate of 5000 sec ~!. Subsequently .

this velocity field, and the temperature field given by equation
(28), were taken as the initial conditions and the initial boun-
dary value problem solved. A closer look at the results com-
puted by Batra (1987a, 1987b) for the one-dimensional simple
shearing problem reveals that the initial state where the pertur-
bation is introduced has very little effect, if any, on the
qualitative nature of the results. Figure 7 depicts the
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Xy - VELOCITY
Xp = VELOCITY

«

Fig. 8 Velocity field within the block at different values of the average
compressive strain; (a) Yavg =0, (b) vavg = 0.045, (€) yavg = 0.059

temperature distribution at several values of the average com-
pressive strain. At an average strain of 3.5 percent the
isotherms have changed in shape from elliptic to rhombus and
the peak temperature at the center has risen from 0.20 to
0.286. Because of the nonhomogeneous deformations near the
top right corner, the temperature rise there is more than that at
other points within the block except, of course, those near the
center which are undergoing severe deformations. As the
temperature plots at average compressive strains of 4 percent,
4.5 percent, 5.5 percent, and 5.9 percent show vividly, the
isotherms spread out diagonally indicating that the material
around the main diagonal is deforming severely. At these
average strains the peak temperature occurs at the center and
equals 0.313, 0.353, 0.426, and 0.449, respectively. Thus, the
rate of temperature rise at the center is small initially, in-
creases as the deformation begins to localize, and tapers off
during the late stages of the localization. Even though heat is
being conducted out of this central region the heat produced
due to the plastic dissipation exceeds that lost due to conduc-
tion. Once the localization process is initiated, the heat
generated due to plastic working becomes quite high and the
rate of temperature rise within the central region picks up.
However, the stress required to deform the material drops and
thus reduces the energy dissipated due to plastic working. This
and the heat conducted out of the central hotter region ex-
plains the slow rate of temperature rise during the late stages
of the localization of the deformation.

In Fig. 8 we have plotted the v,- and v,-velocity fields at
average strains of 0, 4.5 percent, and 5.9 percent. Except at
points around the diagonal passing through the top right cor-
ner, both v, and v, vary slowly and nearly linearly, thereby
implying that the material region within a narrow zone on
both sizes of the diagonal line is undergoing severe deforma-
tions. Figure 9 shows the contours of the second invariant I of
the deviatoric strain rate tensor at average compressive strains
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Fig. 9 Contours of the second invariant / of the deviatoric strain rate
tensor at different values of the average compressive strain; (a)
Yavg =0.012, gy =2.0. — 1.0, « « o+ ¢ » 125, —e—o—. 150,
1.75, (b) Yayg =0.018, I;yay =2.53, — 1.0, + « » « = + 1.25, —e—.—. 1.50,
===~ 1.75,(¢) vayg =0.025, Ipygx =2.95. — 1.0, ¢ » ¢ ¢ + + 1.5, —e—0—¢

2.0,----25,(d) Yavg = 0.03, I;ay = 3.70, see part (c) for values of | cor-
responding to different curves, (€) yayg =0.085, I =5.53, — 1.5,
so v e s 20, —e—e—0 2.5, - - - - 3.0, (f} yayg =0.040, /5y =8.73, —

2.5, 0000050, —e—s—s 7.5, (g) Yayg = 0.053, Iyyax = 16.92, — 2.5,
“ e e 75, —e—v—0 125, and (h) yayg = 0.059, Iy = 20.7, — 7.5,
ceeeee125 —emme—e 17.5

of 0.012, 0.018, 0.025, 0.03, 0.035, 0.04, 0.055, and 0.059. As
for the simple shearing problem, the maximum value of I oc-
curs at points near the center of the block and these contours
seem to originate at the center and spread out along and
perpendicular to the direction of maximum shearing strain;
their speed probably depends upon the mesh size. Also, the
width of the severely deforming region depends upon the mesh
size, too. :

Figure 10 depicts the distribution of the effective stress s, at
average strains of 0, 0.027, 0.045, and 0.059. Initially the
stress is uniform everywhere except in a narrow region near
the center where the flow stress has been reduced due to the
higher value of the temperature at these points. The plot at
Yavg =0.027 reveals that the flow stress has dropped every-
where due to the rise in the temperature of material particles.
Still, the effective stress is uniformly distributed except at
points near the center of the block. It seems that the localiza-
tion of the deformation begins in earnest at y,,, =0.045. At
Yavg = 0.059 the material region around the main diagonal has
severely deformed. The deformed mesh for v,,= 0.059 is
shown in Fig. 11. That the band has formed is difficult to
visualize from the deformed mesh shown. Also, the mesh is in-
capable of resolving sharp deformation gradients within the
localized region.

5 Discussion and Conclusions

The 9-noded quadrilateral element used herein seems to
have performed satisfactorily as far as the initiation and.some
growth of the adiabatic shear band is concerned. As for com-
putations with one-dimensional problems (Batra, 1987a; Batra
and Kim, 1989), it is probably due to the coarseness of the
mesh that sharp gradients of the deformation within the
region of localization could not be completely resolved. This is
also supported by the recent work of Shuttle and Smith (1988)
on the numerical simulation of shear band formation in soils.
Both for plane strain, simple shearing deformations of the
block and plane strain compression of the block, the shear
band is formed along the direction of maximum shearing. For
the compression problem the shear band formed at an average
strain of 0.059, and for the simple shearing problem it formed
when the average strain equaled 0.229. The results computed
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Fig. 10 Distribution of the effective stress within the block at different
values of the average strain; (a) Yavg =0, (b) Yayg = 0.027, (€} vayg = 0.045,

and (d) yayg = 0.059
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Fig. 11 Deformed mesh at an average compressive strain of 0.059

herein are in qualitative agreement with those of Needleman
(1989). Because of the different constitutive assumptions
made and the difference in modeling a material inhomogenei-
ty, it is hard to make any quantitative comparisons.
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poroelastic materials. Biot’s poroelasticity equations are solved to obtain the
response of poroelastic materials undergoing harmonic tension-compression and
bending deformation. Complex moduli of poroelastic material are explored from
the response functions on basis of mathematical models. It is shown that the effects
of material parameters, geometrical parameters, and flow boundary conditions on
the fluid damping are predicied by simple mathematical formulas. Numerical results

are presented and compared with those of other researchers.

Introduction

A mathematical treatment to predict the fluid damping of
open-cell foams was proposed by Rush (1965) and by Gent
and Rusch (1966). In their analysis, a rectangular block of
fluid-filled foam is considered (Fig. 1(a)). The specimen is har-
monically compressed in the z direction, and the foam matrix
deforms uniformly in the z direction. The fluid inside the
foam specimen is forced to flow through the matrix in the x
direction. The pressure distribution was determined and the
average compressive stress in the cross-section of the specimen
was calculated. This stress was added to the compressive stress
of the foam matrix. Then an equivalent complex modulus of
open-cell foam was derived. They predicted the frequency
dependence of the complex modulus to be qualitatively as
shown in Fig. 1(b).

As the frequency is increased, the fluid flow resistance in-
creases, resulting in increased material stiffness and loss fac-
tor, n. At high frequencies, the iteraction force between the
fluid and the solid matrix becomes so large that the solid and
fluid move together and there is no fluid flow. At these fre-
quencies the loss modulus, due to the fluid flow, becomes zero
and the storage modulus becomes its maximum. Thus as the
frequency increases, the loss factor # starts to increase from
the matrix loss factor u,, and reaches its maximum at a
“critical”’ frequency w,, and then reduces to the matrix loss
factor again. Similarly, the storage modulus E’ starts to in-
crease from the matrix storage modulus and approaches its
maximum value as the frequency goes to infinity.

The Gent and Rusch model explains the effects of the
material constants and the specimen geometry on the fluid
damping. The validity of their analysis has been well proven
by extensive experiments. However, the method cannot be ap-
plied to different deformation modes and/or flow boundary
conditions. The purpose of the present work is to develop a
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Fig. 1(a) Foam slab undergoing harmonic compression deformation
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Fig. 1(b) Variation of storage modulus and loss factor of a fluid-filled
foam with frequency
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mathematical method which can account for more general
flow conditions and also to get simpler expressions for the
maximum loss modulus (damping) and the critical frequency
w,, which are important for practical design of fluid damping.

To analyze the fluid damping in more general deformation
modes and fluid flow conditions, it is essential to have con-
stitutive equations for the fluid-solid system. Wijesinghe and
Kingsbury (1979) developed an analytical expression for the
fluid damping in poroelastic material using Biot’s poroelastic-
ity theory to derive a theoretical complex modulus for
poroelastic material. In their analysis, the dynamic response
of a slab, column, or disk or porous material subjected to
sinusoidally-varying displacement on its surface was con-
sidered as shown in Fig. 2. The fluid flows in and out of the
specimen through the rigid porous plug. The resulting
theoretical complex modulus shows a frequency response
similar to the one shown in Fig. 1(b).

In this work, a similar approach is used to develop
mathematical expressions for complex modulus of poroelastic
materials undergoing tension compression and bending defor-
mation with various different flow conditions.

Poroelastic materials are a two-phase, solid-fluid system as
defined by Biot (1956, 1957). The solid material forms the
skeleton which has small pores filled with fluid. The skeleton
is linearly elastic, and the fluid is Newtonian viscous and may
be compressible or incompressible. It is assumed that bulk
material is homogeneous on a macroscopic scale, and pores
are all interconnected. Biot’s dynamic theory of poroelasticity
accounts for the effects of both fluid inertia and dissipation.
In the present work, the quasi-static theory is used, which
neglects the inertia effects of the fluid. Therefore the result is
valid when either the density of the fluid or the flow velocity is
low.

The Governing Equations

The equations governing the deformation of a poroelastic
system may be phrased in terms of the average skeleton
displacement components, u;, and the pore fluid pressure, p.
In the absence of body forces these equations become
(Kingsbury, 1984):

B U+ (N w5y g — D5 =0 1
]
pakk:—a? (B u;; —BLp) 2
where
B, =ba/n*?, B,=b/Mn*%, 3)

In equations (1) through (3), p* and \* are the Lamé con-
stants of the skeleton, n* and b are the skeleton porosity and
resistivity, respectively, M is a modified fluid bulk modulus,
and « is a solid-phase compressibility coefficient.

The later two coefficients can be expressed in terms of more
intrinsic material properties as:

a=1—6/« 4)
1
- n*(c—98)+ad %)

where 6 is the compressibility of the solid comprising the
skeleton, « is the compressibility of the skeleton, and c is th
fluid compressibility. :

Solution I: Tension-Compression Mode

A solution is first obtained for the simple geometric con-
figuration shown in Fig. 1(a). Assuming that the solid strain
and the pressure are constant in the g direction, the governing
equations reduce to (6) and (7). Since the strain of the x direc-
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Fig. 2 Column of poroelastic material undergoing harmonic

compression

tion is restricted to zero at the boundaries between the sup-
porting plate and the specimen, and the ratio of the specimen
height, 4, to the specimen width, /, is very small, the strains e,
and e, are neglected. Consequently, the coupling between the
solid displacement and the fluid pressure in (1) vanishes.
The pressure boundary conditions are given by (8) and (9).
The solution forms for the solid displacement and the fluid
pressure are given by (10) and (11), respectively. Equation (12)
is obtained from (11) and the boundary conditions (8) and (9).
Substituting (10) and (11) into the governing equation (7), one
obtains (13), and the pressure solution becomes (14). Now the
force term, F, acting on the upper surface of the specimen is
given by (15), where A is the area of the upper surface. Since
the normal stress is given by (16), the force F is obtained as
(17) from (15), (16}, (10), and (11). Now one can define an
equivalent complex modulus £ by (18). The first term in (18)
represents an apparent modulus of the solid skeleton and the
second term represents the effect of the fluid. It is seen that £
is a complex value and dependent on the frequency w, the
poroelastic material parameters (o, M, b, n*), and the
geometrical parameter /. The term (tan x)/x approaches zero
as x goes to infinity and 1.0 as x goes to zero. Therefore, the
quantity oM represents the maximum storage modulus due to
the fluid. The fluid damping is represented by the imaginary
part of the complex modulus, E”, which is the loss modulus.

Fw
a0 ©
?*p a aw
o ot {ﬁ‘< oz )”32"} M
P batz=0, h ®)
0z
p=0atx==x1/2 )
W=—2 zelot (10)
p=(C, singx + C, cospx + Cy)e™ an
C,=0, Cy=C, cos(¢!/2) (12)
=‘ ) 172 _ ﬁl(Wo/h)
o= (—iwB)"? e, = B, cos@l/2) 13
_ W, ﬁ 3 cos(px) ) .
p= ( h ) 5, {1 cos(¢l/2)}e (14)
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F= SA Top | o pdXdy (15)
T = (2pu* +s%)e, —ap (16)
P _MP__ ™ 2 — tan (¢’1/2) iwt
F=A p {(ZM +A)+a M(l 31/2 )}e an
- _ . v x ) 3 tan{¢//2)
E(w)=(2u*+ )+ M{l ——¢l/2 } (18)

The merit of this solution is that the critical frequency, w,,
and the maximum fluid damping (loss modulus) can be easily
found as will be next shown.

Taking the derivative of (18) with respect to w yields (19),
where parameters (x, a) are given by (20). Equating (19) to
zero, one obtains (21). The imaginary part of this equation
leads to the condition shown by (22). From these results , the
critical frequency w, and the maximum loss modulus E7,, are
obtained as (23) and (24), respectively. In equation (23), the
distance /*, which is equal to half of the specimen width, /, is
used since that is found to be convenient to generalize the flow
path length. This distance /* represents a flow path length of
the fluid, which correspond to the distance between the max-
imum pressure point and the minimum pressure point.

dE(w) __d {tan (qbl/2))

do  de U ¢l2
@* d /tanx
SLEm
x dx X
li b 172
=¢l/2, =_(__> 20
X=9l2, a=\mr (20)
sin (2x) —2x
— 21
x3cos? (x) @b
x=(=1+i)a’,a' =1.127 (22)
n*?M
0 =254~ 10 =12 (23)
Ely=0.41a2M (24)

It is seen from (24) that the maximum fluid damping is
determined by only the two parameters o and M. Since the
quantity o®M is equal to the maximum storage modulus due to
the fluid flow, the maximum fluid damping is primarily deter-
mined by the type of fluid and the pore density of the solid,
while the critical frequency w, depends on the geometric
parameter /* and the flow resistivity b.

This solution is comparable with the Gent and Rusch model
in that the geometry and the boundary conditions of the
models are identical. The advantage of this solution is the
simplicity of the formulas. It is seen that equations (23) and
(24) give a direct measure for the fluid damping design.

Solution II: Effect of Flow Boundary Condition

In the Solution I, if either one of the specimen side faces is
sealed, the problem becomes equivalent to that in which the
specimen width L is equal to twice of the original length
(L =2]). Thus, from equations (23) and (24), the flow boun-
dary condition is expected to change the critical frequency w,,
but not change the maximum loss modulus nor the shape of its
frequency function.

It is convenient to use a Fourier series solution for the fluid
pressure to study the effect of the flow boundary conditions.
For an example we consider a case for which the specimen has
a finite width d in the y direction and the pressure boundary
conditions given by (25). The pressure solution is assumed as

Journal of Applied Mechanics

(26). Then the dilatation term in equation (2) is expanded
because of Fourier series as (27), where the coefficient C,,, is
given by (28). Since the dilatation term e is constant with
respect to x and y, the pressure solution is obtained as (29).
The force acting on the top surface of the specimen is obtained
from (15), (16), and (30). An equivalent complex modulus is
obtained as (31). The second term in equation (31) represents
the effect of the fluid flow (£,). Since the series is very quickly
converging, the first term alone is a good approximation. The
frequency function has a form shown by (32). General for-
mulas for the maximum loss modulus and the critical frequen-
cy w, are given by (32) and (33). For this particular case, the
maximum loss modulus is approximated by (34). It is seen that
the geometrical parameters do not change the maximum value
of damping. The critical frequency is expressed as (35), where
g* is an effective flow path length. Because of one term ap-
proximation of the series, the coefficients in (34) and (35) are
different from those in (23) and (24). These are checked
numerically later in this paper.

0
p=0 aty=0,dand..ép_=() at x=0,1/2 25)
X
m .
p= E Epmn sin m sin Ty elot 26)
m n !
e= E ZCm,, sin 2 gin MY it @n
m n / d
4 Lrd ntx mry
Cpp =— S S . onmx
mn d Vo Jo € Sin i sin 4 dxdy (28)
—iwB,C
p= E 1 “mn
m n nmw 2 mr 2 .
<7) * <7> + o,
. hmx | mwy .
X sin ——1—- sin —= efw! (29)
W,
F=A —21@u + 3+ ), Y,
h m n
m=odd
n=odd
, 64
L o
X eiwt (30)
nmt 2 mi 2 )
T) * (7) +iwf,
E@)=@u+\+ 1 )
m n
m=odd
n=odd
; 64
o T
g (3D
nw\? mr\?
(T) * (T) +iwf,
P xyw
E=—""1"
I G+ e (32
Xy X,
T BTy 33
Ergtax =O-33O{2M (34)
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*ZM
w0, =2.47 —%;2—[)— ,
1*2d*2

172
g =<W—> , F=172,d*=d/2.

(3%

Solution III: Bending Deformation

The dynamic modulus of a poroelastic material undergoing
bending deformation is suggested by Biot (1964). Here we con-
sider a pure bending case shown in Fig. 3.

The pressure boundary conditions are given by (36). Ne-
glecting strains e,, and e, the dilatation term is given by (37).
The equation of motion for the classical simple beam becomes
(38), where M is bending moment. The moment term is given
by (39), where E is the elastic modulus and 7 is the moment of
inertia of the beam cross-section. The pressure solution in the
poroelastic material is assumed as (40), where the flow in the x
direction is ignored. Expanding the dilatation term by use of a
Fourier series as (41), the pressure solution is obtained as (42).
Substituting (42) and (39) into (38), one finds an equivalent
complex modulus shown by (43) and (44). Taking the first
term of the series, the maximum loss modulus and the critical
frequency are obtained as (45) and (46). It is seen that this
result is equivalent with previous solutions if one use /=h/2.
Thus the deformation mode does not change the maximum
damping obtainable from fluid flow.

op h
—=0at 2= £— 36
9z az 2 (36)
e=—z & (37)
ax?
?M 3w )
sz.__+ph ?=Foe’°” (38)
~ "2
M=j T 207 )
n2
aZW h/2
) S S
e ay . pzdz 39
2n—1
p= EP,, sin _(_n___)zr_ ze™! (40)
n
3w 2n—1
~z———+ YD, sin @n=D)m ot 1)
ax -
4h
iwp -
p=Y @n-1)2x? ( )S,n (2n—1)7rZ ?w @)
= i
w 2n—1)272 h ax?
———_hi—_+lw62
. 96
. +EIO[0)BI (2n_1)47r4 ; M*w
T en-12 3
T-l—lwﬁz
%w » .
+hp "—5;2‘~=F0€ fw (43)
. 96 /Q2n—1)*m4
E(w)=E, + E i oz‘,31w ( )4 (44)
n (27’1—1)7!' 2 .
{——-————h } +iwf,
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22

Fig. 3 Simpie beam model

n*?M
we = 2.47 W— (45)
E!y=0.49 oM. (46)

Discussions

The dynamic modulus due to fluid flow can be approx-
imated by the simple formula (47), where the maximum loss
modulus E” and the critical frequency w, are given by (48) and
(49), respectively. The idea of an effective flow path length
needs to be introduced to generalize the effect of flow boun-
dary condition. The effective flow path length is the distance
between the maximum and minimum pressure points in the
case of one-dimensional flow. In the case of multidimensional
flow, it is approximated as (35).

- 2' ”
B(w)=E, + o @7
W, +Iw
El.. =0.41 2M (48)
n*2M
@ =2.54 —r—. (49)

A numerical example is chosen to compare the results ob-
tained by equations (18), (31), and (44) with the approximate
formula shown by (47). Material properties used for the sam-
ple calculation are as follows. (A polyurethane-air system was
chosen as an example).

Storage modulus of skeleton E: 3.0 10° Pa
Porosity n: 0.94
Air bulk modulus M: 1.0x 10° Pa
Parameter o: 0.96
Resistivity b: 1.0x10° Pa

The results of the sample calculation are shown in Fig. 4,
The effective flow path length is the same for all models. It is
seen that the four curves are fairly close to each other,
although there are some differences in the maximum storage
and loss moduli as expected from the analytical results.

The dynamic modulus obtained as (18) was compared with
the result of Gent and Rusch in an Okuno (1986). It was
shown that although there were some differences observed in
the storage modulus, on the whole, the equation (18) agreed
well with the Gent and Rusch model. Equation (18) results
from the assumptions in equation (6) that there is no interac-
tion between the solid and the fluid strain; i.e., the coupling
term in the first governing equation was neglected. The same
assumption was made by Gent and Rusch.

However, in the case shown in Fig. 2, the major solid strain
occurs in the same direction as the fluid flow. Therefore,
neglecting the coupling term is considered to cause significant
error. It is useful to check the amount of discrepancy due to
the assumption of no coupling. In Fig. 5 the result by equation
(47) is compared with the result of Wijesinghe and Kingsbury
(1979), which is a solution of the coupled equation.

It is seen that neglecting the coupling term results in only
slight overestimation of the maximum loss modulus and
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Fig. 4(a) Dynamic storage modulus in different deformation modes
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Fig. 4(b) Dynamic loss modulus in different deformation modes

storage modulus, while it does not change the critical frequen-
cy significantly.

Dynamic responses of two-layer and three-layer beams with
a foam layer was studied by Okuno (1986), and it was shown
that the maximum loss modulus of the foam layer is about the
same value as that of (48) regardless of the deformation mode.
The critical frequency of the foam layer was also analyzed and
it was found that the results were close to (49).

From all the analyses presented so far, it is concluded that
the approximation of fluid damping, which is obtained as
(47), (48), and (49), gives sufficient accuracy for practical use.

Summary
The effect of fluid flow on the dynamic modulus of a

Journal of Applied Mechanics
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Fig. 5(b) Dynamic loss modulus by coupled and uncoupled equations

poroelastic material can be approximated by a simple complex
modulus as:

2inE ],y
w, +iw
The loss modulus (fluid damping) shows a bell-shaped fre-
quency dependence and its maximum value and the critical
frequency are approximated as follows:
E... =0.41c°M
n*M
*?b

E(w)=E,+

w,=2.54
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These formulas show that the maximum fluid damping is
determined by the type of fluid, while the critical frequency
can be controlled by choosing the flow resistivity of the
skeleton and the flow path length. This information is quite
useful for practical fluid damping design.
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Anisotropic Porous Rectangular

The squeeze film between two rectangular plates when one has a porous facing is
analyzed taking into account the anisotropic permeability and slip velocity at the
Sluid and porous material interface. Modified equations for calculating the pressure,
the load carrying capacity, and the film thickness and time relations are presented.

The effect of the anisotropic permeability and slip velocity at the fluid and porous
material interface on the squeeze film behavior is discussed and found to be

important.

Introduction

Porous materials have been used in lubrication applications
such as bearings (Booser, 1970) and squeeze films (Wu, 1970).
They have the advantage of being self-lubricating, which over-
comes the need for oil pipes, pumps, etc., and simplifies the
problem of machine design. In most analyses (Wu, 1970,
1971a, 1971b; Berman, 1953; Morgan and Cameron, 1957) of
flow with porous boundaries it has been customarily assumed
that the conventional no-slip velocity condition remains valid
at porous surfaces. Recently, however, Beavers et al. (1967,
1970) demonstrated the existence of slip velocity at the surface
of a porous material in their experiments involving laminar
flow of water and of oil in rectangular ducts having one
porous wall. Experiments were later performed by Taylor
(1971) to calculate the slip constant. Later, Sparrow et al.
(1971) used the slip velocity assumption in generalizing the
analysis of the squeeze films between porous annuilar disks
(Wu, 1970) and found the effect of the slip velocity was to
reduce the load-carrying capacity and the response time of the
porous squeeze film, Wu (1972) extended the previous analysis
of squeeze films between porous rectangular plates to include
the effect of velocity slip at the porous surface and came to
similar conclusions as mentioned by Sparrow et al. (1971).

The purpose of this paper is to expand the previous analysis
of squeeze films between porous rectangular plates (Wu, 1972)
to include the effect of anisotropic permeability and velocity
slip at the porous surface and to provide the modified equa-
tions for calculating pressure, load-carrying capacity, and in-
stantaneous film thickness of this kind of squeeze film as func-
tions of time.
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Analysis

Assumptions.
analysis:

The following assumptions are made in the

1 The flow in the film region is laminar,

2 The fluid is incompressible and has constant properties.

3 In the film region the inertial effects can be neglected, the
pressure is independent of the z-coordinate, and the z-
derivatives of the velocity components dominate.

4 The flow in the porous medium follows Darcy’s law for
anisotropic materials

K

v¥= — » grad P*, 1)
where P* is the pressure in the porous medium, 5 is the
isotropic viscosity of the fluid, v* = (v}, v}, v}) is the velocity
vector with components referred to the Cartesian axes, shown
in Fig. 1, and X is the anisotropic permeability tensor. It is
assumed that the anisotropic properties of the porous material
are such that the principal directions of K remain constant and -
parallel to the coordinate directions shown in Fig. 1, We can
then write

K. 0 0
K= | 0K, 0 @)
0 0 K,
- 2 -
<+
L2
y I
Y
LA T
0
T
Fig. 1
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where K, K, K, are the constant permeability coefficients.
(Throughout, starred variables refer to the porous medium
and unstarred variables to the film.)

On the previous assumptions for squeeze film flows for the
quasi-static case, the Navier-Stokes equations reduce to

Pv, 1 9P
322 g ox
(3
Pv, 1 3P
a2 q Ay

In order to solve the equations it is necessary to specify a
boundary condition on the velocity between the film and
medium. In this paper, we adopt the empirical model sug-
gested by Beavers and Joseph (1967) and, subsequently, given
theoretical justification by Saffman (1971). For an anisotropic
medium this takes the form

dvy oy .

Bz =0 - \/]—{,; (UOX UOx)’

5 )
Yy _ % o

3z l=o VK, (v, = ¥5;),

where vy, vy, denote the slip velocities (v, = v,(0), vy, =2,(0))
along the x and y directions, respectively, vg,, v§, the mean
velocity components in the porous medium which are given by

oo Ko 0P
Ox — 7 ax
(5)
o Ky 0P
v n 9y

respectively, a,, o, are dimensionless constants which depend
on the characteristics of the porous medium.
It can be seen that when

N

o o,

0,

equations (4) reduce to the no-slip boundary conditions ap-
propriate to a solid wall. Integrating equations (3) twice with
respect to z, and applying the slip boundary conditions at the
interface and the no-slip boundary condition at z = A, yields

It is assumed that the mean velocities in the porous medium
satisfy the equation of continuity,

* * *
duvy av} v}

=0, 9
ax ay 0z ©)

and using Darcy’s law, we obtain the elliptic equation for the
pressure in the porous medium
azp* azP* 62P*
v +Ky 3_)12 +Kz D =0.
Since the velocity component in the z-direction must be con-
tinuous at the interface,

(10)

K, oP*
Vg, = — T—B—z— oo (11)
equation (8) becomes
arh opP d [h® oP
3l o o )
—he K0P (12)
7 0z lz=0

Equation (12) represents the modified Reynolds equation for
the fluid pressure in the film region for the quasi-static case
and equations (10) and (12) are to be solved subject to the
usual boundary conditions of zero pressure at the edges of the
plates and at the lateral surfaces of the porous medium, zero-
flow through the bottom plate and continuity of pressure
across the interface.

P(0,y)=0,
P(L,,y)=0,
P(x,0)=0,
P(x,L,)=0,
P*(0,y,2) =0,
P*(Ly,yz}=0,
P*(x,0,z) =0,
P*(x,L,,2) =0,
ap*

0z lz=-H

(13

oom ax 2K, + hovy)

oo L op {zZ(\/Fxmax)—zax<h2—21<x)—hx/?x(h+zax\/7<})}

(©)

7 dy 2(VK, + ha,)
The equation of continuity is

dv, dv, av,
ox ay 0z

On substituting (6) into (7) and integrating across the film
thickness 4, we obtain

6[h3 P ] 6[h3 aP ]

=0. @)

—_—] —— + _]—_
ax U127 ox <17 ayli2g 3y @
=[o )l =0, =V, =h— vy, (®)
where v, = h is the velocity of the top plate, and o, and 0, are
given by
(142 _aj_f_) (142 ﬂ)
1+3 h 1+3 ‘
g, = _—_— g, =14+
’ L ' 1+ 1%
K, JK,
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1 apP {zz(\/Fy+hay)—zay(hz—ZKy)—h\/?y(h+2a),\/fy)}

Since _the pressure must be continuous at the fluid and porous
material interface,

P(x,y) =P*(x,,0). (14
Solutions

Equation (10) can be solved by separation of variables sub-
ject to the boundary conditions (13). The solution is

P*xp.2) = )y ), ApnCOshly,, (z+ H)Isin(a,x)sins,»),

m=1 n=1
15)

where
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o K, +BiK,
Ymn = (—_—K_—>

z
and the coefficients a,,, are to be determined.

To solve equation (12), P(x,y) is expressed as an infinite
series consisting of a complete set of orthogonal functions
each of which satisfies the respective boundary conditions
givenin (13), i.e.,

Y ¥ bsin(,x)sing,p).

n=1 m=1

P(x,y)= (16)

The coefficients b,,, are determined from the matching condi-
tion (14), i.e.,

bun = apupcosh(y,,, H). amn

On substituting equations (15), (16), (17) into (12), the or-
thogonality of the eigenfunctions gives

—1929h

384nL§L2[ 1 ] 2 1
bl b ) [ |
Wﬁh%W hz E E

m,n odd

At=

2
2,2 <m2+ 21 n2)

23)

can be obtained from (22) by putting K,=K,=K,=0.
Similarly, Wu’s (1972) solution can be obtained by letting
K.=K,=K,, ay=a, and v§, =0, v§,=0.

Results

By comparing equations (15), (20), and (22) with the cor-
responding equations given by Wu (1972) for the velocity slip
case, it is found that the effect of anisotropy and velocity slip
comes through the introduction of the parameters 4., ,, and

amn

12K,
LyLok | (00, + B30, sy, H) + ——elm
(18)

where m and » are odd.
The load-carrying capacity of the squeeze film is found by
integrating the pressure over the top plate

Ly oLy
w=| | " Peyrasay, (19)

giving in dimensionless form
nBw 768 v Fon
- 77L12L22h - E E ’ =

7 )
TL\Ly o oad M 1
where
F g 62'
mn am X
)

142
ax=1+3————,
145 0%

VK,

hy is the prescribed initial thickness and % given by

12szm,,tanh(7m,,H)} -1
N ’

<1+2 % Ky)
Gy=143 —— 0
- hyo
1+h 22

S

h=—.
ho

The film thickness, at any time, can now be obtained by in-
tegrating equation (20) for the given load as a function of

time,
At 7684L,L; -
Conns
SO 4h 2 ,;, g mn

where

mn= | {min [0, 0+ 830, 0

W(r)dr=— @

12K v, -1
+ ——}IZT'& anh(y,n,,H)]} df
4

At is the time interval. For constant load one has in dimen-
stonless form

h,? W —768
1= Con- (22)
LiLin 7L L, ,;2 c%; "
The Hays (1963) result
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sinh(y,,,H )]

¥ mn- Little is known about the slip constants ¢, and «,, except
that they seem to be independent of the fluid viscosity, but de-
pend on the porous surface characteristics. The smallest value
of the slip constant (which yields largest slip velocity) that has
ever been found (Beavers and Joseph, 1967) is 0.1. In order to
show how significant the effect of velocity slip can be in cer-
tain lubrication applications the values of o, o, =0.5 and o,
o, =0.1 are chosen.

The effect of L,/L,, keeping the area of the surface con-
stant, and K,/K, on the load-carrying capacity for different
values of o, and o, are shown in Figs. 2, 3, and 4. It is seen
when K, =K,=K, and a,=aq, (1sotrop1c case, Fig. 2) the
curve is symmetrlc with greatest load-carrying capacity occur-
ring when the surface is square (as expected), whereas for the
anisotropic case the greatest load can be carried by a surface
which is off-square. The curve of maximum load-carrying
capacity is also plotted showing the extent to which the ratio
of K,,/K, affects the amount off-square the surface has to be
to glve maximum load-carrying capacity.

3

~ wh Lacus of maximun load carrying
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—
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Figure 5 shows that the effect of the porosity and slip con-
stants is to alter the response time. By increasing either the
ratio of K,/K, or the amount of slip, the response time is
decreased.

The half-time of the material, #,;, is defined as the time re-
quired for the plates to move from a distance apart &, to s,/2.
Figure 6 shows the effect of L,/L, and K,/K, on the half-
times of the material and one observes that the maximum half-
time is experienced when the maximum load is carried (as
expected).

Figures 3 and 4 show the significant effect of changing the
slip constants «, and «, (which are considered as part of the
anisotropy of the material) on the load-carrying capacity.
Similar behavior is experienced in the case of the half-times.

Having different slip constants can either increase or
decrease the amount off-square the surface must be to give
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maximum Jload-carrying capacity and corresponding max-
imum half-times, as well as increasing or decreasing these
maximums,

In a practical situation the required shape of the bearing
may be rectangular, in which case a specific choice of X, /K,
will give maximum load-carrying capacity (remembering that
in an anisotropic case the slip constants may not be identical).
It must, however, also be remembered that the absolute values
of the Darcy constants affect the performance of the bearing.
A balance between load-carrying capacity and ability of the
bearing to be self-lubricating must be reached.
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Media

Expansion of Heterogeneous

Relationships between effective expansion behavior and effective elastic constants
for composite materials have been known for many years. In the present work com-
posites are considered for which more than one environmental variable (e.g.,

temperature and relative humidity) cause expansions. A simple direct method to
relate effective expansions due to different causes is developed. It is shown that most
of the previous elasticity-expansion behavior results are gotten as corollaries, and
the applicability of these relationships is broadened.

1 Introduction

Since the seminal work of Levin (1967) in which he con-
sidered the relationship between the effective elastic and ex-
pansional behavior of composite materials, other relationships
of the type suggested by him have been found for a number of
interesting cases (Rosen and Hashin, 1970; Laws, 1973;
Hashin, 1984; Schulgasser, 1987). In obtaining such relation-
ships, complex manipulations have often been involved which
may mask the physical understanding of the problem, and
which make it difficult @ priori to know for which cases solu-
tions can be found. It is our purpose here to consider the ex-
pansional behavior of heterogeneous media from a new point
of view which leads with exceeding simplicity to new types of
relationships and as a corollary to most of the results previous-
ly obtained, and makes clear under what circumstances such
relationships can and cannot be found. Additionally, in Sec-
tion 4, we will reestablish a result found previously by Rosen
and Hashin (1970) and by Laws (1973) from an alternate point
of view, which somewhat loosens the restrictions imposed in
the previous developments.

Considér a homogeneous material subjected to a change in
some environmental variable which results in homogeneous
strains in a sample of the material. The strain resulting is

E i — al_/(T)
where Tis the env1ronmental variable. «;(T) is a characteristic
function of the material. We take aU(O) 0. 7 might be
temperature or humidity change, irradiation dosage, or even
simply time for an aging material. We do not require a linear
relationship between «; and T. The second-rank tensor func-
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tion oy can always be diagonalized and we will generally
henceforth describe homogeneous materials with respect to
the principal expansional axes, so that the expansional
behavior can be described by three functions o« (7), o, (7), and
a3(T), and we will consider only cases where the directions of
the principal axes are not dependent on T. If there are two dif-
ferent environmental variables T and 7, each of which causes
expansions in a homogeneous sample of the material, we have

€5 =0‘1j(7)

e =aj(T").
Denote by a{(7) and o (T") the effective expansion of a com-
posite constituted from m phases, each with expansion func-
tions (&),-j and (gz),.}(n=1 to m). We seek relationships of the
form

(),
"'* —f(alj’ Olljs au)

1)
Having accomplished this (in those instances when such rela-
tions can indeed by found) we will see that in many cases direc-
tional compliance under pressure (S;;, in the usual notation)
can replace «; in expressions of the type (1). These are the
relationships found in Levin (1967), Rosen and Hashin (1970),
Laws (1973), Hashin (1984), and Schulgasser (1987).

2 Polycrystals

The utter simplicity of the proposed scheme is best il-
lustrated for the case of the polycrystal constituted of a single
species of constituent crystal. We consider crystals for which
oy =0y, i.€., there is expansional isotropy in the plane perpen-
dicular to the ‘“1’’ direction. Let us ‘‘disassemble’’ the
polycrystal when T=0 and 7’ =0. Now let T take on some
value other than 0. Then, in each crystal there will be expan-
sional strain o in the ‘“1”’ direction and «, in the 2’ and
‘37 directions. We now reassemble the polycrystal. If the
constituting crystalline material is linearly elastic and the
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elastic constants are not dependent on 7, then it is clear that
the change of distance between any two points located in the
polycrystal as a result of the change in environmenta]l variable
will be

AL =aoc + b, 2)

where a and b are constants for the system depending on the
geometry of the polycrystal and on the elastic constants of the
constituting crystalline material, This is due simply to the
linearity of the elastic boundary value problem involved in the
reassembly and is true irrelevant of the crystal class of the in-
dividual crystals (as long as @, =o3), and irrelevant of the
nature of the macroscopic symmetry of the polycrystal. Now
we perform the same experiment, this time letting 7’ take on
some nonzero value. By the same arguments as just stated, we
can write

AL’ =ao{ +bay. 3)
As long as the elastic properties of the material are not depen-
dent on T or 7', a and b are the same as in (2). We can
calibrate the constants ¢ and b if we note that when a; = a,,
AL =a,L where L is the distance between the two points.
Hence,

a+b=L. @

We now simply eliminate @ and b from equations (2)-(4), and
find

AL AL’ ,
DA

= 7 . (5)
Qy— 0 Oy~ Qg

Note that (5) is valid no matter what is the elastic single crystal
symmetry class, as long as o, = oy and a; =aj. Further note
that it is valid no matter what is the structure of the
“polycrystal.”’ In the limit the ‘“polycrystal’’ could even con-
sist of just a few crystals with any outer boundary shape (e.g.,
Fig. 1). If the microstructure of the polycrystal is small com-
pared to the sample of the polycrystal available so that
statistical homogeneity can be assumed, then AL/L and
AL’ /L can be identified as the effective expansion functions
af and o *, and (5) becomes

e ©

@y —af

oG~y

Oy — &

If there is a linear relationship between expansion and the en-
vironmental variable, then clearly the «’s in this relationship
can be identified as the appropriate coefficients, e.g., thermal
expansion coefficients, moisture content expansion coeffi-
cients, etc.

To identify a{, a;, and oj* with compressional compliance,
we simply apply a pressure p in the second experiment in place
of T” after ‘‘disassembly’’ of the polycrystal. Then the strains
in the ““1”’, “2”’, and *‘3” directions of the individual crystals
are —S, > —Suuls —Syup. Now reassembling while
maintaining the pressure, if the principal axes of S, coincide
with those of o;; and if Sy = S35, (this is true for hexagonal,
tetragonal, and trigonal crystals), it is clear that equation (3) is
valid with Sy, and S,y replacing o and «j, respectively.
Hence, equation (6) becomes

* *
Qg — 0y - Saek = Suikk . %)
Q) — o Sorick = S11kk

where we have identified AL’/L as the effective p-multiplied
directional pressure compliance S}, (no summation on d).
This result for macroscopically isotropic polycrystals was
found by Hashin (1984) and was generalized to the
macroscopically anisotropic case by Schulgasser (1987). Both

Journal of Applied Mechanics

Fig. 1 A “polycrystal” composed of just a few crystals

of these works include delicate tensorial arguments and are
phrased throughout in terms of the statistically homogeneous
situation. The present derivation shows that (7) is simply a
special case of the more general result (6), derived without
recourse to any tensorial apparatus, and based simply on the
linearity of the elastic boundary value problem. Indeed, hark-
ing back to the form in equation (5) and identifying o] and o3
with Sy and Sy, we see that change in distance between any
two points in any body made up of a single constituent
material with varying orientation (cf., Fig. 1) due to change of
an environmental variable can be determined if the behavior
of the constituent material is known, and if the distance
change due to pressure applied to the outer boundary is
known.

If the three principal expansions of the constituent crystal
are distinct we could consider an additional environmental
variable T resulting in the system of equations

AL =ao, + bOlz +Ca3
AL’ =aas + boj + cal @®)
AL" =aaf+baf +cal

a+b+c=L

analogous to the system (2)-(4). Then, in terms of effective ex-
pansion constants we find the relationship

3 013”—‘&1”]

af—o [ oy —af

ay—a; L a;—af oy —af
+ og*—af [ o —af oy — oy ]
oy — o oy — o oy = o
"ok ” I 7
Qg =~ — 0y [ Oy — Oy _ a3—a1]_0 (9)
o —af O — &y o —af
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"ok

Again, af, o, oy and o * could be replaced by Sy, Sazsks
Sy, and Sk, respectively.

Considering the process used to arrive at (6) and (9), it is
clear that they are valid for porous polycrystals. This is not
true for (7), since the process would imply that the pressure
permeates the voids.

3 Two Isotropic Phases

We consider now two-phase materials, each phase being
isotropic, but the mixture may be macroscopically
anisotropic. Phase expansional behavior is described for the

two materials by olz , ozz) and &', (&’ under change of the two
environmental variables, T and 7', respectively. Repeating
the procedure of the previous section we obtain equations for-
mally identical to (2)-(4) with &, ‘&', replacing a,, «/ in
every instance. We then obtain results analogous to those in
(5) and (6) with the aforementioned replacement. And

analogous to equation (7) we obtain

1

x () Saare — D
Oy—

K
= (10)
-9 1 1
T
K K

Q)] 2
where K and K are the bulk moduli of the two phases. This

result was explicity given by Rosen and Hashin (1970). The im-
plications of equation (10) for the case of aligned isotropic
fibers in an isotropic matrix, using the unique relationship
found by Hill (1964) which exists between the various effective
composite moduli, has been discussed by Hashin and Rosen
(1970) and Dvorak and Bahei-El-Din (1981). For the
macroscopically isotropic case, Sk, is replaced by 1/K*. This
result was found by several Investigators using various
methods (Levin, 1967; Schapery, 1968; Steel, 1968; Cribb,
1968).

For a three-phase material the procedure leads to a result
analogous to that in equation (9), again with the replacements
as previously indicated. We can even consider a ‘‘two-phase’’
material, one phals)e being crystalline of random orientations

. 1 , a 1
with a2=(&3, ; )”—(&3” and thg other phase

oy = 0Oy, Oy =
being isotropic with expansion behaviors (%z, o, 2. Then,
considering the equations of the form (8) which we would
write, it is clear that a relationship analogous to (9) can be
found with the superscript (1) added to variables subscripted

. 2
with 2 or 3, and «, af, o' replaced by ‘o, a’,and a”.

As pointed out for polycrystals, also the two isotropic-phase
result analogous to equation (6) and the three-phase result
analogous to equation (9), are valid for porous composites;
however, equation (10) is not valid.

4 Two Anisotropic Phases

We consider the case of two anisotropic phases; their com-
. o . n 2)
pliances are described by the Cartesian tensors S;;, and S;y,,

. . . 1 2
and their expansions by the functions &),vj(T) and c(x),j(T). We

emphasize that the orientation of each phase is fixed in space.
For this case it is apparently not possible to find a relationship
of the form (1). However, o has been found as a function of

S} and the phase elastic and, expansional properties. This was.

accomplished first by Rosen and Hashin (1970) and later by
Laws (1973). We will rederive here this result using a
generalization of a method applied by Cribb (1968) to
isotropic phases and later by Dvorak (1986) to anisotropic
phases, which will show that certain of the restrictions im-
posed in Rosen and Hashin (1970) and Laws (1973) can be
relaxed.

548/ Vol. 56, SEPTEMBER 1989

Again, we begin by disassembling the composite. Then we
impose on the boundary of each phase the traction

T,=r4n;, (an

where »; is the outward unit vector normal to the phase sur-
face, while changing the environmental constant to some
nonzero value. 7J is a constant tensor. These tractions result in
uniform stress Tg» throughout, and the strain field in the first
phase is

0] (O]

eij=72,S,-jk,+a,~j s (12)
and in the second phase o

@ @

€5 = TSy + 0y (13)

If the strains in the two phases were identical, one could
reassemble the composite, the interface condition would be
satisfied, and no further stress is caused in the body. Equating
the right-hand sides of (12) and (13) we find the condition for
identical strain fields

(¢)] 2 @

T,?,(S,-jkz - S,'jk[) =y Oy (14)
or
2
o = (@ — oty WPy (15)
. . o @ .
where Py, is the reciprocal of (Sy;, — ;) given by
1) )
Pt Stmn — Sicmn) = L (16)
where I;;,,, is the identity tensor
1
Iijmn = T(alm 6jn + 6 6jm)- 17

We now have a composite body with strains throughout given
by (12) or (13), with tractions 'rg-n ; on the outer envelope. If we
now apply the traction system - Tgnj to the outer envelope,
and if we can solve the relevant boundary value problem, we
have a solution for the deformation throughout the composite
bodzy when the environmental variable changes to T, i.e., ¢;
or 2,3 as given by equation (12) or (13) plus the strains gotten
when the traction — Tf-}n ; is applied, 7% being taken from (15).
Now if the body is statistically homogeneous, then the average
strain in the body due to traction applied to the outer envelope
is — 79,5}y where S}, is the effective compliance of the com-
posite (see Hashin (1983)). Adding this to the uniform strain
throughout (equation (12) or (13)), we have

. (L 1
Average strain = 73,(Sy, — Sh) + gx),-j.

(18)
This is the effective expansion «};, and using equation (15)

) 0] @ W
o‘;; = (O ~ amm)Pklmn (Sijkl _'S;'kl) + O

(19
It is clear that this equation can be written with superscripts (1)
and (2) interchanged. Then, adding the two forms we get the
form given in Rosen and Hashin (1970) and Laws (1973).

It should be emphasized that «;(T) need not be a linear
function of 7, and that the present technique permits calcula-
tion of any deformation in the composite body, even when
statistical homogeneity cannot be assumed if that deformation
due to the traction system — 79n; can be found.

It is clear from the context of the current development that
equation (19) can reasonably be applied to the case of aligned
carbon fibers in isotropic matrix composites even though it is
well known that the fiber itself has a decidedly nonuniform
structure, However, generally the structure of such fibers is
more or less radially symmetric (Hughes, 1987). Hence, the
procedure implied by the equating of equations (12) and (13)
will still be valid if S;;; of the fiber is interpreted as a measure
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of overall radial axial compliance when we execute the
disassembly-reassembly procedure. In fact, the result could
have been achieved by the method of Sections 2 and 3 if the
disassembly-reassembly procedure was carried out with first
axial and then transverse suppression of deformation. The
aforementioned comment is true also for boron and aramid
fibers which, while not homogeneous, nevertheless exhibit
radial symmetry, :

Closure

The present approach makes it clear that in a heterogeneous
material for which the description of the constituent materials
requires 7 distinct expansion functions, a relation can be found
between r effective linear expansion functions of the
heterogeneous material, regardless of the macroscopic sym-
metry and under the condition that the constituents are linear-
ly elastic with the elastic behavior not dependent on the en-
vironmental variable. The present approach also makes clear
that the relationships which have been found are essentially in-
dependent of arguments based on statistical homogenity. The
result given in equation (6) was previously reported by this
author (Schulgasser, 1986) for the case of the statistically
isotropic polycrystal and for the case of two isotropic phases,
but was derived there as a corollary to the compliance-
expansion relationships of the type (7) found previously by
other researchers. Note that the validity of equation (6) for
polycrystals and its analogous form for two isotropic phases
implies that for a composite with constitutent material expan-
sions not linearly dependent on an environmental variable,
knowledge of the effective expansion behavior at one value of
the environmental variable 7 immediately implies knowledge
of the effective expansion for all other values of 7T if the con-
stituent expansions are known as functions of 7.

In the case of two anisotropic phases it is possible to derive
the relationship (19), only because tractions of the form (11)
applied to the outer boundary can be found which, for any

Journal of Applied Mechanics

given value of 7, results in uniform strain throughout.
However, in this case it is not possible to find a relationship
between the expansions resulting from different environmen-
tal variables without explicitly involving the elastic behavior of
the constitutents and of the composite.
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A Green’s Function Formulation of
Anticracks and Their Interaction
With Load-Induced Singularities

This paper provides a Green's function formulation of anticracks (rigid lamellar in-
clusions of negligible thickness that are bonded to the surrounding elastic material).
Apart from systematizing several previously known solutions, the article gives the
pertinent fields for concentrated forces, dislocations, and a concentrated couple ap-
plied on the line of the anticrack. There is a reason for working out these results: In
contrast to concentrated forces, a concentrated couple approaching the tip of an an-
ticrack makes the elastic fields explode. Finite limits can be achieved, however, by
appropriately diminishing the magnitude of the couple, which then leads to fields
that are intimately connected with the weight functions for the anticrack. An edge
dislocation going to the tip of an anticrack puts a net force on the lamellar inclusion,
which is shown to be related to a previously known feature of dislocations near a
bimaterial interface.
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1 Introduction

The opposite of a crack, in a certain sense, is a cut in the
material that is filled with a rigid lamella: A crack is a cut that
transmits no tractions, but allows a displacement discontinu-
ity. The rigid lamella transmits tractions, but prevents a
displacement discontinuity. There is no uniform terminology
for the latter, and we shall call them anticracks for brevity. In
spite of the fact that anticracks do not have applications that
are as far ranging as those of cracks, there is a considerable
amount of literature on the topic. A fairly complete list of
references can be compiled from the papers by Atkinson
(1973), Brussat and Westmann (1975), Hasebe, Keer, and
Nemat-Nasser (1984), Hasebe, Nemat-Nasser, and Keer
(1984), Wang, Zhang, and Chou (1985), and Mura (1988).

The objective of this paper is to provide a direct Green’s
function forumulation of anticracks. Such a formulation
allows one to write the governing integral equations practically
at sight, and it is suitable for solution by current numerical
methods. The paper also gives some new solutions. The results
for edge dislocations show some unexpected features. Similar-
ly, an anomalous behavior is discovered in considering the in-
teraction of a concentrated couple and the anticrack.

2 Singular Nature of the Fields Induced by Concen-
trated Forces and Line Loads

The appropriate Green’s functions for the anticrack simply
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are concentrated forces. However, the singular nature of their
fields must be explored in some detail before they can be ap-
plied directly to the formulation. In doing this, repeated use
may be made of the following theorem on the Dirac delta
function in Stakgold’s book (1968).

hLeltl S(x) be a non-negative, locally integrable function for
whic

S: flx)dx=1. 1)
With a>0, define
1 b
a0 =—(5). @
Then
lim £, (x) =6(x). (3)
a—0

The displacement and stress components for a concentrated
force, P,, applied at the origin and acting in the x-direction
are (Timoshenko and Goodier, 1970):

2, (x,)) = —71_(—K_’;—1){—xlogr+—):72} @)
2ui, (x%,y) = ?(TP.XIT) % )
O (,9) = %{—(«—1)%—4—’;—} ©)
Oy () = ﬁ{— (e 12— 422] ™
o, (x.3) = TZ;r(—::-ITi—)-{(K_I)%-_‘t—?)TZ} ®)
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where p is the shear modulus and, with » denoting Poisson’s
ratio, k =3 — 4y for plane strain and x =3 — v)/(1 + ») for plane
stress. Of interest in the present context are the limits for y—0
of the following quantities:

Buy (60 P 1 Bu,(x0)
T w D w0 a0 O
~ o PB4 1
O (X:0)= 2m(k+1) x (19
0y (X,0£)= ?%an(x) (an

_P.(xk-1) 1
(Tyy (X,O) —m —x—. (12)

It follows immediately from these expressions that a line
load with a local density p, (x) acting on the x-axis in the x-
direction gives

2aux(x,0)= K S*“’px(mdé
P ox Tkt 1) d-w E—x
2, 20 _ (13)
ax
34k [ p()dE
UXX(X’O)—ZW(K+1)S~00 E—x (14)
1
Oy (X,0£) = =FTpx(x) (15)
k=1 (e p(E)dE
% (10)= 27(K+1)S_m E-x (1o

where the integrals are to be evaluated in the sense of Cauchy
principal values.

The field quantities for a concentrated force P, acting in the
y-direction can be obtained by a rotation of coordinates. The
limits of interest for y—0 are

” du, (x,0) du, (x,0) _ Pk

1
2 = _ o
a0 Wy Tk+1) x 17
__P,(3-%
[ (X,O:h)— :F—E(—’H_—I)(S(X) (18)
__Bk-D 1
0= ") 1)
0, (x,0£)= =|=—1—Py6(x). (20)

2

Then, a line load of intensity p, (x) acting on the x-axis in the
y-direction gives

ou, (x,0) Ou, (x,0) o« ® py,(§)dt
e _w(x+1)5-m E—x
(21
3—«
Oyx (X,O:!:)= :F—m—py (X) (22)
k1 = py(§)dE
ny(x’O)ZZW(K+1)S~m Tx =
1
0y (X.0£) = F——p, (x). 4)

3 Boundary Conditions and Formulation

An anticrack, as any other rigid inclusion, restricts the
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displacements on the interval it occupies to be those of a rigid
body, or to be of the form

25)

Consider for simplicity a single anticrack on the interval
Ixt <a, y=0. In such a case, the rigid body displacements
may be differentiated with respect to x without loss of
generality, yielding the boundary conditions

du, (x,0) -0 au, (x,0) _
ax ’ dx
Suppose that the applied loads induce in the body without the
anticrack displacements that yield

2u(k+1) du, (x,0) B

u(xy)=a~-wy, u,(xy)=g+wx

w, Ixl<a. (26)

p ax - _fx (x)y
2u(k+1) du, (x,0) =—f,(x), Ixl<a. @7
X ox

The boundary conditions (26) can be enforced by distributing
line loads with densities p,(x) and p,(x) on the interval
Ix! <a. Using (13) and (21), this yields the Cauchy integral
equations

LS PO i< 28)
T J-a §—Xx
—l—Sa £y—(£)~a;]£—=C+fy(x), Ixl<a 29)
T —a E—X
where
C=[2uk+ 1)/k]w (30)

and o is the rotation of the anticrack.

As it could be anticipated from (25), this system still retains
three unknown constants. In addition to Cin (29), they are the
two free multipliers of the homogeneous solutions of the in-
tegral equations. The three constants can be determined,
however, from the global equilibrium conditions of the
anticrack:

Si py(x)dx=F, 3D
Sa_a py(x)dx=F, 32)
Si xpy (x)dx=M (33)

where F, and F, are the forces, and M the couple that are ap-
plied at the center of the rigid lamella by an outside agent.

4 Simple Solutions

The simplest solutions correspond to the anticrack being
subjected to forces and a couple that are applied directly to the
rigid lamella, and the anticrack disturbing, uniform stress
fields (the anticrack induces no disturbance in a field of
uniform shear). Although some of these solutions have ap-
peared in the literature, they are compiled in Appendix A for
the sake of completeness.

However, the simple anticrack solutions have remarkable
features that have not been noted before.

(1) Setting k= —1 (this corresponds to »=1 for plane
strain, and »= oo for plane stress) in (A418-420) yields

x| H( 1| —
0 (1,00 =T, {)ZTS;TWL)_ 1}, Ixl<oo  (34)
0, (x,0)=0, Ixl<o (35)
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Fig. 1 Various concentrated actions near the tip of an anticrack

x| H(lx| —a)
(xz — a2)l/2

where H denotes the Heaviside step function. It is seen that
these are precisely the results for a Griffith crack.
(2) Setting now k= —1 in (414-A416) gives

0 (%,0) = Ty 0, (X,0)=10,, (x,0)=0, Ix| <oo

Oyy (X,O) = Ty , Ixl<oo . (36)

(37

which again is true for a Griffith crack that is parallel to the
direction of applied tension.
(3) Replacing F./(x+1) by —2uA,/(k+1) in (42-A4)
and setting k= — 1 elsewhere in the expressions gives
2ud,  sgnxH(lx| —a)
w(k+ 1) (xz _az)l/z ’

0y, (x,0)=0,, (x,0)=

(3%)
These are precisely the results for a Zener-Stroh crack with the
Burgers vector A, (Weertman, 1986).

(4) Replacing F,/(x+1) by 2uA,/(x+1) in (A6-48) and
again setting k= — | elsewhere, results in

0y (%,0)=0, x| <oo.

dud,  Hia— Ixl)
O (X,0£)=F 1r(;<+x1) TR x| < oo (39)
2uld,  sgnxH(lx! —a)
0, (x,0)= 7('(K+xl) ) x| < oo (40)
a,,(x,0)=0, lxl <o (41)

corresponding to a Bullough-Gilman crack with the Burgers
vector A, (Bullough, 1964; Tucker, 1973).

The stress fields for anticracks depend on Poisson’s ratio
and, within the physical range 0=<v=<1/2, they satisfy, of
course, the boundary conditions appropriate to the anticracks.
The curious result here is that these stress fields for a specific
Poisson’s ratio outside the physical range satisfy the boundary
conditions of a different problem that is back in the physical
realm. Why this is so can be traced through the equations and
boundary conditions of elasticity (Dundurs 1968; Dundurs,
1970; Dundurs 1989).

5 Concentrated Force and Edge Dislocation—Sym-
metric Problem

The solutions for concentrated forces and edge dislocations
are basic because they provide new Green’s functions.

Consider a concentrated force F, in the direction of the an-
ticrack or an edge dislocation with the Burgers vector b, (extra
sheet of material on the x-axis in the negative direction) acting
at the point x=s, y=0 (see Fig. 1). On the basis of (27)-(29),
both problems lead to the same integral equation

I’ pe(®)dt _ L
-2 &—x X~
where L = F, for the concentrated force, and L =

—byu(k—1)/x for the edge dislocation. Imposing the side
condition

, Ixl<a (42)

Si Py (x)dx=0 (43)

for equilibrium of the lamella, the solution of (42) is
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_ L (52 — g?)\2
Pr(x)= 7r(a2—X2)1/2 { - S x }, x|l <a. (44)
The integral
© p(B)dE (1
S_.a S‘x -L{x—s
(2~ a®)2 7 sgnxH( x| - a)
_[1+ xX—5s ] (x2_a2)1/2 }, 'Xl<oa (45)

is needed for the computation of the stresses using (14)-(16). It
should be noted that (14)-(16) give only the stresses induced by
the line load, and that the stresses of the force or edge disloca-
tion in a homogeneous material must be added to get the total
stresses.

Introducing the contraction

1 (S2 _ a2)1/2
80 = Ix? — g 12 [1+ x—$ }’ “6)
the total stresses for the concentrated force are
O (%,0)= — Fr 340 (x)sgnxH(lxl —a), Ixl<oo (47)
AT 2n(k+1) £ & ’
Fy
Oy (x,0£)=+F oy {wd(x—$)
+g(x)H(a— Ix)}], Ixl<o (48)
F(x—1)
9,y (x,0)=—§m—l—)—g(x)sgan( x| —a), Ixi<o. (49)
Similarly, the total stresses for the dislocation are
by ¢ 3—«
=2kt
%e (%:0) 27K x-S
-1D@+
L KT DBH0 o seneH(Ix] - a)} , lxl<o (50
k+1
b -1
Oy (X,02) = xl‘z(-“—)—g(x)ma— kD), Ixl<ow  (51)
TK
bp (¢ k+1
0 =_y_{_*
%y (50) 27k L x—s
—1)2
- (K+ 1) g(x)sgnxH (x| —a), Ixi<oo, (52)

The Peach-Koehler force on the dislocation is (Weertman and
Weertman, 1964)

K,=b,0,,(50), a<s, (53)
and it acts in the x-direction. However, in (53) only the con-
tribution to the stress by the line load must be used. The result

is
bk~ 1)* s~ (s2—a*)'?
T 2wkl + 1)
Since K, >0, the anticrack repells the dislocation.
Finally, consider the limit s— 0. For the concentrated force,

(44) becomes the same as (A1), which is as expected. For the
dislocation, however, (44) yields

(4

Sz_az

b= 1
Py(x) = — @A x| <a (55)

and
S_ D, (xX)dx= —-blﬁ:"—ll. (56)
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This means that, in the limit s—a, the dislocation with a
positive Burgers vector b, exerts a net force on the lamella that
is in the negative x-direction (positive p, (x) acts on the elastic
material, negative p, (x) acts on the rigid lamella). The fact
that a dislocation, which is a self-equilibrated singularity, ex-
erts a force (a real force in the sense of Newton, not a driving
force in the sense of Peach and Koehler) on the rigid lamella
may seem contradictory. It is explained in Appendix B why
this is actually very reasonable.

6 Concentrated Force and Edge Dislocation—An-
tisymmetric Problem

Now the concentrated force F, acts in a direction perpen-
dicular to the anticrack and the Burgers vector b, is in the x-
direction (extra sheet of material perpendicular to the x-axis
and on the side of positive y). The governing integral equation
from (27)-(29) is then

L

1
N<C+——), xl<a.
-a £—x xX—s

(&)

For the force, N=F,, and for the dislocation N=b, u{x— 1)/«.
The solution of (58) under the side conditions

g p, (x)dx=0, g— xp, (x)dx=0 (58)
is
N (SZ_aZ)l/z
py(x)=W{1+Ax———T_x——}, l<a  (59)
where
2
A=—[s— (s*—a})"*]. (60)
a
Moreover,
a d.
S M=N{A+————[1+Ax
-a E—x X—Ss
(sz—az)“z] sgnxH( Ixt —a)
+ s ) }, x| < oo, 61)

Proceeding as in the previous case, the total stresses for the
concentrated force are

__ F,(3-0 ~
oxx(x,O:t)—¥m{1r6(x s)
+h{(xX)H(a— Ix}, Ixl <o (62)
_ F,(x—1) _ 3
axy(x,O)—m[A h(x)sgnxH (x|l —a)}, Ixl<oo
(63)
F)'
0, {x,0£)=F 7 {ré(x—s)+h(x)H(a— IxD)}, Ixl<oo
where (64
B (SZ_aZ)l/z
") = (P Ax ] k<, (69)
For the dislocation,
_ 1 _
Oy (X,0) = :F—-———W(K+ ) {4mé(x—s)
LB, G HG- ), Ixi<o o (66)

2k
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(k—1)?
K+1

b

O (0)= 27k

k+1
! +
xX—s

A —h(x)sgnxH( Ix! - a)]} , Ixl<o ©67)

Dbl o H (= xl), xl <o,
2wk

0, (x,0%) = F (68)

The Peach-Koehler force on the dislocation is

2,00 132
MK__Q_/((S) (69)

K, =b.o, (5,0)=
= bx0y (0=

where

§— s2 _a2 172 2
k(S)=,—_-.—._(2 > ) {1+—2[52—az—s(s2—a2)“2]}. (70)
st—a a
It can be reasoned from (70) that the anticrack repels the
dislocation in all positions.
In the limit s—a,

zx), x<a an

py(x)= T —x)/2 ( t
which no longer satisfies (58). For the concentrated force, (71)
can be reconciled with (AS) and (A49). For the dislocation the
result means that, in the limit s—a, the dislocation exerts a
force b, u(x— 1)/« that acts on the tip of the anticrack in the y-

direction. Again, this result can be explained on the basis of
the discussion in Appendix B and equation (B9).

7 Concentrated Couple

It is also interesting to consider a concentrated couple with a
moment M that is acting at the point x=s, ¥y =0 (see Fig. 1).
From the known solution for a concentrated couple acting at
an interior point (Timoshenko and Goodier, 1970), it follows
that the couple gives
o0 M1

ox 21 (x—s5)2
which, then on the basis of (29), yields the integral equation

2 (72)

“ py(E)dE  Mk+1) 1
S—a E-x 2 {C+ (x—s)z}‘ 73)
The solution of (73) under the side conditions (58) is
M+ 1) a? —sx
py(x)= ek — D)2 {Bx— (52— )2 (s —x)? }' bl <a
(74
2[5‘-— (52 _a2)l/2]
B=——ae -y 73
Consequently,
[ pAE)dE  M(x+ 1){ 1
-2 E—x 2k (x—s)?
+B—j(x)sgnxH( |x] —a)}, Ix] < oo (76)
where
o 1 sx—a?
J(x)= 2—g2l12 {Bx+ (S2—a2)”2(x—s)2}' (7

Using (22)-(24) for the contributions by the line load and ad-
ding those of the couple acting alone, the total stresses in the
plane of the anticrack are (terms with 6’ (x—s) in the normal
stresses have been omitted)
M3~
axx(x,O:t:)==F—g——Klj(x)H(a-— Ixl), Ixl<eo (78)
TK
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M=+l 1
% (1.0)= 4k { k—1 (x—s)?
—B+j(x)sgnxH( Ix| -.a)}, el < oo (19)
ayy(x,01)=?=i4%il—)j(x)H(a— Ixl), Ixl<o.  (80)
TK .

It was recently noted by the present authors (Dundurs and
Markenscoff, 1989) that the interaction of a concentrated cou-
ple with a crack involves some unexpected features. Equations
(74) and (78)-(80) show that, except in one respect, the situa-
tion with the anticrack is quite similar.

(1) In the limit s—a, as seen from (74) and (78)-(80), the
density of the line load and the stress components become un-
bounded, and one does not recover (49-412); thus, there is a
stark contrast with concentrated forces. Such an outcome is,
in a way, more surprising than that for the crack: Whereas a
crack can be viewed as a weakness in the material, an an-
ticrack is a reinforcement, and yet it makes the elastic fields
explode when the couple approaches the tip of the anticrack.

(2) To achieve a finite limit as s—a, the magnitude of the
couple must be artificially diminished so that M(s—a)'/?
= Q=const. In such a case, an r~3? type singularity results at
the tip of the anticrack. However, this result is not empty of
meaning, as the r~3/2 singularities are those of a weight func-
tion for the anticrack.

(3) In the vicinity of x= + o0, (79) gives to the first order

1

Ty (X,O)“" —E‘r" ? (81)
It is seen from (81) that the far-field stress of the concentrated
couple is not distorted by the anticrack. This outcome is dif-
ferent from that for a crack involving a ‘‘magnification fac-
tor” (s—a) 12 that can be arbitrarily large (Dundurs and
Markenscoff, 1989). It should also be noted in this connection
that the limits involved in (79) are discontinuous. Thus, the
limit sequence x— oo, s—a gives a different result than the
limit sequence s—a, x— .
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APPENDIX A

Listed are the basic solutions for the anticrack in the nota-
tion used in this article. In all cases the material is of infinite
extent, and the anticrack occupies the interval Ix| <a, y=0.

1 Force F, in the x-Direction Applied Directly to the
Rigid Lamella

px(x):%m, Ixl<a (A1)
-G T
G (X,0%) = F 5; ﬁga_;zl;'/z , l<o  (43)
S N

2 Force F, in the y-Direction Applied Directly at the
Center of the Rigid Lamella

py(X)=%—(;2—_—lxz—)l72—, Ixl<a (AS)

O (5,0) = F 28;'1‘; Zﬁ"_;j;‘,ﬁ kl<w  (A46)
R
0, (x0s)= v Hlazbh) (A8)

2 (az _x2)1/2 ’

3 Couple With Moment M Applied Directly to the
Rigid Lamella

2M X

py(x)='ﬁz—m, xl<a (A9)
M(3- H(a— Ix]
Uxx(x,():l:)==F7r(K(+ 1)’;)2 );az(fxz))fn) , Ixl<o  (A10)
M(k—1) x| H( x| —a)
Oy (X,0) = 7r(/<+1)a2{ T }, Ixl <o (A1)

M xH(a— ix!)

Ixl < oo
T (B-xD)2

G,y (X,0%) = F (412)
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4 Tension Field 7, Parallel to the Anticrack

Tkt x
De{x)=— I (@ Ixl<a (A13)
o (x0)= T, T (£ DG+
8k
Ix1H( x| —a)
T, (x+1)? xH(a— Ix1)
7 (n0%) = {1 - i ], i<oo(ats)
T.(k2-1) IxIH( x| —a)
0 (x,0) == {1 - i ] <o @ig)

S Tension Field 7, Perpendicular to the Anticrack

pe(x) = Ty("+4i)(3_") (az_xxz)l/z’ x| <a (A17)
Oy (%,0) = T"(;{"‘Z)@— 'i;’ff;'};")}, el<oo  (AI8)
Oy (X,0%)=F Ty(HSi)G_K) x([;(i;;f/?’ lxl < oo
(A19)
) (50)= Ty(x+81)(3+;<) N Ty(K~8i)(3—l<)
——————I):Lf[_(;)ll;a) x| < oo (A20)

APPENDIX B

When a dislocation is situated in a homogeneous material,
the resultant of tractions on any straight line vanishes.
However, this is not so in a bi-material with an infinitely ex-
tended interface. In such a case, the image terms give a net
force that is transmitted by the interface. This unusual effect
was discovered by Dundurs and Sendeckyj (1965).

For a dislocation with the Burgers vector b, in the y-
direction (see Fig. 2), the distribution of normal tractions
0, (0, y) at the interface is bell-shaped, which becomes more
peaked as the dislocation approaches the interface (the total
force remains constant). The following distribution of stresses
at the interface can be extracted from the results given by Dun-
durs and Sendeckyj (1965) in the limit as #—0:

0y (0, )= - CBD,6(¥) (BY)

C 1
0,(0,5)= — TbyT (B2)

oyy(ozh’y):'—c(:F2+6)by6(y) (B3)

where
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Fig. 2 Edge dislocation near an interface between two materials

__2m(+a) 2m(-o)
(k( +DA=6%) (i +H(1-BH)
ol + D)= py(y + 1) paCiy = D —py (e — 1)

_ 6= BS
D e D P T T D m )

(see also the papers by Nakahara and Willis (1973), Barnett
and Lothe (1974), and Comninou (1977)). It is seen now from
(B1) that a pair of concentrated forces

(B4)

F,=—CBb, (B6)

act on the solids. For positive 8 b, the solids are pried apart,

for negative 8 b, they are pulled together. If the second phase

is rigid (4, — ),

_ by.u'l("l —1)
K1

F,= (B7)
which is the same as (56). Suppose now that a dislocation with
a positive b, is placed at the right pointed end of a rigid ellip-
tical inclusion. It is clear that the dislocation then exerts the
force given by (B7) on the inclusion in the negative x-direction
as long as the curvature at this point is finite. This force is, of
course, balanced by the tractions acting on the inclusion
elsewhere. The unexpected result obtained in Section 5 simply
means, therefore, that nothing changes as the elliptical inclu-
sion degenerates into an anticrack,

The counterparts of (B1)-(B3) for a dislocation with the
Burgers vector b, in the x-direction are

C 1
Uxx(oyy)z _—bx— (B8)
w y
0, (0,)=CBb,6(y) (B9)
C 1
0y, (0£,p)= —— (1¥28)b,—. (B10)
T y
The pair of concentrated forces with the magnitude
F,=CBb, (B11)

in this case tend to make the interface slip. For a rigid second
phase
Fy - bx:u'l(’(l - 1),
Ky

(B12)

which is the same as the force exerted by a dislocation at the
tip of the anticrack.
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Line Inclusions in Anisotropic
Elastic Solids

Qiangian Li
A line inclusion located at x, =0, 1x,1 <1 in the anisotropic elastic medium of in-
T.C. T. Ting finite extent under uniform loading at infinity is considered. Stroh’s formalism is
Fellow ASME used to find the displacement and stress fields. The inclusion can be rigid or elastic.

Conditions on the loading under which the line inclusion does not disturb the
homogeneous field are derived. For the rigid inclusion, a real form solution is ob-
tained for the stress and displacement along x,=0. When the inclusion is elastic
(and anisotropic), a pair of singular Fredholm integral equations of the second kind
is derived for the difference in the stress on both surfaces of the inclusion. The pair
can be decoupled and asymptotic solutions of the integral equation are obtained
when \, which represents the relative rigidity of the matrix to the inclusion, is small.
For the general cases, the integral equation is solved by a numerical discretization.
Excellent agreements between the asymptotic and numerical solutions are observed

Department of Civil Engineering,
Mechanics, and Metallurgy,
University of lllinois at Chicago,
Chicago, Ill. 60680

Sfor small N,

1 Imtroduction

1t is known that most materials contain some defects in the
form of cracks, voids, or inclusions which can affect the load-
carrying capacity of engineering structures. It is therefore im-
portant to know how the defects disturb the stress field and
how the stress concentration arises due to the existence of the
defects. Crack problems have received much attention and
have been widely studied. Inclusions or inhomogeneity
problems (sometimes called hard crack or inverse crack
problems) have also aroused much interest in recent years. An
extensive review on the subject has been given by Mura (1987,
1988).

Using the methods of Eshelby (1957, 1959), Muskhelishvili
(1953), Chou and Wang (1983), and Wang et al. (1985, 1986)
considered a rigid line inclusion in an isotropic plane elastic
body. Analytical expressions of the stress fields due to
uniform remote loading are derived. The same problem has
been considered by Ballarini (1987) using the method of in-
tegral transform. Their results showed that the stresses near
the tips of the rigid line inclusion have square root
singularities. The problem of an elastic line inclusion was
investigated by Sendeckyj (1970) and Selvadurai (1980). Using
Muskhelishvili’s method, Atkinson (1973) also considered the
problem of elastic inclusions in isotropic solids. Under the
assumption that the inclusion is much ‘“harder’’ than the
matrix, he obtained an asymptotic solution for the stress
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fields. Erdogan and Gupta (1972) studied the more general
problem of bonded materials containing a flat inclusion which
may be rigid or elastic with negligible bending rigidity. They
formulated the problem into a system of singular integral
equations which was then solved by expanding the solutions in
a Chebyshev polynomial.

Although a great deal of work has been done for inclusions
in isotropic matrices, the problem of an inclusion in
anisotropic media, which is becoming more and more impor-
tant with the replacement of conventional materials by
varieties of composite materials, seems to have not received
much attention. There are several approaches in solving
anisotropic elasticity problems, but in this paper we will
employ the Stroh formalism (Stroh, 1958, 1962). We consider
the problem of a very thin, flat inclusion in an infinite,
generally anisotropic, elastic body which is subjected to a
uniform loading at infinity. The inclusion is assumed to be
located at x, = 0, lx;1 < 1, —o0 < x3 < o0, The deforma-
tion is two-dimensional in the sense that the displacements de-
pend on x, and X, only. In Section 2, the fundamental equa-
tions of anisotropic elasticity and a brief account of the Stroh
formalism are given. The homogeneous solution, which is the
solution of the infinite medium when the inclusion is absent, is
given in Section 3. Conditions under which the homogeneous
solution is not disturbed by the presence of the inclusion are
derived here. The rigid inclusion problem is considered in Sec-
tion 4 where a real form solution is obtained for the stress and
displacement at x, = 0. Section 5 is devoted to the case when
the inclusion is elastic and anisotropic. A pair of Fredholm in-
tegral equations is derived for the difference in the stresses on
the surfaces of the inclusion. The pair can be decoupled and
each of the uncoupled equations has the same Fredholm in-
tegral equation form involving the parameter N which
represents the relative rigidity of the matrix material to the in-
clusion. The asymptotic and numerical solutions of the in-
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tegral equations are presented in Section 6 and results are plot-
ted for various values of A. Comparisons of the numerical
solutions with the asymptotic solutions show that the asymp-
totic solutions provide good approximations for A up to 0.1.

2 Basic Equations

We present in this section a brief derivation of Stroh’'s for-
malism (Stroh, 1958, 1962; Barnett and Lothe, 1973; Chad-
wick and Smith, 1977; Ting, 1986). In a fixed rectangular
coordinate system x,, X,, X3, let #;, 0;;, €; be, respectively, the
displacement, stress, and strain of the material. The equations
of equilibfium and the stress-strain laws for the material can
be written as

.:O’

Gij, j

(1)
(2)
in which a comma stands for differentiation, repeated indices

imply summation, and Cj,, are the elastic stiffnesses which
satisfy the symmetry conditions

05 = Cijksus = Ciirstiso

Cijks = Ljiks = Cksij'
For two-dimensional deformations in which u;, i = 1, 2, 3, de-
pend on x; and x, only; the general solution can be written as
U =a,f(2), (3)
Z=X1 + DXy, @
where p and a, are constants and f'is an arbitrary function of
z. In matrix notation, p and a, are determined by
{Q+p(R+RT)+p*T}a=0, &)
in which the superscript 7 stands for the transpose and Q; =
Ciris Rix = Cipas Ty = Ciya. Wenote that Q and T are sym-
metric and, subject to positiveness of strain energy, positive
definite. Equation (5) is obtained by substituting (3) into (2)
and (1).
Introducing the new vector
b=R"+pTa=—p~(Q+pRa, (6)

in which the second equality comes from (5}, the stress ob-
tained by substituting (3) into (2) can be written as

on=-5, 0p=%,, g
®=hf(z). (3)
Thus, ® is the stress function.

Equation (5) provides six eigenvalues, p,, and six eigenvec-
tors,a,, « = 1,2,. .., 6. From (6) we obtain six b,,. Since p,,
cannot be real if the strain energy is positive (Eshelby, 1953),
D, come in three pairs of complex conjugates and so do a, and
b,. Without loss of generality we let

Im{pa] >0, p—a—{—} =Dys
aa+3=a-oz’ ba+3:5u! O‘:ly 2a 3,

€

where Im stands for the imaginary part and the overbar
denotes the complex conjugate. It follows from (3) and (8)
that the general solution for u and & can be written as

3
U= Y (8.fs(2e) +aufurs@o))s (10a)
o=1

3
®= ), (bofs(2s) +bofni3E)) (10b)
a=1

in which f;, f5, ..., f; are arbitrary functions of their
arguments. In writing (10), we have assumed that the eigen-
values p, are all distinct or, if there is a repeated p,, the
associated eigenvectors a, are independent of each other. A
modified expression can be found in (Ting, 1982) if this is not
the case.
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If we define the 3 X 3 matrices A and B by

A=(a,a,,a,),
B=(b;, by, b3),
it can be shown that the matrices H, L, S given by
H=2AAT, L=-2/BB7, S=i2AB”-I), an

where i = v —1 and I is the unit matrix, are real. Moreover,
the matrices H and L are symmetric and positive definite,
H 'S is antisymmetric, and
BA-'=(8T+/DH"'= -H-YS-). 12)
Equations (11) are valid provided the eigenvalues p, are
distinct or, if there is a repeated eigenvalue, the associated
eigenvectors a, are independent. A modified expression in
place of (11) when this is not the case can be found in (Ting
and Hwu, 1988). An alternate approach using an integral for-
malism without determining the eigenvalues and eigenvectors
was proposed by Barnett and Lothe (1973). For isotropic
materials, H and L are diagonal matrices given by

H=p'diag{(1+5)/2, (1+5)/2,1},
L=pdiag{2(1-s), 2(1-s), 1},
s=(1-20)/2/1-),

where p and » are, respectively, shear modulus and Poisson’s
ratio, while S has only two nonzero elements

13)
(14)

0 —-s 0
S=|s 0 0 (15)
0 0 O

Before we close this section, we list next the alternate con-
tracted notation for the stress-strain law given by (2). By let-
ting
0y =011, 03 =03, 03 =033, 04 = 023, 05 =013, 06 =013,
€1 =€), €2 =€y, €3 = €33, €4 = 2623, €5 = 2613, €6 = 2613,

(2), can be written as

a; = Cye;, (16)
and the inverse of the stress-strain laws as

€= Wo;, an
where W, are the elastic compliances. For the two-
dimensional deformation considered here

€3 = Ws;0;,=0.

Solving for ¢; and substituting it into (17) leads to

e =Wy, (18)
where

W:’j = Wij W WSj/W33'

Since Wy; = Wj; = 0, the elements of the third column and
the third row of the 6 X 6 matrix W vanish. Deleting the third
column and the third row, it is shown in (Ting, 1988) that the
reduced 5 X § matrix is positive definite.

3 Homogeneous Solution

For a line inclusion located at x, = 0, — 1 < x; < 1, subject
to a uniform stress o} at infinity, the solution consists of two
parts. The first part is the homogeneous solution without the
presence of the inclusion. The second part is the disturbed
solution due to the presence of the inclusion. In this section we
consider the homogeneous solution which will be denoted by
the superscript (0).

For a uniform stress o at infinite, the solution for
displacements can be written as
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uf® = (eg+0f)x;, 19

where ¢ and w{” are constants. e7 is, in contracted notations
of (17),

= W07, 20)

The stresses o are prescribed in such way that e5° = 0. Alter-
nately, one could prescribe € with €5° = 0. of° are then deter-
mined from (16). Since displacements are assumed to depend
on x, and x, only, we may choose w{’’ such that the coeffi-
cients of x; vanish. Also, if we let #{® = 0 along x, = 0, (19)
reduces to

e € 07 [ x
u@=| 0 e 0 Xy
e e 0] [ x;

The displacement at x, = 0 where the inclusion is located is
then given by

e

u(x,0=| 0 |x. @1
€ |
If the inclusion is rigid, and if ¢ = e = 0, or
V-0, @

then u‘? (x,, 0) = 0 and the existence of a rigid inclusion at x,
= 0, —1 < x; < I does not disturb the homogeneous solu-
tion. For given material constants, W, (22) provide condi-
tions on o} so that the homogeneous solution is the solution
for the rigid inclusion.

As an example, consider the case in which the body is sub-
jected to a uniform tension of magnitude o, in the direction

(cosBcosa, cosBsing, sinf),
which makes an angle § with the (x,, x,) plane and its projec-
tion on the (x;, x,) plane makes an angle o with the x,-axis,

Fig. 1. To produce this stress state with ¢ = 0, it can be
shown that o> must be given by

oy =0, cos? 8 cos® a,

o =0, cos? 8 sin? «,

oF =0, sin §§ cos § sin a, 23)
a¥ =0, sin B cos 8 cos a,
o8 =0, cos? B sin o cos o,
0‘? = -~ E W3jO;O/W33.
Jj#3
Equations (22) now reduce to
W cosia + Wysina + Wgsinacosa
—tanfB= ;
Wsysina+ Wiscosa
. . . (24)
_ Wycosta+ Wsin?a + W gsinacosa
W sina+ Wiscosa
from which the second equality yields
cot’a + acot?a + beota+c=0, 25)

where
a=(Wy, W+ W16 Wes— Wi Wis — WIS Wse)/A,
b=(W,Wss+ Wi Wsy~ Wi Wss — Wis Wys)/A,
c= (W, Wsy— Wiy Ws)/A,
A= W” WSS - I’;V%S >O.
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Fig. 1 Inclusion configuration

Equation (25) provides at least one real root for «. Equation
(24) then furnishes 3. R
For isotropic materials the only nonzero W; appearing in
(24) are W, W,, Wss which are given by
W= =)/2p, W= —v/2u, Wss=1/p.

Equation (24) and (25) yield =0 and

tan2a= — W,/ Wi, (26)
or
a=xtan" V({1 -v)/v, 1))

which agrees with the result obtained by Wang et al. (1985).
If the line inclusion is elastic with elastic compliances W}
and if
€@ = W07 = Wio?,

assuming that o; (j#3) in the inclusion and in the matrix is
identical, then the displacements at x, =0 produced by the
homogeneous solution is compatible with the deformation of
the line inclusion. This means that the elastic line inclusion
does not disturb the homogeneous solution and the homo-
geneous solution is the solution for the inclusion problem.
If we define

29

(28) can be written as

[KVu]U? =0, (30)

{Wslof =0,
which provide conditions on ¢f for the homogeneous solution
to be the solution for the elastic inclusion. Equations (30) are
identical to (22) if we replace W; by [W;] for i = 1, 5.
Therefore, for the loading given by (23), equations (24)
through (26) remain valid for the elastic inclusion if we replace
W by [W]. If the inclusion is isotropic with shear modulus
1) and Poisson’s ratio », (27) is replaced by

(I=p)pD = (1= pD )y 12
D =y } '

a=:l:tan“{

We see that if » = v, « is independent of p and p!? and is
identical to (27). On the other hand, if u = p?, o = x7/4
regardless of the value of v and »,

4 A Rigid Line Inclusion

In this section we assume that the inclusion, which is at x,
= 0, -1 < x,; <1 is rigid, and study the disturbed solution
due to the presence of the inclusion. The disturbed solution
will remove the displacements at x, = 0, ~1 < x; < 1, given
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in (21) where is generated by the homogenous solution. The
boundary conditions for the disturbed solution can be written
as ,

u(x;, 0)= —qx,, forlx;l<1, (31
Sil [o30e;, 0%) —05(x;, 07)]x,dx; =0, (32)
0;(x;,X%,)=0, as Ix] — oo, (33)
where
v
q4=| -w (34)
33

In (34), w is an unknown constant which represents the rota-
tion of the rigid inclusion. It will be determined by the condi-
tion (32) that the total moment about x; = 0 due to the sur-
face traction on the rigid inclusion vanishes. To satisfy the
boundary conditions, we employ the general solution (10) and
choose the function f,, such that

u=Re ), a, (A "D, (22— D% -z, }q; (35)

$=Re ) b, (A )y ( (2~ 1) ~2,)g;, (36)

where Re stands for the real part and g; is given by (34). At x,

= 0*, we have
=i(t—xD%, Ix <,
(22-1)"= +(xE-D%, x>1, (37
—3-D", x<-1

=0% is therefore

The displacement at x,
for Ix, 1 <1,
for x,>1or x; < —1.

_qxl;
“(xla O)={
(= &i-1)"~-x}q,
(38

Equations (38), satisfies the boundary condition (31). It is in-
teresting to see from (38), that u(x,, 0) for Ix,1 > 1is in-
dependent of material property.

The stress is obtained from (36) and (7) as

oy = _RCE {Bia(A_l)ajpa[ (22 ZZ N —1]%},

ai2=ReZ; {Biot(A_l)u [( 22 % -l]qj}'

Since (z2~1)* — z, as |x| — oo, the boundary condition (33)
is satisfied. Using (37) the stress at x, = 0* has the expression

o, = —Re{BPA (¥ (x))- 1},
o, =Re(BA~1q(¥ (x)) -1},

in which

(0))i=0y, (0);=0p, (39)
and the diagonal matrix P and ¥ (x,) are given by
P=dlag (p11p21p3)1

Xy

, for Ix,1<1, x,=0%,
+i(1—x})” e 2

¥(x)= (40)

X

:EW, for x,>1 or <-1,x=0.

Journal of Applied Mechanics

It is shown in (Ting, 1988) that
BPA-!'=N, +NT(ST+DH"!,
N,=-T-'R7, N,=RT-'RT-Q.

Using (12), (40), and (41), the stress at x, = 0 has the real ex-
pressions

@41

01:(N3H+N1TST)H‘qu:’Z—‘x—2)_V2— NTH q,
(42)
X
~STH! q:t————( 2 H™'q,
for lx;| < 1,x, = 0% and
X1 -
UI=—<:|:—(W—1) (N3H+N1TST)H lq, (43)

X > _
= (e—2L __—1)sTH"'q,
7= - 1" a

forx, > lorx; < —1,x, = 0. The upper sign is for x; > 1
and the lower sign for x; < —1. We see from (42) that to
satisfy the boundary condition (32) we must have
(H'q),=0.
This leads to, lettingh=H"1,
- Ry € + Ayyef
hy ’
which provides the angular rotation of the rigid inclusion.
The fact that H is positive definite assures us that #,, > 0. If
hy; = hy = 0, which is the case for isotropic materials, w=0
and there is no rotation of the line inclusion due to the
uniform loading at infinity.

Equations (42) and (43) show that there is a square root
singularity in stressat x;, = +1,x, = Ounless H-!q = 0. But
H-'q = 0 means q = 0 because H~! is positive definite.
Therefore, the disturbed solution always generates a stress

singularity at the tips of the inclusion. If » > 0, we see from
(43) that

lim 2r)%o,(1+r, 0)= —(N,H+NTST)H 'q,

r—o
lim 2r)%e,(1+r, 0)=8TH 'q.
r—o
This provides the stress singularity coefficients (Wang et al.,
1985) for the rigid line inclusion in anisotropic elastic
materials. We also have, on the inclusion
lim (2r)%e,(1-r, 0*)= ~NTH 1q,
r—o
lim r)%e,(1—r, 0*)=H"1q.
r—ao

For isotropic materials

0 10 2
00
’ 1—v»
Nl = - 0 O 3 N3 =4 2
1-v 0 00
0 00 0 01
and using (13) and (15), the only nonzero limits are
2(1-2»)

3

lim 29N %ep(1+r, 0)= —p —— ¢
r—o 3—4V

lim (29)%0;(1+r, 0)=pe?,

r—o
3-2

lim (27)%0,,(1+r, 0)=2p )

r~o 3 4V
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41—
lim @)% 01—, 0%)=p o) e
r—o , 3—4y

lim (21205 (1—7, 0F) = pe?.
r—o

In closing this section, we point out that Yang and Chou
(1982) studied the elliptic inclusion in an anisotropic solid of
cubic symmetry. They obtained explicit solutions for stresses
around the inclusion which include the degenerate case of a
rigid line inclusion.

5 An Elastic Line Inclusion

The problem becomes more complicated when the line in-
clusion is elastic and deformable. In this case the normal
stresses on two surfaces of the inclusion are identical if we
neglect the bending rigidity, but the shear stresses will have a
discontinuity which acts as an external force on the elastic in-
clusion. We assume that the inclusion is also anisotropic with
the elastic compliance W,

For the state disturbed from the homogeneous deformation,
we seek a solution which satisfies zero stress at infinity while
onx, =0, Ix | <1,

ou(xy, 0)/dx; = —q(x,), (44)
where q(x,) is an unknown function of x; to be determined.

We see that if &7 is the average strains across the thickness of
the inclusion,
41(x1)=5c1’°_€f") (%)), (45)
q;(x;) =€ — & (xy),
while — g,(x,) represents the rotation of the line inclusion. If
q,(x,) is independent of x;, the line inclusion remains a
straight line after the deformation. Otherwise, it deforms into
a curved line. Following Stroh (1958), the solution which
satisfies zero stress at infinity and prescribed displacement
gradient —q(x;) at x, = 0, lx;| < 1 can be written as (Li,
1988):

1 ¢! 1
wem—| aul_ artuprea-e-rae

1 1
~—Re{ DA da |, dutzi-—uh-»
K o 4

1
[* @ wrapa-e-rag), (46)
1 1 1
& =—Re[Baz' | du| | a ueren -]
1 1
N RC{Z;B:«,A;,-‘ SO dp(2%— )"
i
|- aby (urz,p) (1- g9 %ag]. @)

We will now proceed to determine q(x;) so that the
displacements at x, = 0, |lx;| < 1 are compatible with the
deformation of the line inclusion. We first observe that the
first terms on the right of (46) and (47) are constants. We next
reduce the double integrals in the second terms to a single in-
tegral. This is accomplished by replacing the variable & by 5 =
w£ and changing the order of integration (Stroh, 1958). Final-
ly, we differentiate and employ (7) to obtain

1 ,
ty = — Re Y, (AAs (@2~ 1)""%y;(z,) ), (48)
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1
0n ==~ Re ), (Bidy'Pa(zi =) %;(za)),
) (49)
1 o
0 =—Re )] (Br Ay (- D""v;(z.)},

1 (1 _ ,:;2)‘/2

v = | 4 S e
The integral in (50) has a singularity at £ = z, = X; + DPux;.
At x,=0and x| < 1, the singularity is on the path of in-
tegration. Thus, the stress oy, 0, at the surfaces of inclusion
cannot be obtained by simply replacing z, by x, in the in-
tegrand. There is an extra contribution due to the integration
along the half-circle of very small radius around the singular
point £ = x,. This extra contribution is

(50

Fimg; (x)(1-x})%,
where ¥ is for x, = 0*. Therefore, if we let

1 1 1— PAYZ]
ne=— g0 T a, 61
1
we have
my; (X)), if lx,1>1
v; (%)=
T{y; () Fi(l—x3)%q; (x)}, if lx, I <1.
(52)

Using (12), (41), and (52), the displacement gradient and stress
along x, = 0 has the following expressions:
ua] =—q,
oy =(N;H+N{STYH 'q(x))F (1 -x}) " “NTH 'y (x,),

o= —8TH!q(x)) = (1~x}) " *H 'y (x)), (53)
for Ix; 1 < 1,x, = 0%, and
u, == (xf - 1)y (%), (54)
op=F (x}~1)"“(N;H+NISTYH 'y (x,),
o= % (¥ = 1)~ "STH 'y (xy), (5%

forx; > lor < —1,x, = 0. It should be pointed out that if g,
is a constant, the integral in (51) can be integrated to give

1 1 1— YAV
1 S | a-g¢* .

™ xl_E

{ X1, if 1x, 1 <1
= (56)
(X, FVxi—1), ifx;>1,or <-—1.
Equations (53), (54), and (55) then reduce to (42), (38),, and
(43), respectively.

Let

27(x;)=030x;, 0%) —05(x;,07), Ix;1<1,

be the difference in the surface tractions on both surfaces of
the inclusion. Substituting in the above equation from (53),

we have
1 ( 1-— 22)‘/1

_—_ ———dE.

T G PR
Equation (57) provides the relation between —q(x;), the
disturbed displacement gradient on the inclusion, and 27(x,),
the difference in the surface tractions on the inclusion. From
the assumption that the inclusion has no bending ridigity, o,,
must be continuous which means

7,(x,)=0.
From (57) we see that this can be satisfied if we let

Hr(x))= (57
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{H 'q(x))},=0,
orlettingh = H™!,

hy1qy () + Aa3q5(x))

@ (%)= h (58)
22
With 7,(x;) = 0, (57) can be written as

At =——— " am g s
T R LR

N \:HIIHH:' [71} . [41]
H= s = y 4= . (60)

Hj Hy, T3 43

We will derive an integral equation for 7(x,). We see that H is
positive definite. We also see from (59) that if #(x,) is an odd
function in x|, which is the case as we will show later, q(x,)
and g,(x,) of (58) are even functions of x,.

We consider next stresses and strains at x,=0 and, for
simplicity, will drop the subscript 1 from x;. By considering
the equilibrium of the segment (x, 1) of the inclusion and using
(53) we have

. 1 ¢!
D =of +——S 7,()dt,
d Jx
. 1 ¢!
#H) =a +—S 73(1)dt,
d Jx
&) =05 — jZ(H_IQ)ja (61)
#{) =0 ~Sp(H ™ 'q);,
) =0g —S;(H'q);,
where 6" is the average stress over the thickness of the inclu-

sion and 2d is the nondimensionalized thickness of the inclu-
sion. Using (17) and the relation

& = Wg.) o,
(45) can be written as
1
ﬁ(x)=g—7rMS #F()di +TH 1q(x) 62)
X

where q and 7 are defined in (60) and
Nt
g= PO
[Wsj]Uj
1 Wi W
M=— . . ,
v g
WS+ WSy + WS,
W Si+ Wy Sj + W Sj3
In the above equation, T'y; is a 2 X 3 constant matrix and M is

positive definite. If we substitute (62) into (59), and making
use of (56) and (57), we have

}j=1,2, 3.

1
0 (x) = [xg——MS_l 'i(t)k(x,t)dt} +H ), (63)

in which I' is a 2x?2 matrix which is obtained from T' by
deleting the second column of T'. The kernel k(x, ) is given by

t 1-— AYZ]
ken={ B 4,

x—&
1—xt+(1-2)% (1 -x»)"

x—t 9

=(1-x%)"In

+x(w—cos~ 1)y~ (1-£2)", lIxl<l.
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Equation (56), is recovered by setting #=1 in (64). Noting that
k(—x, — 1) = k(x, t) —x, it is not difficult to show from (63)
that #(x) is an odd function of x.

Equation (63) represents two coupled integral equations for
7,(x), and 7,(x). Before we show that these two equations can
be decoupled under certain conditions, we will look at two
special cases. When g =0, which is (30), #=0 and, hence, 7=0
is the solution which means q =0 by (57). The disturbed solu-
tion then vanishes and the homogeneous solution is the solu-
tion for the elastic inclusion. This agrees with the result stated
in Section 3. Next, consider the special case in which
the inclusion is rigid. We then have W) = 0 and (63) reduces
to

H#(x) =

Wy } (65)

vt S [
_n B I RPN
(1-x%) W07

We see from (56); that (59) can be reduced to (65), if qis a
constant given by g of (65),. With (58) we conclude that g, is
also a constant and we have recovered the results obtained in
Section 4.
Consider the eigenvalue problem

Me=\(H-1e. (66)
Let A;, A, be the eigenvalues and e, e, be the associated
eigenvectors, If the inclusion is much ‘‘harder’ than the
matrix, H—T is dominated by H which is positive definite. If
we delete I' from (66), it can be shown (Hildebrand, 1952) that
A1, A, are real and positive and e,, e, are independent vectors.
Introducing the 2 X 2 matrices @ =[e,, e,], A=diag(h;, \,),
equation (66) for A=\, A, can be written in one equation as
MQ=(H-I)QA. Assuming that @ and H—TI" are nonsingular,
(63) reduces to

A% _— 1 * ! 2%
7 (x)—m{xg _AS—I T (t)k(x,t)dt},

=0"1%, g*r=0-'(A-DM"lg
Equation (67) is uncoupled into two equations. If we divide
the first equation by g} and the second by g5, both equations
have the form

(67)

T(x)=———1—{x—-)\gil T(t)k(x,t)dt}, (68)

(1-x%)"
which is a Fredholm integral equation of the second kind.
It should be pointed out that both M and T in (66) vanish
for a rigid inclusion and A=0. Hence, \ is small when the in-
clusion is much harder than the matrix.

6 Solutions of the Integral Equations

Because of the complexity of the kernel there is no
analytical solution available for (68). However, under the con-
dition that A is very small, i.e., the inclusion is much ‘‘harder’’
than the matrix material, (68) can be solved approximately by
an asymptotic expansion. More general cases are solved by a
numerical discretization.

The solution to (68) is a function of both the space variable
x and the eigenvalue \, i.e., 7 = 7(x, N). It can be easily seen
that for A =0, the solution is simply given by

7(x,0) =70 (x) =x(1 —x2)~*. (69)

For small A, 7(x, N\) can be expanded into a power series of A
as

(X, \) = Y, M7 (x),

n=0

(70)

It can be shown that (70) converges to the true solution for
small A (Tricomi, 1985). By substituting (70) into (68), and
equating the like powers of A\, we have
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Fig. 2 Asymptotic solutions for r for various values of A

1 1
7 (x) = __(‘1:(2)—’/2&1 =D k (x,0)dt,

n=1213..,
in which 79 (x) is given in (69). For n= 1 we have
W) = =270 (x) — (1= x2)%Inl (1 +x)/(1=x)|. (71)
Equation (69) corresponds to the solution for an inextensible
rigid inclusion (Erdogan and Gupta, 1972). The solution to
(68) for nonzero but small A can be approximated by taking
the first two terms in the expansion

T(x,\)= [x— 2N =M1 ~x)n | (L +x)/(1—x) 1].

(1-xH»
This is plotted in Fig. 2 for various values of A.
For the numerical solution, we rewrite (68) as

1
y(x) +)\S_l YOk (x,1)dt=x,

where

y(@) = (1-2)"%7(1),

ki@,ty =k(x,t)/(1 2%,
The results of numerical solutions for A=0.1 and 0.2 are
shown in Figs. 3 and 4. Comparisons with the asymptotic solu-

tions shown in the figures indicated that the agreement is ex-
cellent for A < 0.1.

7 Concluding Remarks

The Stroh formalism is employed to analyze the problem of
a line inclusion in the general anisotropic elastic solid. For the
rigid inclusion, a real and closed-form solution is obtained for
the displacement and stress at the inclusion as well as along the
extended line of the inclusion. The rotation of the rigid line in-
clusion is also obtained explicitly. For the elastic inclusion, a
pair of Fredhold integral equations for the difference in the
surface traction on both sides of the inclusion is derived. The
pair can be decoupled and asymptotic and numerical solutions
of the integral equations are presented. Regardless of whether
the inclusion is rigid or elastic, there is a square root singular-
ity in stress at the tip of the inclusion for general loading at in-
finity. For certain special loadings, the presence of the inclu-

sion is irrelevant and the homogeneous solution is the -

solution.
The problem considered here could also be formulated us-

ing Eshelby’s framework for an ellipsoidal inhomogeneity and
taking the limit when the ellipsoid degenerates into a line in-
clusion. One still obtains a Fredholm integral equation for the

unknown strains inside the line inclusion. However, Eshelby’s .

formulation is for three-dimensional problems. In specializing
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----- numerical solution
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Fig. 3 Asymptotic and numerical solutions for A = 0.1

4.5

asymptotic solution
-~ ~-= numerical solution

1.5 1

-4.5-
Fig. 4 Asymptotic and numerical solutions for A = 0.2

to two-dimensional deformations considered here, many iden-
tities in the Stroh formalism, which relate complex expressions
to real expressions, cannot be used and the solution remains in
a complex form. Another problem one encounters is that for
the ellipsoid or elliptic cylinder inclusion, the stress and strain
are uniform in the inclusion. In the degenerate case of an
elastic line inclusion, the stress and strain are not uniform in
the line inclusion. Therefore, while it is possible to obtain the
solution for a crack or a rigid line inclusion from that for an
elliptic hole or a rigid elliptic inclusion, it is not possible to do
so for an elastic line inclusion (Hwu and Ting, 1989).
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Surface Displacements and Stress
Field Generated by a Semi-
Ellipsoidal Surface Inclusion

This paper presents calculations of the displacement and stress fields generated by
semi-ellipsoidal surface inclusions containing uniform transformation sirains or
eigenstrains. The inclusion is assumed to have the same elastic constants as the rest
of the material. This is a reasonable assumption for modeling transformed zones in
transformation toughened ceramics and localized plasticity in individual surface
grains in alloys. Analytical results are obtained for special cases and numerical
results for general cases. The approach is particularly useful for accurately
calculating the anomalous fields at the intersection of the boundary of the inclusion
and the free surface. It is shown that, in many physically important cases, all com-
ponents of the stress tensor are zero or constant on the free surface within the inclu-
sion. For shallow inclusions or inclusions of general geometry suffering volume con-
serving transformation strains, the stress fields are also approximately uniform
throughout the inclusion. This result greatly simplifies modeling of localized defor-

Brian N. Cox

Science Center,
Rockwell International Corp.,
Thousand Qaks, Calif. 91360

mation in certain materials under complex external loads.

1 Introduction

Understanding the fundamental mechanisms of the
degradation and failure of composite materials requires ex-
perimental and theoretical analysis of events occurring on the
scale of the microstructure. For fiber-reinforced composites,
transformation toughened ceramics, and polycrystalline
alloys, the relevant scale falls between tenths and tens of
microns. The only experimental techniques with sufficient
spatial resolution to yield data over such gauge lengths are
various methods of measuring surface displacements.
Outstanding amongst these are stereoscopy (e.g., Williams et
al., 1980; Cox et al., 1986) and digital image analysis (James et
al., 1988), which can measure differential surface strains over
submicron gauge lengths from pairs of SEM micrographs
(e.g., Morris et al., 1988). Techniques of measuring surface
displacements with inferior but still useful spatial resolution
include moire interferometry and the tracking of very fine
grids of holes cut in surface overlayers (Bradley, 1987).
Techniques for measuring bulk or subsurface strains, such as
X-ray diffraction, Raman spectroscopy, and optical bire-
fringence, are restricted in the materials to which they can be
applied and fail to provide the required spatial resolution.

The deduction of information concerning surface and sub-
surface deformation from measurements of surface
displacements alone poses special problems. Given no other
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information, the surface displacements are not necessarily suf-
ficient to determine a unique solution. Although solutions
have been found in special cases (Mura et al., 1986), the
problem is, in general, ill-posed. However, unique solutions
may often be found if other restrictions can be placed on
them. Gao and Mura (1988) have pursued a mathematical ap-
proach showing that the requirement that the L, norm of the
deformation be a minimum is sufficient to render the problem
well posed. A physically-based approach can be equally suc-
cessful, since the cumulative insight of experiments and
theoretical models usually specifies strict limits on the admissi-
ble forms of the deformation. In this case, one proceeds by
postulating parametric models of the deformation and op-
timizing the parameters by comparison of calculated surface
displacements with data. To construct manageable parametric
models of the deformation and to perform optimization of the
parameters, it is very helpful to carry out as much of the
modeling as possible analytically and to have efficient
numerical procedures in the absence of analytical results.
This paper presents analytical and numerical results for one
such model system, which has proven very useful in analyzing
surface displacement data in individual grains of aluminum
alloys (Morris et al., 1987; Cox et al., 1987) and transformed
zones around cracks in magnesia partially stabilized zirconia
(Cox et al., 1988). The case considered is that of a semi-

- ellipsoidal inclusion that suffers a stress-free transformation

strain (Robinson, 1951; Eshelby, 1957) or eigenstrain (Mura,
1982), ¢;, defining the change in shape the inclusion would
suffer in the absence of the constraining matrix. The inclusion
has semi-axes @ and b in the plane (x,, x,) of the free surface,
and c in the normal direction x; (Fig. 1). Both the inclusion
and the matrix are assumed to be homogeneous and isotropic,
and have the same elastic constants. The last assumption is
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X3

Fig. 1 The semi-ellipsoidal transformed zone, showing its relationship
to the coordinate system

reasonable for studying transformed zones in transformation
toughened ceramics and plastic deformation in metal alloys. It
also simplifies the calculation considerably, allowing more
general choices of geometry and eigenstrain. Theories of
elastically inhomogeneous inclusions have been restricted to
semi-spheroidal inclusions undergoing axially symmetric
eigenstrains (Kouris and Mura, 1988a and 1988b).

The computational procedure comprises the following
steps:

(1) Evaluate Eshelby’s analytic solutions for the stresses
off) and strains €{) inside (Eshelby, 1957) and outside
(Eshelby, 1959) an elliposidal inclusion in an infinite medium.

(2) Introduce a free surface on the plane x; =0 by applying
a continuum of normal and in-plane point forces, ¢;, to cancel
exactly the normal stress of) and shear stresses of) and
and ofY calculated to exist there from Step 1. Find the correc-
tions to the displacements, stresses, and strains calculated in
Step 1 associated with the introduction of the free surface by
integrating the products of #; and Mindlin’s (1936) Green’s
functions for a half space over the plane x; =0.

These steps can be followed to calculate the displacements,
strains, and stresses anywhere in the half space with equal
facility. In the work described below, complete stress fields
and surface displacements will be reported for several cases.
The chosen approach is useful because it is very efficient com-
putationally and it allows certain results to be found
analytically. A similar approach has been followed previously
to calculate stresses around hemispherical indentations
(Chiang et al., 1982).

2 Numerical Methods

The evaluation of Eshelby’s analytic solutions for an ellip-
soidal inclusion (Step 1) requires lengthy but straightforward
programming and follows the original papers. All stresses
ofP and strains e} are found point by point by evaluating
explicit expressions involving certain elliptic integrals. Pro-
grams have been written for which the input is (1) the semi-
axes a, b, and c; (2) the coordinates x of a given point of in-
terest; and (3) Poisson’s ratio. The output is a matrix S of rank
six defined so that

D)= e S5, a=1,...,86, )
8

with the notation for the row vectors () and ¢/, that their com-
ponents refer in order to the components €, €y, €33, €15, €23,
and €5, of the corresponding strain tensors e’ and ¢}, Cor-
responding displacements #{" can be found by integration of
ell) and stresses of} directly from the constitutive relations.

When two or more of the semi-axes a, b, and ¢ are equal,
Eshelby’s expressions become indeterminate. On a 32-bit
machine with approximately seven-figure precision, one finds,
in practice, that errors of less than one part in 10* are suffered
if the semi-axes differ by at least 1 percent. For other cases,
i.e., the near-spheroid or near-sphere, acceptably accurate

Journal of Applied Mechanics

solutions may be found by interpolating between solutions for
nonspheroidal cases. For example, the solution when
a=(1+8)b, 161<0.01, may be found by interpolating be-
tween the solutions for ¢=0.99b and a=1.01b. (Note that all
aspects of the solutions are smooth functions of a/b at
a/b=1.)

Step 2 requires evaluation of the integrals

uP) = | (G, e-x2t;(x yxiaing 2a)

and

oP(x)= S SH‘jk (x—x"Y (x")dx{dx;, (2b)
where G;(x—x') and Hy (x—x’) are Mindlin’s (1936)
Green’s functions for the displacements and stresses generated
in a half space x; =0 by point forces acting at x’ on x; =0. All
such integrals are conveniently divided into two contributions,
one, u#i"(x) or ol}(x), arising from integration over the domain
of the inclusion only, and the other, #¢*'(x) or oJ*(x), arising
from integration over the remainder of the plane x; =0. Note
especially that the contributions #* and ¢! are dominant
when the inclusion is deep (large c) and either €;=§;
(hydrostatic expansion) or e}; = ;0, (expansion in the normal
direction only).
The total displacement and stress fields are given by

() = 4P () + uPE) =u ) +uP ) + @ Ga)

and
0 () = o (x) + 0P (x) = 0P (%) + 0} (x) + 07" (x). 3b)

From Eshelby (1957, 1959), it is known that the stress
oty or of} to be cancelled in Step 2 is nonzero on x; =0 if e},
or €}, is nonzero. Thus, for many important cases, including
purely dilatational transformations and plastic deformation in
surface grains in alloys, when the only nonzero shear strain is
€12, only normal point forces #;(x') need appear in equations

2).

2.1 Surface Displacements. For surface displacements
u; (xy, x5, 0), the Green’s function in equation (2) has one of
the forms 1/r, cos@/r, or sind/r, where r= Ix—x’| and 8 is the
angle between x—x’ and the x,-axis. The contribution u(x)
can therefore be reduced easily to a one-dimensional integral
over a finite domain, which can be calculated accurately in
negligible time. The contribution 4 (x) is found as follows.
The domain outside the inclusion on {x;, x;) is divided into a
triangular mesh bounded on the outside by an ellipse whose
semi-axes are a multiple R of @ and b. In practice, it is always
adequate to set R =35, The tractions ¢; are evaluated in step 1 at
each vertex of the grid and at the midpoint of each side of each
triangular element. Each of the three components ¢; is then ap-
proximated in each element by a quadratic function of x; and
X,, with the coefficients found by interpolating over the values
at the vertices and midpoints. The contribution to #®(x) from
each element then comprises integrals of functions of the form
x,/r, x,cos0/r, x}/r, etc., which can be found analytically, so
that the 1/r singularity in Mindlin’s Green’s function presents
no numerical difficulty. For small c¢/a or ¢/b, the traction ¢,
becomes concentrated outside the inclusion to the
neighborhood of the interface, and a modest increase becomes
necessary in the density of the grid there.

The method of solution just outlined is particularly efficient
if surface displacements are the only information required, as
is often the case in interpreting experimental measurements.
The problem has been reduced to evaluating a numerically
simple, two-dimensional integral for each displacement com-
ponent at each point. For example, a scan of the net
displacements u, (x), i=2 or 3, at 30 points along the x,-axis
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takes approximately 20 seconds of CPU time on a VAX
11/780 (a 32-bit minicomputer). To obtain the same informa-
tion from a three-dimensional finite element program would
take much longer. Furthermore, the present approach has no
difficulty in treating the anomalous displacement and stress
fields found at the intersection of the free surface and the in-
terface of the inclusion and the matrix.

2.2 Subsurface Stresses. While surface displacements
often have special importance, being the only experimentally
accessible quantity over microscopic gauge lengths, the same
approach can of course be used to calculate subsurface
displacements or stresses (equation (2b4)). Concentrating on
the stresses, from which the displacements can always be
deduced, one again finds that the contributions 05}“) can, in
every case, be reduced to a numerically simple, one-
dimensional integral. This is particularly useful for evaluating
the anomalous stresses near the surface on the boundary of the
inclusion, where finite element methods are hard pressed.

The contributions o{f"? are conveniently evaluated using a
triangular mesh similar to that used for calculating the surface
displacements. When x; #0 in equations (2), the Green’s func-
tions H;, and G; are more complicated algebraically, but they
are never singular. Therefore, the integrals in equation (2b)
are evaluated in a slightly different way. The entire integrand,
rather than just ¢, is approximated by a quadratic function in
xi and x;. The resulting integrals of functions of the form x/,
x{%, x{x;, etc., are evaluated analytically in each triangle.
Stresses on the surface x; =0, where Hy, can be singular, are
easily found by extrapolating from values at subsurface
points.

3 Results

For brevity in what follows, most of the results presented
are for eigenstrains in which e; = ¢}, =0, so that only the nor-
mal tractions #;(x’) are nonzero in equation (2.2). (In-plane
tractions #, and ¢, are required outside the inclusion when
¢5; =€), =0 only if the free surface to be created in Step 2 is
other than an equatorial plane of the whole ellipsoid.) Some
analytical results are presented for surface displacements
generated by tractions #; and ¢, in the plane strain limit. In
general cases, the numerical treatment of in-plane tractions
would be completely analogous to that of normal tractions.
Note that the condition €5, = ¢}, =0 is consistent at a free sur-
face in the Levy-Mises description of plasticity (e.g., Hill,
1950).

3.1 Conditions for u#f and a;}“' to be Negligible. A survey
of the stresses o{) calculated on the plane x;=0 in Step 1
(Eshelby’s problem) can be summarized as follows. When
e =0;; (hydrostatic expansion) or e} =6,0;; (expansion in the
normal direction only), ¢§) becomes small and diffuse outside
the inclusion when ¢>>a and ¢>>b. In such cases, u® and
o become negligible, and the net displacements and stresses
are simply the sum of the solution to Eshelby’s problem and
uld or ¢/l Since the problem is entirely linear, it follows that
the same simplification applies for any combination €} = a:d;;
+86,6,. For other e, of) retains comparable magnitudes
inside and outside the inclusion for large ¢, and uf™ and
o must be taken into account.

3.2 Surface Displacements. The surface displacements

can sometimes be found analytically. Such cases illustrate .

qualitative characteristics of more general cases, which are
useful in interpreting experimental surface displacement data.
These analytical results are presented next, along with
representative numerical calculations. The various possibilities
are conveniently divided according to symmetry.

Axially Symmetric Cases.
a=b, the contribution #"(0, x,,0) can be found analytically:
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For a spheroidal inclusion with-

§C39710

(a) T T (b) T T

—3 - a= b - 3_. ._

/—clb = 10.0 a=>b

-2} 5.0 4

3 1.0

=

~1t 0.5 i

0_
0'? t 1 1
{c) e (d) T

Talb = 10
c/b = 100.0 |

X2/b X2/b

Fig. 2 The normal displacement u3(x) ((a), (c), and (s)) and the in-plane
displacement u,(x) ((b), (d), and ()) when e},- = §;; for the cases a=1 and
b=1((a)and (b)); a=10 and b =1 ((c) and (d)); and a=1 and b =10 {(e) and
(). The semi-axis ¢ has the values marked, and Poisson’s ratio was
taken to be 0.3. The dots in (a) and (e) indicate the values of x,/b at which
u; was calculated, with values elsewhere found by Lagrangian
interpolation.

Ui 0,x,,0)=1;(0)+ 1- (a—x)K { 2V ax, }
T a+x,
+ (a+x,)E [_Z\mxz } ’ @
a+x2

where v is Poisson’s ratio, u the shear modulus, and K and E
are complete elliptic integrals of the first and second kinds;
and

1-2
—t3(0)——Vx2 Ix, I <a
. 4y
ulf(0,x,,0) = _ )
1-2
—1,0) — 2 & lx, ! >a.
471'[1 x2

Thus, the partial derivative du;/dx, possesses a logarithmic
singularity at the interface x, =a on the free surface, since, as
k—1, K(k)—1/2 In[16/(1 - k)} (Byrd and Friedman, 1971).
Note, however, that the shear strain e,; vanishes on the free
surface x; =0, so that du,/0x; = —du,/dx,. These displace-
ment gradients correspond to a rotation through 7/2 of the
element at the intersection of the interface and the free surface
about an axis tangential to that intersection. The strain e,,, on
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the other hand, remains constant within the inclusion, since
u3*(0,x,,0)=0 for x, <a, a result which follows, as does equa-
tion (5), from the fact that for a surface point x

27
Gyy(x—x")dgp=
1-2» §)2” Xy —X3 5
4 Joo (o —x))+ 0 —x3)?
0 if x{2 4 x5% < p?
1-2» Xy
= - 2 i x{24x2>p, (6)

20 x{*+x3?

where the line integral is evaluated around a circle of radius p
centered on the origin. This conclusion holds for any axially
symmetric, uniform, stress-free transformation strain €
Since the x,-axis can be chosen arbitrarily when a = b and el 1s
axially symmetric, it follows that all components of the stress
tensor are uniform on x; =0 within the transformed zone. It
will be seen below that numerical results show that this conclu-
sion holds far more generally.

Numerical calculations of the net surface displacements
u; (x), including the contributions u9", are shown in Figs. 2(a)
and 2(b) for the case of hydrostatic expansion e; =6;. As the
ratio of depth to surface radius (i.e., ¢/a) increases, the sur-
face displacements tend asympotically to limiting values. For
c¢/a>10, they exhibit no further significant change with in-
creasing depth. However, it should be remembered that one
usually measures not absolute displacements but rather strains
or relative displacements. For surface strains or the relative
displacements u;(x)—u;(0) measured over gauge lengths
comparable to a and b, the calculated results are already
within ~ I percent of their asymptotic values in the limit c— oo
when c=2q. This is found to be the case for all transforma-
tions €’.

Plane Strain Cases. In the limit a/b— o0, the contribution
" is unbounded, but the partial derivative 6u /9x, remains
fmlte For normal surface tractions #;, it is given along the

X,-axis by
duip 1—-» Sb S“’ X3~ X,
= t,(0 1dx;
02, 2 PO) e BT Gy P
1—» b —-x2
=1
21 3(0) In bix, Q)
which expression again exhibits a logarithmic singularity.
Hence,
u(0,x,,0) —up(0)= —— (—t3(0))[(x2 b)Inll—x,/bl
—(x2+b)ln|1+x2/b|]. ®)
For the in-plane displacements, one finds i = 0, and
-2
—50) — = o, lx, | <b
uin(0,x,,0) = )
1 - 2V x2
—1,(0) ohe Ix, | = b.
3( ) 2# lle le >b

For in-plane tractions #,, the results for u® and u} are
reversed:
WuE05,0) _ 6O

0x,

‘ b—x, ’ (10)

b+x,
and

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Y o, (0)ex, lx,| <b
u§(0,x,,0) = (11
1-2»
't2(0)'b’ |x2I =b.
Ix, |
For in-plane tractions, #,, one has %" = =0 and
auiln(oyx250) 1(0) l ’ b_x2 | (12)
0x, b+x,
General Geometries. The in-plane components %" and ui

can still be obtained analytically within the inclusion when
a#b and €j; =€}, =0. For #}! one finds

1-2»
T

uZ(xl ,X2,0)= = t3(0)'

dx/dx;

U (x; — x;\; +)(€)262

21/ < b

a+b
where ¢ is the elliptical intersection of the inclusion and the
free surface. This expression is independent of x, and linear in
X,, showing that this contribution to the strain ou,/dx, inside
the inclusion is always uniform.

When c is not large or e #ad; +85;0,;, the numerically
evaluated contributions u" become significant. The net sur-
face displacements u, and u,, comprising the superposition of
Steps 1 and 2, are presented for the case of hydrostatic expan-
sion (ef;=6;) in Figs. 2(c)—2(f). The displacements are
shown along the x,-axis, which is the minor semi-axis in Figs.
2(c) and 2(d) and the major semi-axis in Figs. 2(e) and 2(f).
Along the major semi-axis, the displacements are similar to
those for the spheroidal inclusion (Figs. 2(a) and 2(d)), ex-
cept that u, falls away much more rapidly at and beyond the
interface. Along the minor semi-axis, u; exhibits only a mild
drop from the center of the inclusion to the interface, and falls
away gradually far out into the matrix.

A series of numerical calculations showed that, even when
uf™ was not negligible, the net in-plane surface displacements
u; and u, were always linear and the surface stresses ¢;; and
05, therefore uniform within the inclusion when ej; =€}, =0.
This was shown to be true within the four-figure accuracy of
the calculations over many randomly chosen intervals of the
surface inside the inclusion. The three transformation strains
el =8y, e;=08,64, and e,=1, ¢j=—1, all other components
zero were considered. Since 089 =0 on x; =0 for the pure shear
transformation e!,, all transformation strains for which
€43 = €4, =0 can be constructed from these cases. The in-plane
surface displacements were found to be linear in the inclusion
for all choices of @, b, and c.

The importance of assuming that the inclusion has the same
elastic constants as the matrix can be assessed by comparison
with the work of Kouris and Mura (1987) for inhomogeneous
semispheroidal inclusions. The case of a hemispherical inclu-
sion suffering the eigenstrain ef; = 6,0, (e.g., differential ther-
mal expansion in the normal direction x,) is presented in Fig.
3. The calculation of Kouris and Mura (dashed curve) is for
the case of equal Poisson’s ratio in the inclusion and the
matrix and for I'=2.0, where I' is the ratio of the shear
modulus or Young’s modulus in the inclusion to that in the
matrix, For the displacements u, and u;, there is strikingly lit-
tle difference between the two calculations. For the interpreta-
tion of experimental measurements of either in-plane or nor-
mal surface displacements, it is clear that the assumption of
equal elastic constants will be a very reasonable one in many
cases.

)

= *13(0) 13)

xz) (x,/a)? + (x,/b)? <1,
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3.3 Stress Fields. The stress fields at the intersection of an
interface and a free surface are well known to be anomalous
(Bogy, 1975). Once again it is very helpful in studying this
region to separate the contributions ¢f and ¢94 and to ob-
tain analytical results in limiting cases. In the following,

Young’s modulus is denoted E.

3.3.1 The Contribution ai%.

Plane Strain. When a—, o;; can be evaluated aﬁalytically
from equation (2b). One has

X315(0) [xz +b X —b]

o8 (xp,%3) =

R} R}
-b +b
L LO [tan“ (xz >_ an-! ("2_)] (14a)
1 X3 *3
in _ x3t3(0)[x2~b _ x2+b]
0i(X3.%3) R? R?
-b +b
+ 5O [tan“ (——x2 ) —tan~! (f-z——)] (14b)
T X3 X3
. t3(0)[ bE X3 ]
in = — 14
623(x2 ,X3) R% R% ( C)
. _ : e
0.2+ T
- !
uzly uzly //
i )
0.1 / 7
4
- 4
3 0 0 ‘: 2 3

XZAJ

x2fy
Fig. 3 Comparison of calculations for a hemispherical inclusion
undergoing the transformation ej; = §;;8;3. Solid curve: present caicula-

tions. Dashed curve: Kouris and Mura (1987), with I'=2.0, where I is
the ratio of the Young’s moduli in the inclusion and the matrix; for
Poisson’s ratio equal to 0.3.

022™M/13(0)

033M/t3(0)

x2/b=0

0 1 2
x3/a

Fig. 4 The contribution of

where R?=(x,—b)?+x3 and R}=(x,+b)*+x}. Of course,
these results may be found alternatively from Flamant’s (1892)
solution for normal line forces applied to a half space. Note
that, on the free surface x; =0, 0% is uniform when Ix,| <b
and zero when Ix,|>b, in concurrence with equation (9).
When Ix, | = b, the maximum magnitude of ¢l occurs on the
free surface x, =0. When lx,|#b, o} =0 when x; =0, and
the maximum magnitude of ol is found below the surface.
These characteristics of ¢% are also found when a#b, and
persist in the net stress o,3.

General Geomelries. For cases of finite a and b,
ai»}‘(xl ,X»,X3) is conveniently evaluated in polar coordinates
(r,6) in the plane x; =0, with the origin at (x,,x,). The integral
over r can be performed analytically for all cases, and the en-
suring integral over 6 is easily calculated using cubic splines.
All stresses o}}‘ can thus be calculated quickly and accurately,
even near the intersection of the interface and the free surface.
Complete results are presented for the case a=»b in Fig. 4.
They are qualitatively representative of the general case a#b
and similar to the analytical expressions equations (14) for
plane strain. Each curve shows a scan parallel to the x;-axis
when x; =0 and x,/b has the value marked. Note that all
stresses vary very rapidly near (0,b,0). The stress o} is discon-
tinuous at (0,5,0), but only at that point since, along the
X,-axis, it is the component of stress normal to the interface.
The stresses o' and of} are constant everywhere on the sur-
face of the inclusion, in accordance with the surface
displacements of equation (13).

As for surface displacements, the sum of a}j'«‘ and the stresses
calculated in Step 1 is asymptotically equal to the net stress
when c is large and €; = od;; + 86,;0;5.

3.3.2 Total Stress Fields for Some Important Cases. For
cases where c is not large or €} # ady; + 86,03, the contribu-
tions o3 are significant. The numerical solutions presented
next were obtained according to the procedures described in
Section 2.

Hydrostatic Dilation. The case of hydrostatic expansion,

€y =8, for a spheroidal inclusion (2= b) is shown is Figs. 5, 6,
and 7. This case may arise, for example, from thermal
02 §C43491
I A ]
o} 20
S -0.2 1.5 1
o _1]%5 1
=\ .
£ 0.9 1
—-04 0.75
o 3 0.5 b
-0.6 1.001 .
0.999 i
~0.8] xa/b=0 ]
I DU I TR FONPSS RSN S S S R
0.5 e ]
0.4r 0.999 AND 1.001 1
= r 1.1 ]
S 0.3} 0.9
P 1.25
£ o 0.75 1
™ 0.2} S
& 1.5
0.1 0.5 oo -
3.0
0 /b=0
I ~x2/b=
e ]
0 R 2
x3/a

as a function of x; for x, =0 and the

marked values of x4 when only the normal tractions t; are nonzero for
the case a = b. Positive t3 corresponds to tractions directed into the half

space x3=>0.
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Fig. 5 The net stress o;; down the x3-axis for the marked ratios cia
when a=b and ej; = &

543686
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Sii/E

X3/e X3/c

Fig.6 The net stress oy as a function of x3 when x4 =0 and x; has the
values marked, for a=b=c and e,‘,- =by

mismatch between inclusion and matrix, inhomogeneous den-
sification during sintering, and phase transformations, e.g., in
phase transformation toughened alloys and ceramics. The
stresses are shown down the x;-axis in Fig. 5 for various ratios
c¢/a. For shallow inclusions (Fig. 5(a)), the stresses are very
nearly uniform throughout the depth of the inclusion. (This
has been found to be generally the case for any transforma-
tions for which 43 =€}, =0). The stress oy, is tensile beneath
the inclusion. As c/a increases, the stresses all become
nonuniform within the inclusion. For ¢/a 2 1.5, the stresses
0y, and o4, switch from being compressive on the surface of
the inclusion to being tensile. This result is significant in the
study of processing inhomogeneities in sintered ceramics.
Microcracking is sometimes found to occur at the apex of sur-
face breaking spheroids of unusually dense material (Lange
and Metcalf, 1983; Lange, 1988). The same phenomenon is
found for inclusions for which a=b. As a/b increases, g,, is
tensile at the surface for lower and lower values of ¢/b, until,
for a/b— oo, the critical value of ¢/b is =0.75.

The stresses throughout and around the inclusion are il-
lustrated in Fig. 6 for the hemispherical case a=»b=c. Bach
curve in Fig. 6 shows a component of stress as a function of x,
for x, =0 and the marked values of x,. Near the interface
(Figs. 6(b) and 6(c)), the stresses vary very rapidly within the
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Fig. 7 Interface stress components ¢,, g9, and o,y resolved into the
coordinates of the interface (see inset) as functions of the angle ¢, for
the case a=b=c¢ and ¢f; = &
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Fig. 8 The net stress oj; as a function of x3 for x4 =0 and the marked
values of x, when a=¢=2b, eﬁ =1, e& = —1, and all other efi are zero
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Fig. 9 The net stress o;; as a function of x5 for x; =0 and the marked
values of x, when a=b=c, ¢y =1, e£ =e§ = ~1/2, and all other e}i are
zero

inclusion. In Fig. 7, stress components resolved in the coor-
dinates of the interface (inset) are plotted around the interface
in the plane x; =0. The angle # in Fig. 7 is defined by x, = b cos
0 and x;=>0 sin 0, where (x,,x;) lies on the interface. The
stresses shown are those within the inclusion at the interface.
Note especially that the shear stress g,4 is nonzero on the free
surface at the interface, but zero elsewhere on the free surface,
as required by the boundary conditions. Since g,, would drive
interfacial failure when the normal stress o, across the inter-
face is compressive, failure in such cases would initiate at the
free surface.

Shear Transformations. Plastic deformation in crystals is
usually volume conserving, which is to say e/, =0 (with the
summation convention for repeated indices). From many
numerical calculations, one induces the important resuit for
such cases that the stress fields are approximately uniform
throughout the inclusion for all @, b, and c¢. For ¢ =1,
e,= —1, and all other components of & equal to zero, typical
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stress variations are shown in Fig. 8 for the case b/a=2 and
c/a=1. Right out to the edges of the inclusion, all stress com-
ponents are approximately .constant. As c/a decreases, the
constancy is even more perfect.

For the transformation strain ¢} =1, e¢= —1/2, é{= ~1/2,
all other components zero, typical stress variations are shown
in Fig. 9. The variations are larger than in Fig. 8, because the
tractions #, are much larger for a transformation strain for
which e,70. But it is still a useful approximation to consider
the stress field uniform in cases where it is already an approx-
imation to consider the inclusion ellipsoidal.

4 Conclusions

Various analytical and numerical calculations of the surface
displacements and stress field generated by a semi-ellipsoidal
surface inclusion have been presented. For transformation
strains for which ¢}, and e}, are zero, general characteristics
(for any a, b, and ¢) include the following:

(1) All components of the stress tensor are zero or constant
on the free surface within the inclusion.

(2) For transformations that are also volume conserving
(€%, =0), and for shallow inclusions, the stress fields are ap-
proximately uniform throughout the volume of the inclusion.

(3) Surface strains or differential displacements are only
weakly dependent on the depth of the inclusion over gauge
lengths comparable to the width of the inclusion when the
depth exceeds the lesser of 2a and 2b.

(4) The shear strain along the interface, when resolved in
the plane of the interface, has it maximum at the free surface.

Analytical results and accurate numerical calculations have
been presented to reveal the nature of the anomalous stress
fields near the intersection of the interface and the free sur-
face. The numerical methods presented are especially efficient
for calculating experimentally observable surface displace-
ments.
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An Exact Transient Study of
Dislocation Emission and its
Effects on Dynamic Fracture

L. M. Brock sgn _gs
wnrsve § INItIAtION
J.-S. Wu Closed-form transient solutions for the micromechanical process of screw disloca-

tion emission from a stationary crack which is subjected to SH-wave diffraction are
presented, The dislocations are allowed to leave the crack edge in arbitrary direc-
tions, either singly or in pairs. Imposition of an emission criterion that is both based
on the dislocation force concept and is similar to criteria applied to quasi-static emis-
sion studies allows expressions for the instants of dislocation emission and arrest
and the distance traveled by the dislocation to be obtained. These expressions are
studied for their dependence on parameters such as emission direction and speed,
and several distinctive dynamic effects are observed. A standard fracture criterion is
then imposed, and conditions for determining whether fracture will precede or
Jollow emission are established in terms of real time. Finally, some estimates for the
orders of magnitudes of the parameters involved in this micromechanical process are
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given.

Introduction

Rice and Thomson (1974), Li (1981), Ohr (1985), and Lin
and Thomson (1985) have discussed fracture and its brittleness
or ductility in terms of the emission of dislocations from the
crack edge. The discussions are generally nontransient,
perhaps reflecting the view (Hirth and Lothe, 1982) that
dislocation motion is sluggish enough to minimize or preclude
dynamic effects. However, Achenbach and Brock (1973) have
shown that important details of fracture under dynamic
loading may not be discernable in nontransient analyses. More
to the point, Brock (1989) has shown that fracture initiation
can be sensitive to the timing of dislocation emission events.

Brock’s work, however, treated only a single dislocation
emitted in the same plane as the crack. The present work,
therefore, extends the transient study of dislocation emission
and its role in fracture under dynamic loading by considering
both dislocations which leave the crack edge in various direc-
tions, and dislocations which are emitted in pairs. This latter
consideration will allow insight into multiple emission
processes.

As in Brock’s (1989) work, screw dislocations and semi-
infinite stationary Mode III cracks in unbounded, linearly
elastic, isotropic, homogeneous solids are treated. There is lit-
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tle inherent additional difficulty in treating edge dislocation
emission from Mode I and Mode II cracks. However, the
associated mathematical solutions for the screw disloca-
tion/Mode III case can be obtained in closed form, which is a
distinct advantage if general physical insight is a major goal.

In the next section, the solution for the basic problem of a
screw dislocation leaving a crack which is subjected to
dynamic loading is discussed.

Basic Problem and its Formal Solution

Consider the semi-infinite crack y=0, x<0 in Fig. 1(a).
The unbounded material containing the crack is at rest except
for a step-stress pulse traveling as a horizontally polarized
shear (SH) wave at right angles to the crack plane. The wave

{(a) (b)

Fig. 1(a) Wave pattern generated by single dislocation emission and
1(b) wave pattern generated by emission of dislocation pair
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reaches the crack plane at s=0, where s=(shear wave
speed) X (time). At s=s5,>0, a single right-handed screw
dislocation is emitted from the crack edge, and travels rec-
tilinearly away at an angle S(0=@< =) with respect to the
crack plane, and with a constant, subcritical speed. The wave
motion engendered by this process is also indicated in Fig.
1(a).

The process itself can be treated as one of antiplane strain,
so that only the out-of-plane displacement w{x,y,s) exists, By
linear superposition, this can be written as ,

w=w,+W,+w, + W, (0))
where (w,, w,) are the displacements which would be
generated by the SH-wave and emitted dislocation if no crack
existed, and (W,, W) are the displacements generated in
order to cancel the (w,, w,)-induced stresses from the crack
surfaces.

The problem involving (w,, W,) has been treated by
Achenbach (1970), and expressions for w, and the stress
generated by W, directly ahead of the crack derived. Brock
(1989) has extended this work and obtained complete expres-
sions for W, itself everywhere. Thus, we have

pW,=7(y—5) ¥))
fors>y,

pW, = —\—7/? ~N(r=x)V(s—7r)

T 2
+ —s<1+ —tan~!
2 T

r—s—x )
Vo (r=x)V(s—r)

1 S—X—r ) (3)
N2 (r+x)N (s—7)

T 2
- — Iyl <1+ — tan~
2 T
fors=r, and
xuW,=7(s— lyD)H(s— lyl) 4
for +y>0,r>s, where
r=~ (4% )
and g is the shear modulus, while 7> 0 is the magnitude of the
step-stress.
The expression for w, can be obtained either by generalizing

results due to Nabarro (1951) or by specializing a general
three-dimensional dislocation loop solution by Brock (1986):

27 cy'N (T2 =1r?)
— w,=tan"! , T=s—s,=zr.  (6a,b
w, =tan Y DT O S—S8, (6a,b)
In Fig. 1(a) it can be seen that
x’ =xcosfB+ysinB, y’=ycosB—xsinf (7a,b)

are coordinates aligned with the dislocation path. In (6a,b), ¢
is the dislocation speed nondimensionalized with respect to the
shear wave speed, i.e, 0<c< 1, while b is the Burgers vector
magnitude.

Finally, by following Achenbach (1970), it is easily shown
that for +y <0 the formal solution

1 aw, dpdq
=W, = T“W LoD =g —tx—py =71

®

exists for W,, where the variables (p,0,g) correspond to
(x,y,s) and the region of integration is delineated by positive
values of the radical argument, and by the location of nonzero
values of the derivative along y =0. These nonzero values are

oW, aw,
¥y
fory=0, —s<x<0and

©)]

572/ Vol. 56, SEPTEMBER 1989

s

oW, 1 Ss dw, fv—§ v+£> N (E-v) o
dy  w(—f)dn, ay \V2 77 2

n—v

1

No = WSO (IOa,b)
for y=0, 0<x<s, where \/2n=s+x and V2f=s—x are
characteristic variables which arise naturally in the solution
process (Achenbach, 1970). The integrations associated with
(8) and (10) are nontrivial but, as indicated by the work of
Brock (1989) can, in fact, be carried out. This is done in the
next section.

Integrations for W,
From (6a) it is easily shown that

2m %y
cb dy
N V(T2 —x2) xcosB—cT (n
- X (xcosB—cT)2 + (1 - c¥)x?sin2B

for all y=0, T> |x!. Substitution of this result into (10)
yields, upon elimination of (£, %) in terms of (x, s) and in-
troduction of the integration variable change N2v=
N2 = u) + 5,1,

x2 OW, N2 Sl (l—u)
cb ady - NxN(T=x) Jo u
u(cos—c) +2¢ du &
[u(cosB—c) +2¢c]? + (1 — cH)u?sin?B (2
u+

T—x

The integration in (12) is over the branch cut 0<u <1 of the
integrand, which itself exhibits simple poles at
—2x " 2¢c
U= N =
T—x
and vanishes as 0(zz~2) when lul— oo, These poles lie off the
branch cut, so that Cauchy residue theory can readily be ap-
plied to give

i z=cosBxi(1—c?sing (13a-c)

oW, aw, L T—x
R Vit + o ( . )
x(1—c—ccosB)—cT B

14

(xcosB—cT)2+ (1 - tsinZB 0 2

for y=0,0<x<s. Substitution of (9), (11), and (14) into (8),
along with the introduction of (£, ) and their integration
variable counterparts vV2u=p+q and V2= p—q, gives the
more explicit result

2 v — M
iLsz—_cSOdv\/(v_ﬂ.i_)S
b o

10 E—v
u-n, (u—v)cosB—c(u+v—2y,)
d”‘/( M—u ) D(u—v)
(15)
) 1 v V=1,
+¥2e(1+)Jeos — 5Sﬂ0 dw(ﬁ)
SMdu (u—v)(1=c—ccosf) —c(u+v—2y,)
v DN (u—v)N (M—u)
where

" D=[(u—v)cosB—c(u+v—2m,)1 +(1 — 2)u—v)2sin?B (16)
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y2

V2u,=V2 - I

, V2M=~/2y

Y .
- 75@_—0)—, N2t =s—r. (17a-c)

The first term in (15) involves a u-integration over the branch
cut n, <u <M of an integrand which exhibits simple poles at

s
Z—C

u=v, u=v+2c (18a,b)
and behaves as 0(x~2) when lul —o0. The complex conjugate
poles (18b) lie off of the branch cut for all 3, <v<wv,, but the
pole (18a) lies on the cut unless v*<v<v,. For the second
term in (15), the u-integration is over the branch cut v<u<M
of an integrand which also behaves as 0(z~2) when lul —oo,
but which exhibits poles (18b) off the branch cut for all
1, <v<v*. Cauchy residue theory can then be applied, and
(15) becomes

2 v
+ —b7i W,,=Re§ °

vt

N2V (z+)dv

o aw < 58 aw sing aw>
T TRy TR «© dy dx
which is evaluated by first choosing x” =c¢7, and then setting
v’ =0 (cf., Dundurs, 1968). Performing this operation in view
of (1) and (6) yields the following expression for the glide
plane force per unit length of dislocation edge:

22)

1 1 (s—cT\ B 2
5 :27\/< T )Cos—z_ ¥ ran™

V(52 — c2T2sin%B) —s + cTcos —i—

wb B(B, c)
4 T
W eV (s=cT)cos % i ¢
(23a)
B 1 c{l+c) , B
B(B, )= N1 -¢?) [1+ 1+ ccosf o8 _2—] (230)

For 8=0, (23) reduces to the expression obtained by Brock

Vi(z=c) (2 =s2)+2V20(zs + ¢ (s, —X) ) +2¢5, (x— ) —2wi(z + ¢)]

N S N2dv
v V[P —(s—V20)?2]

for £y<0, where (£, ) have once again been eliminated in

terms of (x, s), so that now

2 42 _

a2y, = §C—rt—5,(s—x) .
Yo T+x

The v-integrations in (19) can be performed by use of standard
integral tables, with the results that, for alls=7r,

19

(20)

Z+cC
zx—cT+< ) 2
T+x Y

+Ref sin—!
Vi@x—cT)? + (22 — c®)y?]

—sin*‘[ Tx+r? ]
r{T+x)

2x—cT+(z+c)(r—x) ) an)

Vi(zx—cT)? + (2 — 2y
With (21) in hand, the complete solution (1) for the basic
problem is now ideal for purposes of both computation and

analysis. In the next section, this solution is used to examine a
criterion for dislocation emission.

—Re <sin -1

Criterion for Dislocation Emission

Following the precedent set in quasi-static emission
analyses, e.g., Ohr (1985), we adopt the postulate (Bilby, Cot-
trell, Swinden, 1963; Shaw, 1984) that dislocation motion by
glide cannot occur unless the glide plane force can overcome
the lattice friction, which can be identified with the yield
stress.

To obtain the glide plane force, we adopt the Peach-Koehler
scheme (Hirth and Lothe, 1982), whereby the force can be
calculated in terms of stress components evaluated at the
dislocation itself. More specifically, the glide plane force here
involves the glide plane stress
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(1989) for emission in the crack plane. When c¢ is set to zero
while ¢T is allowed to remain finite, the last term in (23a)
reduces to the quasi-static result for dislocation emission in the
crack plane (Majumdar and Burns, 1981). A twofold dynamic
effect is thereby made apparent: First, the dislocation speed,
i.e., ¢, appears explicitly in the term that represents the
dislocation contributions to its own glide plane force. Then it
is the speed which couples the emission angle 8 into the term.
The lack of angle dependence in the quasi-static result is well
known (e.g., Brock and Wu (1988a)).

Brock (1988) argued that ¢7/s,<<1 during the emission
process. That is, the distance c¢T traveled by an emitted
dislocation is small compared to the distance traveled by a
shear wave during the interval prior to emission. Adopting the
same argument here in view of (6b) yields the following ap-
proximation for the right-hand side of (23a):

2 S, 8 wb  B(B, ¢)
TT\/< cT )COS—Z__— 4r cT

Satisfaction of the emission criterion requires that (24) exceed
the value o, where o is the yield stress. Equating (24) with o,
therefore, gives a quadratic equation for the values of v/ (cT)
at which the force drops below the critical level. Because c¢T'is
the distance of the dislocation from the crack edge, this is
analogous to quasi-static results for screw dislocation emission
in the crack plane. Here, of course, as already noted, the equa-
tion includes an emission angle, as well as two essentially
dynamic parameters (c, $,).

The quasi-static results, e.g., Ohr (1985), interpret the
smaller distance obtained from the quadratic as the point
where the dislocation force overcomes resistance to glide,
while the larger distance locates where the emitted dislocation
arrests. Furthermore, the smaller distance must be a fraction
of the dislocation core radius (Hirth and Lothe, 1982), while
the larger value must exceed the core radius. Following Brock
(1989), we also adopt this interpretation and, as a result, are
able to find not only the distance d* from the crack edge at
which arrest occurs, but also the instants (s,, s*) at which,
respectively, emission and arrest occur:

da* o B \?2
N — = (wB)?, so=)\( o= sec—2——> [1
2 *
I
¢

h
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(25a-c)
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Fig. 2(a) Emission instant versus angle at various speeds: single
dislocation; 2(b) arrest distance versus emission angle at various
speeds: single dislocation

Here, h is the core radius, while
T B \? d* ) d* 1 wh
— — =Vl—), A\—— =1, o= —
(7r0 cos 2 ) \/< N A h © 4n  oh
(26a-c)
and the dimensionless parameter A is the aforementioned frac-

tion of the core radius, i.e., 0<A =<1, Substitution of (25a,b)
reduces (26a) to

(\—wB)*=0 27

which is always satisfied. It should be noted that for A=1 the
strict equality in (27) implies that d* = 4, i.e., the dislocation in
essence does not leave the crack edge. For many engineering
materials, u/0~0(10%) and b/h ~0(1), while 7/0~0(10)~! for
a high but noncritical stress level. Equations (25a,b) then
show that d*/h> 1, while simultaneously,

C (et )]

S, o

+\/(_)i7_)] - «1, 2 «1. (28a,0)

a* Sy
The first inequality confirms the assumption made in employ-
ing the approximation (24), while (28b) implies that the
dislocation emission and arrest times are not necessarily
insignificant.

Several other observations can also be made: First, (25)
shows that if N is treated as a specified constant, the arrest
distance is independent of the SH-wave. However, the instants
of emission and arrest vary inversely with the square of 7,
which means that, while the arrest distance would remain
finite in the limit as the SH-wave disappears, the emission and
arrest process would never actually occur. Then, the form of B
shows, as previously implied, a dynamic overshoot effect
through its explicit dependence on c. This effect is especially
pronounced at high (c— 1) values. It should be noted that this
independence of arrest distance and applied loading can also

occur in quasi-static analyses of screw dislocation emission in

the crack plane, as pointed out by Brock (1989).

Numerical Results

To illustrate the behavior predicted by the emission
criterion, we plot in Figs. 2(a,b) the dimensionless ratios s,/b

and d*/b, respectively, versus 3 for various values of c. For -

these plots we choose the dimensionless parameters

574/ Vol.56, SEPTEMBER 1989

b 10 T —0.0001, =% —0.001, A=1.0.

h © ®
That is, the core radius and Burgers vector magnitudes are
equal, the SH-wave step-stress is high but noncritical, and the
smaller value of ¢T corresponds to the core radius itself.

Figure 2 () shows that the time interval between diffraction
and emission increases rapidly both with emission angle and
dislocation speed. In particular, this time is seen to approach
infinity for dislocations which attempt to leave the crack edge
by paths very near the crack surface. Figure 2(b) shows that
the distance from the crack edge at which an emitted disloca-
tion arrests also increases with dislocation speed, but varies in-
versely with the emission angle. Thus, emission on the plane
directly ahead of the crack will occur earlier and the emitted
dislocation will travel farther than on other planes. The varia-
tion of d* with c is clearly a dynamic overshoot phenomenon,
while the variation of s, with ¢ is noteworthy for another
reason: It suggests that screw dislocation emission will occur
first for any 8 when ¢—0. That is, the emission process prefers
in this respect to take place, in effect, quasi-statically.

The magnitudes of the ratios in Figs. 2(a, b) are also
noteworthy: Because typical Burgers vector magnitudes are
0(10~ %) m (Hirth and Lothe, 1982), Fig. 2(&) shows that ar-
rest distances are 0(10~6)m. Thus, this result of the essentially
micromechanical emission process could possibly be
measured, albeit with difficulty. In regard to Fig. 2(a), it is
known (Achenbach 1973) that shear wave speeds for metals
can be 0(10%) m/sec. Therefore, the times to emission shown
in Fig. 2(a) are 0(10-%)sec, which is, again, barely in a
measurable range. Returning to Fig. 2(b) in view of (25¢) and
(28a), however, the results are not as encouraging: The d*/b
magnitudes suggest that the difference between the instants of
emission and arrest can definitely be less then 0(10-9) sec.
Therefore, it may not be possible to distinguish between the
two instants.

(29a-d)

Emission of a Dislocation Pair

To gain insight into multiple dislocation emission, we now
consider the situation shown in Fig. 1(b): When s=s,, two
right-hand screw dislocations leave the crack edge at angles
=+ (3, 8>0 with respect to the crack plane. The solution (1) is
again valid, as are (2)-(4). Simple symmetry arguments show
that the expression (21) for W, need be modified only by af-
fixing the factor 2, while (6a) for w;, becomes

—lw =tan~! oy V(T2 -1
b P X'’ —cT)+ (p')?
” _ 2
ftant YT T>r (30a,b)

x” (x// —CT) + (y//)2 ?

x” = xcos ~ysinB, y” =ycosf + xsinS. (31a,b)

The procedure just described for obtaining the glide plane
force on the dislocation can again be followed and, for the
dislocation which is emitted at angle B, it is easily shown that
(23)-(28) are again valid, with the exception that the definition
(23b) must be replaced by

1 —
BB, )= Vit +¢) [\/(1 c) 2¢ B ]

2
cos
14+ ccosB L 1—ccosB

NS 2
(32)

The general observations made earlier concerning (25)-(28)
are also still valid, so we now present in Figs. 3(a, b) plots
analogous to those in Figs. 2(a@, b): Again, the values
(29a-d) are chosen. Figure 3(b) is similar to Fig. 2(b), in
terms of (B, ¢)-dependence and order of magnitude, although
the arrest distance variation with 3 is more pronounced. In
Fig. 3(a), the emission time dependence on ¢ noted in Fig.
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Fig. 3(a) Emission instant versus angle at various speeds: dislocation

pair; 3(b) arrest distance versus emission angle al various speeds:
dislocation pair

2(a) is preserved, as is the order of magnitude. The S-
dependence, however, is somewhat different: Specifically,
the emission time exhibits a nonzero 8 minimum, so that there
exists for every c a specific value 8>0 for which emission of
dislocation pairs will occur first. Differentiation of (254) with
respect to 3 leads to the equation

A+wB(B,¢)
N+wB(0, ¢)

for this value, where B is given by (32) and (\,b/k) =1 for the
cases illustrated in Fig. 3(a). Equation (33) gives real values
for 8 only if B(0,c) =B (8,c), but it can be shown that this is
indeed the case for either (23b) or (32) for all

O<exl, 0<p<m.

A direct comparison of Figs. 2 and 3 also shows that a pair
of dislocations might well be emitted before a single disloca-
tion which moves at an angle to the crack plane. Moreover, it
is possible for the dislocation pair to travel farther than such a
single dislocation would prior to arrest. It should also be noted
that the conclusion drawn from Fig. 2 is possible in Fig. 3,
too: The emission process prefers, in the sense of minimum
S,, to occur quasi-statically.

1
cos —-— B~ (33)

The Role of Emission in Fracture

We now apply our emission studies to the question of frac-
ture initiation at the crack edge and its characterization: For
purposes of illustration, the stress intensity factor criterion is
adopted. For Mode III fracture initiation, the relevant
dynamic stress intensity factor K; can be obtained from the
definition

3
Ky= 1im V@mx)7,, (%, 0,8), 1y =p —— . (34a,b)
x—0

ay

If fracture begins prior to emission, then from the previous
analysis it can be shown that the fracture criterion has the
form

20/ (—i— s) =K§, s<5, (35)

where Kj is the critical value of K. Solution of (35) for the in-
stant of fracture initiation s, gives

T (U ) 2, 1
= —(2-) Kh<s,, k.= —— K 36a,b
S, ( c So #\/h 3 ( a )

c
2 \2r ‘
where k. is a dimensionless constant. If the constraint in (36a)
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is not satisfied, then dislocation emission occurs before frac-
ture initiation, and the results of the previous analysis can be
used to show that the fracture criterion becomes

2 ub 1 1 B .
27-\/( - T) JGm «/(1+ c>\/T cos —— =Kj
for s<s*+d*, where T/s,>>1. The inequality constraint
simply acknowledges that the previous analysis is not valid
once the signal of dislocation arrest reaches an observation
point. The second follows from the fact that, as can be
gleaned from the sign difference between the two terms on the
left-hand side of (37), the emitted dislocation relaxes the crack
edge stress field. Such dislocation shielding of the crack edge is
a common (Majumdar and Burns, 1981; Thomson and
Sinclair, 1982) effect, and the consequence here is that it will
be some time after s=s, before fracture can begin. Equation
(37) is quadratic in ~/7, and it is easily shown that two real
roots always exist, but that one is negative. The positive real
root gives, therefore, the fracture initiation instant, s, as

) [5G e

SSIAN (b B/ I (e

So=50 T = (27 2 e 2 e
27h 1 2

l \/<1+ ——)]) h<s* +d*.
Tuh c
For the general case u/o~0(10%), b/h~0(1), 7/0~0(1073%) it
can be shown that, indeed, 7/s,>>1.

To further examine the constraint in (36a), we substitute
(25b) and find that the relation

(37

(38)

h 1 B8 o
B—4 x——[—— k, cos —— — ——],o
™ Ven %2 Pl

must hold. Similarly, we find that, for the constraint in (38) to

hold, the relation
V(5

ey L
—«/[—;—(i kc>2 + —%\/<1+ —1—>cos—§—]20 (40)

(39

oh ¢ /27N 2
2 c

must be satisfied.

The constraints (39) and (40) give, in effect, conditions for
the relative brittleness or ductility of the fracture initiation
process: Only those dislocations with (8, c)-values which
violate (39) can be emitted prior to fracture. If such disloca-
tions also satisfy (40), then fracture will initiate prior to the in-
stant at which the crack edge is aware that dislocations have
arrested. These conditions apply, of course, for either single
or paired dislocation emissions, depending on the choice of
the function B. In fact, it is easily shown that the two func-
tions are equal only if 3=, and that B defined by (32) exceeds
that defined by (23b) for 0<f < =. This implies appropriately
that brittle fracture is more likely to initiate prior to emission
of dislocation pairs than prior to single dislocation emission.

More generally, the equations in (36a) and (38) and the con-
straints (39) and (40) demonstrate again (Brock, 1989) that
fracture initiation can be characterized in terms of the timing
of various events. Finally, it should be noted that the orders of
magnitude obtained for (s,, s*), i.e., the instants of disloca-
tion emission and arrest, imply that, unless fracture initiates in
a time interval of 0(10~°) sec after diffraction occurs, not only
will it then initiate after emission, but after the crack edge is
aware of dislocation arrest.

Brief Discussion

This work extended earlier results in the transient analysis
of dislocation emission from dynamically loaded cracks. The
particular problem of single and paired emissions of screw
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dislocations at constant speeds and in arbitrary directions
from a crack subjected to SH-wave diffraction was treated,
and closed-form solutions given. An emissions criterion based
on the dislocation force concept was adopted from quasi-static
emission analysis. The transient nature of the analysis in-
creased the robustness of the criterion, however. First of all,
the force itself was found now to depend explicitly on disloca-
tion speed and, precisely because of the speed dependence, to
also be more sensitive to emission angle values. Secondly, the
~ criterion yielded not only formulas for the distance traveled by
the emitted dislocation to arrest, but the instanis of emission
and arrest as well. These formulas generally depended on
dimensionless parameters related to the SH-wave stress, the
dislocation speed, the dislocation core radius, the Burgers vec-
tor magnitude, and the angle of emission.

Numerical calculations indicated that a single dislocation
would most likely be emitted in the crack plane, whereas a pair
of dislocations would leave the crack at optimum angles. The
calculations also demonstrated that single dislocation emission
will generally but not always occur before emission of a
dislocation pair. Finally, the calculations showed that the ar-
rest distances and emission times are both small, reflecting the
micromechanical nature of the emission process, but not
necessarily insignificant. On the other hand, it may be difficult
to distinguish between the times of emission and arrest. The
arrest distances, it should also be noted, would give insight in-
to the extent of the dislocation-free zone (Thomson and
Sinclair, 1982) around the crack edge.

This work also considered the role of dislocation emission in
fracture. By using the same analysis and a standard critical
stress intensity factor fracture criterion, formulas for the in-
stants of fracture initiation were obtained for both emission-
free and postemission situations. These instants were
associated with constraints which in effect, provided condi-
tions for assessing the relative brittleness or ductility of the in-
itiation process. Furthermore, the aforementioned magnitudes
of the instants of dislocation emission and arrest suggested
that, unless fracture initiation occurred less than 0(10-%) sec
after diffraction, it would occur under the influence of both
moving and arrested dislocations.

In summary, then, the transient nature of the analysis gave
additional insight into the emission process, chiefly by allow-
ing the derivation of actual times of events. Interestingly
enough, it was the study of one, the emission instant, which
indicated that the emission process prefers to occur quasi-
statically, as a series of single events, and in the crack plane.
Thus, screw dislocation emission studies such as that by Ohr
(1985) may be sufficient for gaining insight into nontemporal
parameters. This and the other results obtained here suggest
that, in fact, the emission instant might be adopted as part of a
more complete emission criterion in future work.

Such future work is now planned to relate emission to crack
extension, and some preliminary efforts using approximate
transient solutions (Brock and Jolles, 1987) and treating
preexisting dislocations (Brock and Wu, 1988a) have already
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been made. Moreover, the analysis and physical insight de-
vised here is currently being extended to studies of edge
dislocation emission from Mode I and Mode II cracks: One
preliminary result (Brock and Wu, 1988b) suggests that the
quasi-static emission process is not necessarily preferred for
the edge dislocation case.
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Elastic Yield Zone Around an
Interfacial Crack Tip

A closed-form approximate solution for a small-scale yielding (SSY) plastic zone
around a planar interfacial crack tip, occurring between two dissimilar ideally-
bonded elastic half spaces, is obtained by equating the elastically-calculated Mises
equivalent stress with the material yield strength, oy. The dimensionless parameter

Edward ZVWicZ1 £(0), which is defined as {(8) = « K+ elnr, (8), where <K is the phase angle of the

Mem. ASME complex stress intensity factor K, e is the bimaterial constant, and r, (), is the polar
representation of the plastic zone radius, naturally arises. The SSY interfacial load

David M. Parks angle (ILPA), defined as {y= K+ eln(KK/o? wcosh?(we)), leads to periodic
Mem. ASME zone growth. The ILPA characterizes the overall applied load phase by combining

the oscillatory radial phase shift, attributable to the increase in zone size due to
increased loading, with XK. At a particular angle 8, from the uncracked interface,
the plastic zone radius thus calculated is independent of <X, proportional to KK,
and has no oscillatory radial phase dependence. The derived plastic zone expression
reproduces the shape characteristics, and it modestly reproduces the zone size when
compared with solutions for an elastic/perfectly-plastic solid adjoint to an elastic
solid. As the strain-hardening exponent in the plastically deforming medium
decreases, agreement between the approximation and various accurate numerical
solutions improves. In the limiting case when €= 0, the well-known homogeneous
elastic solutions for pure Mode I and Mode II are recovered, as well as all possible
mixed-mode combinations. Approximate validity conditions for the existence of
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Williams-type asymptotic fields (traction-free crack faces) are presented.

1 Introduction

Much effort has recently been focused on interfaces which
exist between dissimilar media, with specific attention being
directed toward media separation or fracture events. Publica-
tions on the subject, such as Shih and Asaro (1988), Hutchin-
son et al., (1987), and Rice (1988) clarify several aspects of the
oscillatory stress solution originally obtained by Williams
(1959) for an interfacial crack, and aim to apply or further ex-
tend traditional (homogeneous) fracture mechanics ap-
proaches to interface cracking phenomena. Elastic interfacial
crack-tip fields between isotropic media are well character-
ized, although only a limited number of geometries have had
their stress fields and stress intensity factors solved exactly.
Ting (1986) has presented a rigorous framework for determin-
ing the degree of singularity and the asymptotic characteristics
for the general interfacial crack between two anisotropic
elastic materials. When nonlinear material responses are in-
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cluded, no explicit unifying characterization presently exists to
unite the various fracture parameters. However, dimensional
analyses by Rice (1988) and by Shih and Asaro (1988) lead to
symbolic functional relationships consistent with the present
results.

Insight concerning contained crack-tip inelastic deforma-
tion zones (in the small-scale yielding, SSY, sense) can be ob-
tained by considering the characteristics contained within the
elasticity solution. One approximate method which has been
used to determine the plastic zone shape and size around a
crack tip in a homogeneous medium is equating the elastically-
calculated Mises or Tresca equivalent stress with the yield
strength of the material (McClintock and Irwin, 1965; Rooke,
1963). The locus of all points satisfying this condition is con-
sidered to be the plastic zone boundary which separates the ex-
terior elastic region from the interior plastically-yielding
region. The changes in plastic zone size and shape, with
respect to the applied load or stress intensity factor(s), can
then be estimated from this expression.

The goal of this work is to present a closed-form approx-
imate plastic-zone solution for an interfacial crack between
isotropic linear elastic media, and propose various dimen-
sional and dimensionless quantities, which naturally arise in
the derivation, as interfacial fracture parameters that uniquely
characterize the interface crack-tip region. Comparisons are
made between the approximate solution and various precise
numerical solutions to demonstrate its accuracy. Conditions
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which approximately determine the validity of this expression
will be stated.

2 SSY Plastic Zone Approximation

The problem considered is a planar interfacial crack, as
shown in Fig. 1, whose constituents have shear moduli
u; (=1, 2) and Poisson’s ratios »;. (Subscripts 1 and 2 refer to
the upper and lower domains, respectively.) Far field loads
produce a local elastic stress field which is well characterized
by the complex stress intensity factor K and associated asymp-
totic interfacial crack-tip stress fields. Following Hutchinson
et al., (1987), the stress intensity factor is defined such that, as
r—0on6=0,0,, + ioxy—*Kr"f/\/fvr‘r. For the interfacial *‘Grif-
fith’’ crack configuration of length 24, this definition for K
differs from Q, the “‘stress intensity vector’’ given by Shih and
Asaro (1988), by the complex factor e~n2?; K= Qe /2,
(See Rice (1988) for calculated examples of K for various
geometries and for the interfacial stress fields.)

The bimaterial constant, e, which modulates the stress and
displacement oscillation period, can be defined as

Ky 1
G+

1 "y %)
In @ ————

2w (K2+1)

H2 13
where k; =3 — 4y, for plane strain and «;=(3—;)/ (1 +»)) for
plane stress. We note in passing that Dundurs (1969) has
shown that elasticity solutions to problems of this class depend
functionally on only two dimensionless functions of »;, »,,
and p,/u,. The second of these parameters, §,, can be ex-
pressed as

_ pi(a — D) —py(k; — 1)
pi(y + )+ gk +1)
Thus, the bimaterial constant e can also be expressed in terms
of B,; e.g., 2me=1n[(1—-B,)/(1+3,)].
The general stress field for an isotropic elastic solid can be
represented by the Muskelishvili potentials (Rice, 1988)

Ot 0y = 2067+ 6]

2

(2)
and
Oy — Oy +120,, = 2[(Z—2)¢" —¢'+Q']. 3)

Retaining only the dominant asymptotic term as r—0, the
plane-strain elastic potentials in the upper domain are

b/ ©)

aoe—‘lrsz-—‘/z—ie

and
(5)

Using (2)-(5), an expression for the Mises equivalent stress in
region 1 can be obtained. (Appendix A contains the complete
general series potential functions and formally calculates the
Mises equivalent stress). Equating the Mises equivalent stress,
0, in (A27) with the material yield strength, o,,, and solving
for the radius yields

Ql/ = doewez—‘/z+ie,

X
Mz Va
Fig. 1 Schematic interfacial crack tip
where
DEV%—VI-H, @)
and
$(0)= 2K +elnr,(0). )

Here 0 is the angle measured from the interface, r, () is the
plastic zone radius from the crack tip, and «K is the phase
angle of the (complex) stress intensity factor defined with a
branch cut at 8=a such that 7> |2Kl. (zK=arc-
tan(GK/%K), which in the homogeneous case, ¢ =0, reduces to
« X =arctan (K, /K,).) For plane stress conditions, (6) and (8)
are still valid; however, (7) is redefined as D=1 and the plane
stress value for e must be used.

This approximation is valid only when a dominant elastic
crack field exists and the maximum extent of the plastic zone is
small compared to crack length (L) or other characteristic
dimensions (maximum r, <<L). Further clarification will be
stipulated in Section 3.4.

3 Discussion

3.1 Mathematical Considerations. Several interesting
mathematical features arise from (6). Foremost, the dimen-
sionless {(#) is naturally obtained in the derivation. It
removes the dimensional problems associated with assigning
length units in K definitions (Rice, 1988) since {(6) is invariant
provided r,(6) and K are evaluated using the same length
units. Recall that the generic K can be expressed as

K=0®Ce Lz, ©

where ¢ is a complex number (with dimensions of stress)
representing the far field load, C is a dimensionless complex
geometric constant, and L is the characteristic length dimen-
sion. Examination of (9) reveals that when different length
units are used to express L, the < K changes. Equation (9) can
be rewritten as

K=lg=ll x IClle!t¢—dnli/7, (10)
where | || denotes the magnitude of a complex expression,
¢=20"+ 2C, (11)
and
2K=¢—clnl. (12)

Substituting (6), (11), and (12) into (8) produces

2cos(0+2¢(8)) [(—%Q— 1)e25(9"”) — (2esing + cosf))]

3KK

=X
5 (8) o§,387rcosh2(7re)

+ 826(770) .
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+e¥0-m [(Zesine +cosf)?+2 (—3— — l)] ,

4D ©

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



100
w
o
)
~
Sh]
2 L
S
=3
x
r v=0 to .5 in increments of .1 1
O||||1|J||I|-n||||||[‘|.|4||||l |||||||||
-0.10 0.00 0.10 0.20
€

Fig.2 The angle 6; Is shown for plane-strain conditions over the com-
plete range of ¢ for various values of » from 0 to 0.5 in increments of 0.1

8) = -1nL+1{__——__ 8,e,D,¢(6 } 13
{(0)=¢—¢ €ln azyswcoshz(we)g( e,D,5(6)) (13)
where g(0, ¢, D, {(6)) is a nondimensional function. Using
(10), KX can be expressed as

KK = o™ 12 x ICl2aL. (14)

Furthermore, (13) can be rearranged and simplified by using
(14), reducing to

L b o biran).

£(0) =¢+2€ln{ o,-cosh(re) (15)

From (15), it is clear that {(6) is dimensionless and indepen-
dent of length units used to express K. This is true as long as a
single length measure is assigned to all L used when evaluating
Kin, e.g., (10).

For a wide range of engineering interface material proper-
ties, an angle 6, exists for which the coefficient

4D
(——3— - l) e2(0—m) . (2¢sinf + cosf),
which multiplies cos(f + 2¢(8)) in (6), is identically zero. Thus,
when 0=0,,
( 4D

=5~ l)eZ‘("O ~™ =2esinf, + cosy. (16)

Figure 2 shows the plane-strain ,, numerically obtained from
(16), for various » from 0 to 0.5 for the complete range of e,
assuming non-negative » in each material. Note that, 6, is
generally not the same for plane-strain and plane-stress condi-
tions since, under each condition, ¢ and D have different
definitions, The existence of 6, indicates that radially, at angle
0,:

(a) Plastic zone growth is independent of the applied
loading phase, -2K.

(b) The elastically-calculated Mises equivalent stress does
not oscillate. _

(¢) The plastic zone radius is proportional to KK.

Substituting (6) into (8), and defining the SSY interfacial
load-phase angle (ILPA), {;, as

KK
=,K+d {M} 17
fo= < K+eln o’ mcosh?(we) 17

vields

2.0 e
- €=.170 u=.3421

y (0,8 mCosh®(em))/KK

x (o, mCosh®(em))/KK

Fig. 3 Approximate plastic zones for various {, values

Equation (18) reveals that {(8) can be additively decoupled
into a load-phase dependent quantity, ¢,, and a transcendental
angular dependent function. Alternative definitions of §, dif-
fering trivially by a pure constant, are possible. Such a con-
stant could be chosen, e.g., to approximately normalize the
angular function to unity. Equation (17) is a convenient ex-
pression for the SSY ILPA since it is an explicit single term
representing the total load-phase angle and is common in all
$(0). The ILPA totally describes the phase angle of the load
by summing the loading phase shift, which is attributable to
the change in zone size due to increase in loading, and the
load-phase angle ( 2« K).

Shih and Asaro (1988) have independently defined a related
load-phase parameter, &, for elastic-plastic analysis of inter-
face cracks. Under small-scale yielding conditions, it can be
shown that the current load-phase parameter, {,, is related to
the parameter £ of Shih and Asaro by

to =& — In(wcosh2(we)). (19)

In view of the weak dependence of (19) on ¢ over the practical
range of interface elastic constants, {, and ¢ are effectively
identical parameterizations of mixity for interface cracks.

Another expression of interest is obtained by evaluating the
plastic zone size at § =6, in which case, using (16),

3KK 209 — 7) [ < 4D > 2e(60 — %)
8p)=————— —=—1}e
7p (60) 0% 8wcosh?(me) € 3

— &€l -, 2
o % )] . (0)

This entity may prove to be useful in investigating the effects
of various material and loading parameters, since it does not
contain any radially oscillatory terms and is insensitive to load
phase.

3.2 Zone Growth Considerations. From the previous ex-
pressions, the overall plastic zone growth characteristics with
respect to increasing applied load (K) during SSY can be
outlined. After sufficient initial loading has been applied to
produce a continuum size plastic zone, the expressions for 7,
become valid and applicable. Examination of (6) and (18)
shows that zone growth is quasi-proportional to (KK/c%),
and that the zone shape periodically repeats itself with every =
increase in {,. For (very) large cracks, it is possible that the
plastic zone may repeat its shape during loading. For every

2cos(0+2¢5(6)) [(43—1)— 1) 925(""”) — (2esinf + cosﬂ)]

4D

C@)=¢+eln < —
+e25(7r'—9)
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+ g2etf-m) [(ZGSinG + cosf)? + 2 (—3— - I)J

(18)
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discrete value of {,, a unique zone shape and a unique set of
tractions exists along r,, (9). Figure 3 shows the plastic zone at
various values of {, for e=.170 and »=.342. This suggests
that {, uniquely describes the very local crack-tip fields within
the zone as long as all previous loading experiences affect the
current plastic state in the same manner. For the loading case
where cycles of {, have occurred, this would appear to be true.
Since two loadings with unequal tractions can produce iden-
tical plastic zones, (e.g., { =90 deg and {, = — 90 deg produce
tractions with opposite signs), a full 27-evaluation of ¢{; is re-
quired to determine all the local fields.

3.3 Comparisons. In the limiting homogeneous elastic
case (¢ =0), comparison with numerical solutions (Shih, 1974)
indicate that the plastic zone shape and size for pure Mode I
and Mode II, as well as for various mixed modes, are
recovered. Comparing the approximate homogeneous plastic
zones with plastic zones numerically obtained for strain-
hardening material shows that as the strain-hardening expo-
nent, n, increases (strain « (stress)”), the elastic approximation
overestimates the plastic zone size behind the crack tip and
underestimates it ahead of the crack tip. This is accompanied
by slight distortional effects which tend to rotate the strain-
hardening plastic zone lobes toward the region in front of the
crack as compared to the elastic approximation.

Figures 4 to 7 show finite element (FE) calculations of SSY
plastic zonmes for an interfacial crack tip with an
elastic/perfectly-plastic medium adjoint to an elastic medium
(Zywicz, 1988), and the approximate plastic zones for several
values of €, v, u;, and « K. Although the precise shape is not
reproduced, the general size and distribution of the lobe(s), as
well as their position(s), are well represented by the simple ap-
proximation. An examination of Fig. 5 shows that the size
scale is significantly different from that of the other figures,
demonstrating the accuracy of the approximation in
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predicting overall size. Figures 4 to 7 represent the worst case
comparisons since perfect plasticity formally represents a
strain-hardening exponent of n=oco. The jaggedness of the
finite element calculated plastic zones is attributable to ex-
trapolation/approximation errors and mesh discretization.
Thus, the jaggedness should only be interpreted as an artifact
of the discretization and plotting procedure. Figures 8 and 9
show FE calculations of plastic zones for a deformation
theory Ramberg-Osgood strain-hardening material, with
strain-hardening exponents n=3 and n= 10, respectively, ad-
joint to a rigid material (Shih and Asaro, 1988), and the ap-
proximate plastic zones for several load levels. These FE
calculations were performed for a Griffith-type crack, similar
to the one shown in Fig. 11, with e=.0935, L =2¢=2m, and
vy =.3, where the stress intensity factor for the geometry and
loading is K =1.803 ¢®¢%1201i(m)": -0.0935/ Here ¢* represents
the remote stress normal to the crack face (the o,, stress com-
ponent, as shown in Fig. 11), and ¢, is the reference (or yield)
stress. The FE plastic zone has been defined as the locus of
G=0,. The overall sizes and shapes are well characterized by
the (asymptotic) approximation. As in the homogeneous case,
when the strain-hardening exponent is decreased, the elastic
approximation becomes more precise. (Recall, the Ramberg-
Osgood material idealization produes a linear response for
n=1.) Although the plastic zone radii are not all identically
the same at 6, the extent of the plastic zone in the vicinity of
0, is indeed approximately the same for all loadings ({;).

3.4 Valid Solution Domain. The plastic zone approx-
imation is based upon the assumption that a dominant
(Williams type) field exists, as defined in (4)-(5), near the
crack tip and transitionally along the plastic zone boundary.
This section develops a methodology, based upon exact
elasticity solutions for a Griffith crack, for determining ap-

. proximately when such a Williams-type field exists, and thus

defining the valid domain for the characterization of the

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


file:///-/s~

L e e LIt A B Mttt B S B R B

T
Approx. FE (n=3)

[ 0°/0,=2.0x10™* ¢,=—1.53

i ]
S ]
X 150 K » .
> t ¢ /c,=6.0x107° ¢, ]
K _ 0" /0,=2.0x107" ¢ =—. ]
% 100 4
2 i ]
Q I A

050 LT s ]
w + 7 //.‘ 4 ]
B / Lo 1
R ! oyt :

! R
;\ 0.00 L L by | S h
-1.00 0.00 1.00

x (0,2 mCosh®(me))/(KK)

Fig. 8 Plastic zone comparison between the elastic approximation and
a finite element solution for a strain-hardening material, n = 3, (Shih and
Asaro, 1988) for varlous {g; K = 0™ 1.8025601201 ()2 —0.0935i - 0935,
v=.3

)

|§ L LA S S S S St S Ay B S B D
Approx. FE (n=10

X 0l 07/0.=20x107 ¢,=-153 PP ( ) ]

> 07/0,=6.0x107" ¢=—896 ~vo--o- ommeeess ]

K 0°/0,=2.0x107" ¢,=-241 ~-T7° TToo= ]

O oo}

%]

)

)

& 0.50 -

LI [

<

5 0.00 i

0.00 1.00 2.00
x (o mCosh®(me))/(KK)
Fig. 9 Plastic zone comparisons between the elastic approximation

and a finite element solution for a strain-hardening material, n =10,

(Shih and Asaro, 1988) for various {o; K = ¢ 1.8025¢%-1201}
(m) "2~ 009351 . - 0935, ,=.3

plastic zone in terms of {,, K, and material parameters.

In examining the exact elasticity solution for an interfacial
crack between two semi-infinite media (Rice and Sih, 1965),
the stress potentials can be additively decoupled into singular
terms and homogeneous far field terms, and reduced to obtain
the dominant asymptotic potentials. Consider ®, the ¢ stress
potential for the Griffith crack, given by Rice and Sih (1965)
which is,

(z—i2ea) ( z+a )iﬁ o5, —io%,
N A 1+ g2
&= @1
+ aj’&] +03, _ asy ( a5y Zulw‘}“)
4 1+e% 1+e*™ 14k

Here the crack tips are located at z= +a, and ¢ is the far-
field rotation in Region 1. In the region near the crack tip, the
stress potential can be represented by the first line of the right-
hand side of (21), namely

_ (z—102ea) / z+a \*
q)"’q)near—P[ \/27_—02 ( i—a > ]a (22)
where
_ o5 —io%,
P= 1+ e?me (23)

To obtain the asymptotic potential, substitute z=ae+x in to
(22) and assume lxll < a, yielding

a(l—i2e) /2a\* _ xTle 1
asymp. 2ax X V2mx 1+e
Using (A423), (24) can be shown to be identical to (4).
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Fig. 10 Crack face interpenetration is shown as a function of { and «,
for plane-strain conditions

ay,=1 MPa
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2a=.0508 m
O xx-2™ 1080 Steel ™ Oxx-2
Ma: Vo
b =1 MP
Oyy= a
Fig. 11 Geometry for a Griffith-type interfacial crack

By considering one potential of the exact elasticity solution
for a Griffith-type crack, (21), an error parameter can be con-
structed which represents the discrepancy between the exact
solution and the (Williams-type) dominant asymptotic solu-
tion, (4)-(5). Normalizing (24) by (22), which is the singular
portion of (21), yields the asymptotic norm

®

N=_2yme. (1 +_i?._> o (1+R)V2-ie
D oear 0.5—1ie

(25)
Here X =x/2q is the normalized distance with respect to crack
length, and N represents the portion of the singular potential
term represented by the asymptotic potential, given by (24).
Evaluating (25) along the interface at ¥=0.1 yields N=0.874
for e=0, while the extreme values e= 0.1748 (positive »),
N=0.889e=004 For all ¢, as ¥—0, N—1. This, in conjunc-
tion with the previous observations, indicates that the asymp-
totic expression reproduces the singular term reasonably well
over the entire domain where the singular potential term
dominates. (From (21), it can be shown that at ¥=0.13, the
singular term contributes to the total stress potential an
amount, equal in magnitude, to that of the homogeneous
term. For |¥! <0.13, the singular portion dominates.)

Based upon the previous discussion, the asymptotic
representation, (4)-(5) or (24), is representative in the crack-
tip region where
=r=0.

10

Here, L is the characteristic dimension. (Note, a slight
modification has been made for convenience, and that is to
limit the domain to L/10 instead of L/8). Such a conclusion is
also typical of homogeneous crack solutions.

A second condition must also be satisfied if (4)-(5) are to

(26)
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represent the actual dominant asymptotic behavior; namely,
that any perturbations within the dominant asymptotic solu-
tion domain must be small compared to that domain and oc-
cur near the crack tip. Using a St. Venant’s-type argument,
this can be expressed mathematically as

3L

100

Such perturbations could include plastic zones and crack face
contact and interpenetration, if present. (Note, Williams-type
fields, (4)-(5), are based upon the condition that the crack
faces are traction-free.) Equation (27) represents a very con-
servative restriction and, depending upon the actual condi-
tions, it may be appropriate to relax it somewhat.

The asymptotic relative crack-face displacement (CFD), Au,
as a function of r (Hutchinson et al., 1987) is

(Cy + C)KrieVr
M@ =u(rf=m—-u(rf=—-1)= ,
u=u(rf=m-nlr ™) 2327(1 + i2€)cosh(me) o8

r 27

perturbation .. =

where
(29

and C; are defined according to (47). Following (424), {is in-
troduced and is defined as

u(r)=u,(r)+iu.(r),

{= 2K+elnr. 30)
Substituting (30) into (28) yields
CHIKIVre®
Au(r) = Cit COIKINre G1)

2V/27rcosh(me)(1 + i2€)

Crack-face interpenetration occurs when Au, <0=RAu<0,
or when

cos{+ 2esin{< 0. (32)

The critical values {;, the beginning and ending points of in-
terpenetration, occur when

cos{; + 2esin{; =0 (33)

or,

tan{; = ——. (34)
2¢
Note that for the homogeneous case, the condition
represented by (32) occurs any time a negative K is applied.
The previous conditions on r, (26) and (27), coupled with
the oscillatory crack-face behavior, can be restated as valid
solution domain conditions in terms of ¢ (via (30)), K and
material parameters. Thus, Williams-type fields, (4) and (5),
will exist transitionally along the plastic zone boundary if and
only if

. E>0 g.OSg‘S-{max
cos{+ 2esing >0 (35)
<0 (==&
and
KK =<.03L (36)
ot wcosh?(me) ~
where
Cmax = < K+ €eln(L/10). (37

The condition described by (35) requires that no crack-face
contact or interpenetration occurs between the plastic zone
boundary and the maximum valid extent of the dominant
asymptotic field. It also assumes that the size of the plastic
zone along the crack face can be approximated by the
characteristic length, KK/ azys*lrcoshz(we). Figure 10 shows for
plane strain the values of {, as a function of ¢, which will not
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produce crack-face interpenetration. In order for (35) to be
true, both {, and {..,, as well as the entire path which con-
nects them, must be in the unshaded region of Fig. 10. Note
that for e=0 (homogeneous case) the admissible range is
[ < w/2, corresponding to K, > 0.

Expressions (35)-(37) are necessary, but not sufficient, con-
ditions for a Williams-type field to exist. Crack closure
beyond L/10 is possible and must be ruled by other considera-
tions, such as global geometrical and loading factors, or by
other solutions. However, for a (remotely-loaded) Griffith
crack, Comninou and Schmueser (1979) showed that crack
closure is continuous from the crack tip outwards; thus if
closure exists beyond L/10, it will also occur within L/10 (with
respect to one crack tip). Henceforth, (35)-(37) are also suffi-
ciently validity conditions for a Griffith-type crack.

4 Conclusion

An approximate expression for the plastic zone around an
interfacial crack tip in small-scale yielding has been presented.
It modestly reproduced the characteristic size and shape, as
compared to various precise numerical solutions, with increas-
ing accuracy as the strain-hardening exponent approached
unity. The overall crack-tip plastic zone size was found to be
quasi-proportional to (Kl_(/ozys). Plastic zones were found to
change shape with applied load in a periodic manner depen-
dent upon an interfacial load-phase angle (ILPA), . The
IPLA was identified as a comprehensive single load-phase
angle which determines the zone shape and tractions along the
zone boundary, and which may serve as a parameter uniquely
characterizing the fields within the zone. Approximate condi-
tions for determining the applicability of this expression were
stated in terms of {, and ¢{.,, where {.., is dependent upon
the characteristic length in the problem.

From the previous derivations it appears that the ILPA (&),
€, (possibly »), and the magnitude of K (expressed as KK or J,
where J is the J-Integral), are the local interfacial fracture
mechanics variables needed to describe interfacial SSY
behavior. Following homogeneous fracture mechanics, it
seems natural to construct interfacial fields analogous to HRR
or slip-line fields, utilizing the same material idealizations and
similar framework, but with the degree of local (plastic) mode
mixity being now dependent upon ¢{;. Using {, and J as
loading conditions describing the SSY plastic zone boundary,
the characteristics deep within the zone should be identifiable.

In order to familiarize readers with the application of these
concepts to interfacial fracture mechanics, a hypothetical ex-
ample is included in Appendix B. It demonstrates how to
determine various local crack-tip quantities.
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APPENDIX A

Mises Equivalent Stress Derivation

An asymptotic expression for the Mises equivalent stress
around an interfacial plane-strain crack tip, as a function of »
and 6, is derived.

The general series potential functions for an interface crack,
as expressed by Rice (1988), are

b = e ™z f(2) +2C8(2)/ (C + Cy), A1)
B; = €™z f(2) +2C,8(2)/(C, + Cy), (A2)
Q] = emz7"Hief(2) —2C,8(2)/(C) + Cy), (43)

and
Q = e "z Vrif(2) —2C,8(2)/(C) + Cy), (A4)

with
f(z) = ni()anz”, (A45)
g(z) = ib,,z" (A6)

and "

Ci=(1+«;)/u;. (A7)

Here p; are the shear moduli, «; =3 — 4y, for plane strain and
k;=(3—v;}/(1+v;) for plane stress, »; are the Poisson’s
ratios, and the subscripts 1 and 2 refer to the domains above
and below the interface, respectively.

From (2) and (3), the individual stress components can be
expressed as

1 _
Oy = 5 (B+B), A48)
1 -
Gy = ?(A +A), A49)
and
—i ~
Oy = T(A_A)y (A10)
where

Journal of Applied Mechanics

A=(Z-2)¢"+"+Q, Al
and
B=2¢'+¢' Q' —(-2)¢".

Here i=+ —1 and a bar denotes the complex conjugate. For
plane-strain isotropic elastic solids, the Mises equivalent stress
is .

(A12)

8% = (0% + 0%, )D + (0,,0,,)F +30%,, (A13)

with
D=yt—p+1 (A14)

and
F=22-2yp—1, (A15)

where » is the Poisson’s ratio of the solid. For plane-stress
isotropic elastic solids (A413) is still valid, but (414) and (A15)
are redefined as D=1 and F= -1, respectively. After
substituting (48)-(A10) into (413) and doing some complex
algebra, (A13) is written as

1 B} _
== R((D~IAA+ (D+3)AA + DBB

+DBB + FAB+FAB). (Al6)
Further simplification is obtained by using (4A11) and (412),
so that (A416) becomes

o> = R{3(E—-2)(z2—2)¢"d" —6(Z~2)p" ' +6(Z—2)p"Q’
+(8D—6)¢p’'¢p’ +(BD—-3)p’ ¢’ +30'Q" —60'¢" ).

The asymptotic potential functions for the upper domain,
(4) and (5), are obtained by considering the dominant term in
(A1) and (A43) as r—0. At this point attention shall be focused
upon the upper domain since the lower domain solution is ob-
tainable by substituting —e for e. Differentiating (4), using
z=re", expanding out (4) and (5), and defining

(A17)

J=a,rk, (A18)
we obtain
¢{=gee(0—w)e—iﬂ/2r—l/2’ (A19)
) 1
¢1”=ge6(0_1()e_’30/2r_3/2(_—'E_ie), (AZO)
and
Qf = Jestr=0 g=0/2p= %, (421)
Substituting (419)-(421) into (A17) yields
1 .
32 =—;‘$R {GII(—3—i6e)e P —1)—6
+ 2= (8D — 6)(cosh — i sin )]
- 3
+ ggle**=m(1 —cos20) (—2—-— + 6e2)
_eze(o—ﬂ ( . i6e)(e_i20 _ 1)
+ %=1 (8D —3) 4 327 =07}, (A22)

The constant g, is related to the complex stress intensity factor
K (Rice, 1988) via

K

" V2mcosh(me) (423)

oy
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Defining { as

{= 2K +elnr, (A24)
and using (A418), we find
53 = M(cos%‘— sm2§), (AZS)
and _
KK
= A26
9= 8mwcosh?(we) ( )

The complete expression for the Mises equivalent stress is ob-
tained by substituting (425) and (426) into (422), and can be
expressed as

The stress intensity factor for the left-hand crack tip is the
same as for the right-hand crack tip because the applied load is
symmetric (o,, =0). Substituting in for the numerical values
0,, =1 MPa, ¢=0.03373, and 2¢=0.0508 m yields,

K=.2831e" 0.03315/ MPa(m) V2 —-0.03373/ .

Using (17), the ILPA is {, = —.33982 radians (-— 19.47 deg).
The characteristic plastic zone length KK/ o -wcosh?(me)
=1.577%x 1075 m. Evaluating (36) mdxcates that the
characteristic plane zone length is sufficiently small compared
to crack length. (Alternatively, from (6), (17), and (18) the
maximum size of the plastic zone is 8.88 X 10~®m and occurs

2cos(8+2¢(9)) [(—D—— 1) o2~ _ (2esing + cosﬁ)]

" 3KK
= — X
r8mwcosh?(re)

+ e25(7r~9)

APPENDIX B

Interfacial Crack Example

A detailed hypothetical example demonstrating the pro-
cedures to characterize a plane-strain interfacial Griffith-type
crack between 1100-O Aluminum and 1080 Steel is presented.
The geometry considered is shown in Fig. 11, and the material
properties are listed in Table 1. From (1), e=.03373. For this
geometry, with the appropriate o,,, imposed such that the in-
terface remains stralght the stress intensity factor for the
right-hand crack tip in terms of the far-field stresses is (Rice,
1988)

K=(0,, +i0,,) (1+2¢)(2a)""*/7a.
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4D
+ @2e(8—m) [(Zesine +cosf)? +2 (T - 1)]

(A27)

at =122 deg. Comparing r, to the crack length gives,
r,/2a=1.748x10~*.) From (37), {max = — -2113 radians
(— 12.11 deg). Checking (35) indicates that no crack face in-
terpenetration is anticipated. Thus, at this loading all the SSY
conditions and the assumption of no crack face interpenetra-
tion are satisfied.

Table 1 Material properties for 1100-O Aluminum and 1080
Steel (Hertzberg, 1976)

Material w(GPa) v 0y:(MPa)
1100-0 Al 26.1 342 4.1
1080 Steel 80.7 .300 585.

'Brown et al., 1989.
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Thermal Stresses at the Edge of a
Bimetallic Thermostat

The. plane stress problem of a semi-infinite, bimetallic thermostat subjected to
uniform heating or cooling is treated with the theory of elasticity. Solutions to this
problem are expressed as the sum of a basic solution for a bimetallic strip of infinite
length and a series of complementary solutions. Interlayer peeling stresses at the free
edge of the bimetallic thermostat are shown to be singular or nonsingular (but still
higher than the nominal values) depending upon whether the combination of the
two Dundurs’ bimaterial constants, a(a—23), are greater or less than zero. In an
example problem, current solutions agree well with finite element results while
results predicted by a modified beam theory show a large deviation from the other
two solutions near the free edge. Boundary layer effects near the free edges of a
bimetallic thermostat are also discussed.

An-Yu Kuo

Consultant,

Structural Integrity Associates,
San Jose, Calif. 95118

Assoc. Mem., ASME

1 Introduction

Thermal stress in bimetallic thermostats subjected to
uniform heating or cooling has been of interest for many
years. Timoshenko (1925) and later Boley and Weiner (1960)
solved the problem by the classical beam theory for an
infinitely long, bimaterial elastic strip. Chen and Nelson
(1979) used the concept of force equilibrium in calculating
thermal stresses of bonded joints in electronic devices.
Recently, Suhir (1986) presented a solution for a finite length,
bimetallic thermostat with free edges at both ends. Adding to
the normal stresses predicted by the strength of material
approach (Timoshenko, 1925, and Boley and Weiner, 1960),
Suhir calculated interlayer peeling and shear stresses at the
free edges by the use of a simplified interface compliance.
With this simplified interface compliance, Suhir was able to
show high stress concentration near the free edges. However,
as later pointed out by Razaqpar and Suhir (1987), the
simplified approach used by Suhir (1986) has its inherent
shortcomings in predicting accurate interlayer peeling and
shear stresses near the free edges.

It has been shown by Bogy (1968, 1970), Dundurs (1969),
Hein and Erdogan (1971), and many others that, under certain
combinations of material properties, stresses at a bimaterial
wedge, such as the edge of a bimetallic thermostat, may
behave singularly. This paper presents an analytical solution
to the thermal stresses at the free edge of a semi-infinite,
bimetallic strip subjected to uniform heating or cooling.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MEcHANICAL ENGINEERS for presentation at the Winter Annual Meeting, San
Francisco, Calif., December 10-15, 1989.
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Applied Mechanics Division, February 12, 1988; final revision, November 8,
1988. .
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2 Formulation

As illustrated in Fig. 1, this paper considers a semi-infinite,
bimetallic thermostat subjected to an uniform temperature
change of AT. Plane stress condition is assumed in this paper.
The plane strain solutions can be easily obtained by extending
the plane stress solutions through the use of an equivalent
Young’s modulus and Poisson’s ratio. It is also assumed that
both materials are homogeneous, isotropic, and elastic with
Young’s moduli E” and E’, Poisson’s ratios »” and »’, and
coefficients of thermal expansion 6” and &, respectively, for
the upper and lower layers. Thicknesses of the two layers are
h” for the upper strip and &’ for the lower strip. Throughout
this paper, the superscript prime is designated to variables or
functions in the lower strip and the superscript double-prime is
devoted to variables or functions in the upper strip.

As the first step, we will find a basic solution to the problem
of an infinitely long, bimetallic thermostat under uniform
temperature change AT (see Fig. 2). For semi-infinite
thermostats, a complementary solution will be needed later to
account for the free edge. It has been shown by Boley and
Weiner (1960) that, for an infinitely long rectangular beam
under uniform temperature change, the classical beam theory
can provide exact solutions to the problem. Thus, as shown in
Fig. 2, moment equilibrium leads to the following condition:

M +M"=P (h'+h")/2. 4]

Continuities of curvature and x-displacement at the interface
lead to another two conditions:

AT

ny—i Evopno g ‘l’ u
b

A bimetallic thermostat

Fig. 1
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Fig. 2 An infinitely long, bimetallic strip
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E/AI + 2EIII E/IA n 2EIIIII ( )

where 4 and I are cross-sectional area and bending rigidity,
respectively, and, as shown in Fig. 2, P and M are force and
moments, respectively, acting at the center line of the two
strips. With equations (1)-(3), the three unknowns, P, M’,
and M”, can be solved explicitly, and thereafter, the normal
stresses oy, and oy, can be estimated by

P M A’
TN = 0h) = —— e () @
P M h”
a5 X)) =05 = A’ 1 <_ 2 ) ©)

Note that, in the classical beam theory, all the other stress
COMPpONeEnts, oy, Gy, Ty, and oy, vanish. It is obvious that
equations (4) and (5) are valid only for infinitely long
thermostats. For a semi-infinite thermostat with a free edge at
the left end (x=0), the aforementioned solutions must be
superimposed with a complementary solution to account for
the stress-free boundary conditions at the edge. As illustrated
in Fig. 1, the complementary solution is the solution of a semi-
infinite, bimetallic thermostat (AT = 0) subjected to edge loads
n’ and n”, which are the negative of the normal stresses
predicted by equations (4) and (5).

Numerically, the complementary solution can be obtained
by the alternating method. That is, by solving and
superimposing a series of two fundamental problems: (a) two
joined quarter-spaces loaded at the boundary (see Fig. 3), and
(b) an infinitely long, bimetallic strip loaded symmetrically
(with respect to x=0) at both the upper (y=#k") and lower
(r=~h") surfaces (see Fig. 2).

3 Surface Loading in Two Joined Quarter-Spaces

As shown in Fig. 3, the first fundamental problem is a com-
posite half space with prescribed surface normal loading n” ()
and n’(») on the boundary surface (#” <y< —h’). This pro-
blem has been solved by Bogy (1968, 1970) through the use of
two Airy stress functions and the Mellin transform. It was
later shown by Dundurs (1969) and Bogy (1970) that, as the
distance r from the free edge approaches zero, stresses near the
free edge have an asymptotic term of r—*, Ln(7), or r* (r—0)

depending upon whether o («a—20) is greater, equal, or less-

than zero, where A=\ (w,8) is a positive number between 0
and 1, and @ and § are the two composite material parameters
defined by Dundurs (1969). Definition of A will be given in the
latter part of this section. Bogy (1970) has also pointed out
that the logarithmic singularity, Ln(r) as r—0, exists only
when there is a finite discontinuity in the shear load on the
boundary of the composite half plane, i.e., only when

586/ Vol. 56, SEPTEMBER 1989

Fig. 3 Two joined quarter-space loaded at the boundary

t'(0)y=¢” (0) where ¢’ and ¢” are applied shear loads on the
boundary surface. Since neither equations (4) and (5), nor
solutions to the second fundamental problem, which will be
discussed in the next section, would generate any shear loads
on the boundary surface (x=0), the logarithmic singularity
does not exist in the first fundamental problem. That implies
that thermal stresses resulting from an uniform temperature
change at the edge of a semi-infinite bimetallic thermostat will
behave asymptotically like either »~» or r°, depending on
whether a(oe—2f) is greater or less than zero.

Taken from Bogy’s paper (1970), stress solutions to the first
fundamental problem are

1 r= ) )
0'{’("’0):—;’— SO Re&;r[(“ 1- 171,0) r'ﬂ] d’?

| I
——— Lim

[(s+1) 6, (5,8) r 11 (6)
s =1
1re .
Ogp (r,0)=—7r7go Re[dg(—1—in, 6) r'"] dy @)
1 ¢~ .
oprf=— | Relop(~1-in, 0) r) ®

and similar equations for oj; (r, 6) by replacing 6/, with 7. In
equations (6)—(8), 6;, are defined as

s+1 4 4
5. (5,0) = (s +4 )
’ 16D ,ZJ, ,?;3
(C"® M, L, +M;PL, )]
s(s+1) ¢
Gt (8,0) = —— = Y (C' W MOL +MBLY (10)
k=1
s+1 4 4
G (s,0) = — sY+2))
16D k§ ,;3
(- DS @ MO L+ ML, an
where
A 1 K
LI(S)i"—m gon’(r) I‘H'ldl’ (12)
1 h”
Lys)= S5ei D SO n"(ry r¥tidr (13)
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D=D(@fN =18 cos* (3T) + (a—ps+ 171

+ cos? (L;) sin? (%) —a? (s+1)?

(14)

ST .
M (s) =P*) (s) + Q) (s5) cos? (T) (15)
B{8(5) = PO+ O cos? () (16)
_E-E'  2AE'(1=»")-E"(1-»")] "
E'+E" "7 4E'+E") ’ (17

and A is the root between 0 and 1 of the equation
D (o, 8,A—2)=0. Similar definitions for 6} (s, ) can be writ-
ten by replacing M}* with M®, in equations (9)-(11). In
the aforesaid equations, functions C/ 0, C” & g7 (0 g~k
PO, PO Q0 and QfX) are defined in pages 1293 and 1294
of Bogy’s paper (1970) and thus are not repeated in this paper.

Thus, to get the solution for the first fundamental problem,
we can convert the two surface loading functions, n’ (r) and
n"” (r), into the frequency domain by equations (12) and (13),
and thereafter, calculate stresses by equations (6)-(8).

4 Surface Loading in an Infinite Bimetallic Strip

In the second fundamental problem we need to solve, as
shown in Fig. 2, an infinitely long, bimetallic strip loaded sym-
metrically with respect to the y-axis (x=0) at both top (y=h")
and bottom (y= —#h") surfaces. Like the first fundamental
problem, solutions to the second fundamental problem can
also be expressed in terms of two Airy stress functions, ¢’ (x,y)
and ¢ ”(x,y) for the upper and lower layers, respectively. To
solve the second fundamental problem, we first convert the
boundary loading at top and bottom surfaces into an integral
form as follows:

o

ol (x,h") = SO Fy(s) cos(sx) ds (18)
ol (k") = S: Fy(s) sin(sx) ds (19)
(X, —h") = S: G, (s) cos(sx) ds (20)
ol (X, ~h') = S: G, (s) sin(sx) ds @1)

where F,, F,, G,, and G, are Fourier transforms of the
loading functions applied on the upper and lower surfaces. We
can then show that the two stress functions are as follows:

" (x,y) = S: [Ae”+Ae= + Asye”

+Ayye¥] cos (sx) ds (22)
¢’ (x,y) = g: [Ase” + Age™ + A, ye”

+Agye ] cos (sx) ds (23)

where the coefficients 4 ;=A,(s) are determined by a set of
eight simultaneous equations:

Hy A, =R, (.k=1, 8). 24)
Four out of these eight equations result from the four stress

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

boundary conditions (two each on top and bottom surfaces)
and the other four result from the four continuity conditions
on the interface (two for stress continuities and two for
displacement continuities). Definitions of Hj, and R; are given
in the Appendix at the end of this paper.

Thus, for a given set of surface loads, ay;, (x,2"), oy, (x,h"),
gy, (x,—h'), and oy, {x,—h’), solutions to the second fun-
damental problem are given by equations (22) and (23).

5 Procedure for Total Solution and Numerical Results

The total stress solution to the problem of a semi-infinite,
bimetallic thermostat subjected to an uniform temperature
change is the superposition of the basic solution derived in
Section 2 and a series of the two complementary solutions
discussed in Section 3 and 4. The following numerical pro-
cedure has been set up to obtain the total solution:

(@) Calculate stress [oy], and [o7], by equations (4) and
(5) and set m=1.

(b) Definen’andn” as:

n/(r): - [a,éx (Ovr)]lm72 (25)
n'(r)=—[og (0, =yy—>- (26)
(¢) Substitute n’(r) and n” (r) into equations (12) and (13)
and calculate stresses [04],,_; by equations (6)-(11). Pro-
cedure for calculating [0}, is similar.
(d) Calculate F, (s) by
2 o
Fi®==— | Lo oy costs dx @)

and, similarly, for F,(s), G;(s), and G,(s). Then, calculate
stresses [0 ],,, according to the Airy stress functions defined
in equations (18)-(21).

(e) Check convergence. If the solution meets the con-
vergence criterion, go to step (f) — otherwise increase m by 1
and go back to step (b).

(f) Calculate total stresses by

M
oy =loylo+ E Hojwlam—1 +loglam]-

m=1

(28)

There are several ways to set the convergence criterion in
step (e). In this paper, convergence of the solution is deemed
as being achieved when the relative increment of o, (0,0) is
less than 0.01.

As a numerical example, the same material properties and
geometrical dimensions of the problem solved in Suhir’s paper
(1986) were used in this paper, i.e.,

E” =325000 MPa, v” =0.293,5" =4.9x107%1/°C,
E’=70380 MPA, »' =0.345, 6’ =23.6x 1075 1/°C,
h'’=h"=2.5mm, AT=240°C.

The two materials in this example problem are molybdenum
and aluminum, respectively, for the upper and lower strips.
The corresponding bimaterial constants, o and 8, and the
order of stress singularity, A, at the free edge are found to be
—0.6330, —0.1395, and 0.1485, respectively. Thus, as shown
by Dundurs (1969) and Bogy (1970), the interlayer stresses will
behave asymptotically like 791485 as r approaches zero at the
free edge. Numerical quadratures were used to calculate the
integrations in the solutions. With only three iterations, the
stress solutions converge. Resulting interlayer stress distribu-
tions are plotted and compared with the beam theory solutions
(Suhir,. 1986) and results of a finite element analysis in Figs.
4-7. The stresses shown in Figs. 4-7 have been normalized by
a constant, (E”"8"AT). The normalized asymptotic coeffi-
cients of the singular term, which is of order (r/h”)~%148 ag
(r/h") approaches zero, are 0.8038, —0.4148, —1.3733, and
0.3001 for oy, oy 0y, (=05,), and oy, (=0;,), respectively.
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The finite element mesh used to obtain the stress results in
Figs. 4-7 is shown in Fig. 8. In this finite element model, all
the elements are the two-dimensional, eight-node,
isoparametric elements. In Figs. 4-7, it is seen that current
solutions agree well with finite element results for all stress
components. However, results predicted by the modified
beam theory (Suhir, 1986) are off by a large margin near the
free edge due to the inherent shortcoming of the strength of
material approach.

In this example problem, it is observed that the interlayer
peeling stress 7,, (x,0) has an asymptotic form of

—0.1485
0,,(x,0)=K,, (E"6"AT) (%—) + higher order terms
' (29)

near the free edge, where K, is a constant and is defined as in-
tensity factor of the peeling stress ¢,,. To check the con-
vergence of the solution scheme described in Section 5,
calculations for the example problem were carried out to twen-
ty iterations and are plotted in Fig. 9. At the end of the first
five iterations, the intensity factor of the peeling stress, K, in
equation (29), are —1.3406, —1.3680, —1.3733, —1.3754,
and — 1.3764, respectively. Although not shown in Fig. 9, a
monotoic and quick convergence similar to that for K, is also
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observed for K., K., and K, which are intensity factors for
stress components ¢y, 0y, and o,,, respectively. Thus, it is
concluded that the alternating method and the convergence
criteria used in this paper can provide a monotonically con-
vergent solution to the problem.

6 Discussion and Conclusions

For bimaterial thermostats with nonsingular free edges (i.e.,
a(a—2f) <0), the solution procedure described in Section 4 is
still valid. However, most of the bimetallic structures of prac-
tical interest fall in the range of nonzero N\ (.e.,
a(a—28)>0). It is found that, for a singular free edge in a
bimetallic thermostat, the stress distributions at a distance of
more than three times the thickness of the thinner layer is
essentially the same as the nominal stresses predicted by the
strength of material approach discussed in Section 2. This
observation suggests that, except within a boundary layer
range, which is approximately three times the thickness of the
thinner layer, the classical beam theory can provide sufficient-
ly accurate results to the problem of a bimetallic thermostat
subjected to uniform heating or cooling. Within the boundary
layer range, however, interlayer stresses are much higher and
an appropriate method such as the alternating method dis-
cussed in this paper or finite element methods with a special
element at the edge must be used to properly address the free
edge effects. Results of this study also suggest that, as long as
the total length is greater than six times the thickness of the
thinner layer, thermal stresses in a finite length, bimetallic
thermostat can be treated as the superposition of two semi-
infinite, bimetallic strips. Finally, if the finite element method
is used to analyze a bimetallic thermostat with singular edge
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(a(@—2B)>0), continued refinement of the conventional
isoparametric element size at the free edge will not guarantee a
convergent peak stress but a special element, which has ap-
propriate interpolation functions built in to account for the
singularity at the free edge, is needed to calculate the intensity
of the singular term at the edge.
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APPENDIX

Definitions of Hy, and R,
R =F, R,=F, R,=G,
R; =0 for all the others
Hy=—Hy=~se" Hp=Hy=-se"

Hy=h" H, Hyu=h" Hy

Hyy=s(l+sh")e"" Hy=s(1—sh")e "
Hy=Hy=—-Hy=-—Hy=Hg=Hg=—-Hg=—-Hg=10
Hy=Hy=Hs = —Hgp=(+v")"/E”
Hy=-Hy=-Hs=—-Hs =2(1 -v"%)/E"
Hy=Hy=Hy=—Hy=—(1+v»")'/E’
~Hy=Hg=Hsy=Hs=2(1-v'?)/E’
Hg=—-Hg=—-Hg=Hg=s

Hys= ~Hgs= —s’e™"  Hyg=Hg= —s’¢"
Hy=-h'Hyy Hypg=—h'Hy;

Hy,=s(1—sh)e " Hg=s(1+sh")e

Hj, =0 for all the others.

Ry=G,
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How to Model a Bonded Joint

Piero Villaggio

Istituto di Scienza delle Construzioni,
56126 Pisa, Italy

The problem is considered of a semi-infinite plane region bonded Yo a rigid region,
with the boundary of contact being in the shape of a cosine curve. It is shown that,
when a rigid displacement is applied to the boundary of the elastic region, there is a

particular value of the amplitude of the contact curve that minimizes the sum of the
strain energy and adhesion energy.

Introduction

In the problem of joining together two separate elastic
bodies, the question arises of how to model the profile of the
joint in order that it supports a prescribed load. A typical ex-
ample is shown in Fig. 1, where two bodies, V and V', are
bonded along their common surface %, while the parts S and
S’ are subjected to given surface tractions F.

When the bodies are elastic and T is known, the stresses
throughout the respective volumes may be determined (at least
in principle) by solving a contact problem in linear elasticity.
In particular, the stresses across L can be determined.

For many practical problems, however, although the sur-
faces S and S’ are specified, there is a certain freedom in se-
lecting the shape of I, provided, of course, that it is bounded
by the curve of intersection between S and S’.

The strength of the connection between ¥ and V' increases
with the amount of adhesive material interposed between the
two bodies along their common boundary Z. Thus, it seems
that a certain advantage can be achieved by enlarging the area
of ¥ by giving it a wavy shape instead of flat. But the
amplitude of these waves can not be too large since, in this
case, a sharp increase of stress around I may occur. In prac-
tice, a compromise between these two opposite requirements is
obtained by joiners when they connect sheets of wood by carv-
ing extra interpenetrating teeth, which, on the other hand, are
not too sharp nor too deep, since otherwise high concentra-
tions of stresses would be produced.

The designer must therefore decide between two conflicting
objectives in modeling joints: to maximize the surface area
of I by allowing, for instance, L to be of oscillatory shape,
and, at the same time, to keep I reasonably smooth to avoid
the introduction of notch stresses.

In this paper a simplified model is studied, which never-
theless provides a rational criterion for the optimal shape of
an oscillatory interface between two plane elastic bodies. It is
assumed that the two bodies are semi-infinite and joined along
a periodic curve of parametric equations x=u—a,sinu,
y=a,cosu (Fig. 2) where a, is a constant and u ranges on the
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whole real axis. It is further supposed that one of the two
bodies is much more rigid than the other to the extent that it is
regarded as practically indeformable. In the present case the
lower body is considered as rigid.

The shape of the base of the upper body can be adjusted by
varying the amplitude a, of the periodic oscillations.

Regarding the load conditions, two cases are considered. In
the first, the wavy boundary L undergoes a uniform displace-
ment in the direction of the y-axis in order to create a state of
pure tension for large values of y; in the second case a uniform
displacement is impressed to L in the x-direction generating, in
this way, a state of pure shear as y becomes large.

The solutions to these two mixed boundary value problems
in plane elasticity are achieved by extending a method used by

ks
surface of
adherence

s

Fig. 1

vo = 2.00
Vo= 1.00
Vo= 0.00

,rigid

Fig. 2
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Weber (1942) for the prestressed half space with a periodically
oscillating boundary free from surface tractions.

Under the displacement boundary conditions just described,
an increase in @, causes a decrease of the strain energy stored
within the elastic body. On the other hand, the surface area
available for adhesion increases with @; and so does the sur-
face energy that can be stored in the bond. It will be shown
that there is a single value of ¢, which minimizes the sum of
these two energies. This value of g, defines the amplitude
which must have each wave of the curve T of Fig. 2 in order
that the joint has the least tendency to rupture. The result may
help to explain, in this particular case, empirical formulae
used in design (cf., Vinson and Sierakowsky (1986)).

2 Pure Extension

If the upper body is a long cylinder with the generators
parallel to the z-axis and the terminal sections remain at right
angles to this axis, the state of strain can be regarded as plane,
and the displacements £, 5 along the x, y-axes are functions of
x, y only and the displacement { along z vanishes.

Let the material be elastic, homogeneous, and isotropic,
with Young’s modulus F and Poisson ratio ¢. To simplify the
formulae it is sometimes useful to introduce the constant
a=2(1-o).

In absence of body forces, it is known that the
displacements may be written in terms of two plane harmonic
functions, called the Boussinesq-Papkovic-Neuber functions.
More precisely, let ®,(x, »), ®,(x, ) be two harmonic func-
tions and define the plane biharmonic function F'to be

F=&,+x¥,, o)
then, the displacements assume the form (cf., Neuber, 1937,
Chapter 4, No. 1),

oF oF
ut= ———+2a®,, 2up=——"—, 2
ué o T 2e%n 2w % 2)

where p is the shear modulus related to £ and o by the formula
w=E/2(1 + o).

The stresses associated with these displacements and ex-
pressed in terms of the functions F, ®,, ®, are given by

9*F 0d, o
P P (1Yo,
TE T T Ty 2 v
*F o ?*F oP
= —— 1 ——) 2F, = T : ’ 3
BT TR ( ) VE gyt O
where V2 =02/9x? +82/3y, and the stress-strain relations
a¢ o 0t
2| 5 (5]
Tx =2 —20)
an o ot an
S <—+—>] |
T T 020 \Tax oy
o[ ]
Ty = ay Tox 17

have been used.

In order to find the functions ®;, ®, it is necessary to
change independent variables and introduce curvilinear coor-
dinates u, v such that

x=u—ae ’sinu, y=v+ae’cosu, 4)

where a, is a constant strictly less than one. Under this restric-
tion, the mapping (4) is conformal and takes harmonic func-
tions in the u, v-plane into harmonic functions in the x, Y-
plane. In particular, the images of the lines V= vy = constant in
the u, v- plane are the lines x=u—ae Osin u, y=uv,+
a;e °cos u in the x, y-plane, and the image of the axis v=01is
the line x=u—a;sin u, y=a,cos u (Fig. 2).

Journal of Applied Mechanics

The elastic body, occupying the region v>0, is stressed
when a rigid translation of the type £ =0, p=A4, with A con-
stant, is applied at the boundary.

The boundary conditions are satisfied when &, and &, are
given by
by =Al(u—a,e"?sin u)? —

(v+a,evcos u)?]

+bie=vcos u+ bye~cos 2u + byv + E(u? — v?),

&, =B(u—a,e"'sinu)+c,e ’sin u, 5)

where A, B, by, b,, . . . ,c, are constants. It is evident that,
with this choice, both ®, and ®, are plane harmonic func-
tions, and the biharmonic function F assumes the form

F=(A+B)u—aje 'sinu)? - A(v+a,e~"cos u)®

+bievcos u+ bye~cos 2u+ by

+E@W? — v?) + ¢ e vsin u(u—a e sin u). (6)

To determine the unknown constants it is necessary to write
displacements £, 7 in curvilinear coordinates and observe that
the conditions £ =0, n=A, are satisfied at v=0. In terms of
the new variables u, v, the partial derivative 3F/dx becomes
(cf., Neuber, 1973, Chapter 4)

aF_1<aF ox | OF ax) ;
ox R\ du ou ov dv /)’ @
where A% =(dx/3u)* + (0x/0v)2=1-2 a,e"Vcos u-+ale~%,

and an analogous formula holds for dF/dy, with y instead of
X.

Thus, the boundary conditions that £ =0, y=A for v=0,
written in terms of F and &,, are equivalent to the following
pair of equations

1 oF ax
ZMU(u,o)zm [ ~ (u,0) +2a®(u,0) o (u,o)]

-1 .
=m [Z(A + BY(u —a,sin u)(1 ~a,cos u)
—2Aa¥sin u cos u

—b,sin u—2b,sin 2u + ¢, cos u(u —a,sin u)

+ ¢ sin u(1 —a;cos u)

2uA 9
+202,(4,0) —— (,0) | = T ai 0,
1
2uV(u,0)= t.0) [ (u 0) +20®,(u, 0) (u 0)]
=h*(;,l_o)' [Z(A +B)(u—a;sin u)(a,sin u)

—2Aa cos u(l — cos u)

— b cos u—2b,c0s 2u + by — ¢;sin u(u — a;sin u)

+c¢,a,sin? u+ 2a®,(4,0) —— (u o)]
2uA
= (u,0).
h(u 0) 6v
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These equations yield seven linear independent equations,
from which it is possible to obtain the constants defining the
function F in terms of the single constant 4. The result of the
process of elimination of the constants is

2a—1)A Ad}
_QamhA AN
20(a—1) 2a
1 .
b, = —2A4a, — 2ula,, b2=Aa%(a——),
4o
A Aa
=g, a=—t. ©)
164 o

From these values of the constants the stress function F and,
hence, the full solution is determined to within the constant 4.
The solution, however, can be further simplified by observing
that, in practice, the amplitude a, is not only strictly less than
one, but even a small fraction of the half-period =. In con-
sideration of this fact the terms containing the powers of
second order in @, can be disregarded.

The constant 4 remains indeterminate since the solution to
the boundary value problem is not uniquely defined until the
displacement is prescribed at least on another point, not lying
on the boundary. In the present case it will be assumed that the
point with coordinates u =0, v=d, with d>> 1, remains fixed.
Because u =0, is on the y-axis, the U-component of displace-
ment is zero by symmetry and, therefore, the only significant
condition concerns the vanishing of the V-component of
displacement:

1

2[1, V(O,d)=~};6—d—')

oF dx
| - = )+ 208,00 — (0]

_ -1
" h(u,0)

[ —24(d+ae (1 —ae ) —be ?—2be %

—2Ed+b3] =0. (10)

The coefficients b, b,, b, E may be expressed in terms of
A by means of formulae (9) and a substitution into (10) leads
to an equation for A alone. On neglecting higher order terms
in @, and d—!, this equation reduces to

A
24d+-— d—2uA=0,
[s4

which yields for 4 the surprisingly simple form
_ 2pAa
QRa+1)d ’

Once the functions &, and &, are known, the state of stress
is also determinable by using the formulae (3). But, in order to
calculate the strain energy stored in each strip O<u <27, v>0,
the detailed expression of the single components of stress are
not necessary, since it can be directly determined from the
resultant of the tractions parallel to the y-axis acting upon the
portion of lower boundary of the strip O<u<2r. If Y is this
resultant, the strain energy is simple given by 1/2 YA, as a con-
sequence of Clapeyron’s theorem.

The easiest way to find Y is to apply a result of Neuber
(1937, Chapter 4, No. 1), which modifies the expression (3) of
stress components. In fact, by introducing two new harmonic
functions &, ®{ such that

(11

P L PSPPI a2y
= s = N
1 ax 0 1 0
and defining
3%/
F'=&)+x -1 (13)
ox

the stress assumes the simpler form
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3°F’ 2 P*F’
= =2 = (Y

T T T T gy
The construction of &/ is almost immediate if, in the second
of (5), the term with ¢, is neglected, and only then with B is
taken into account. Under this approximation, ¢, becomes Bx
and ®{ can be written

1 1 .
o/ = B(x? —y2)=——2—— B[(u—-a,e‘”sin u)?

+(v+a,e~vcos u)z], (15)
and, hence, F’ is
F' = (A +2—;a— B)(u—ale“"sin u)?
- <A —% B)(v+ale‘”cos u)?
+be"vcos u+bye~2cos 2u+ byv+ Er—v?).  (16)

Given F’, by a known transformation of surface tractions
in plane elasticity (cf., Love, 1924, Article 154), the resultant
Y is then expressed by the simple formula

oF’ oF’
Y=— Qm,0)—— (0,0). (17)
ox ox
Here again, by using (7), Y takes the form
— E
Y=47r(A+ “ B) P (18)
(1—oy)

whence the expression for the strain energy W=1/2 YA can be
derived explicitly.

3 Simple Shear

The calculation of stress when a rigid translation A parallel
to the axis of x is applied to the boundary v=0 of the upper
body is quite similar. The appropriate expressions for the
functions &, and &, are now

$o=A(u—ae"sinu)(v+a,eYcos u)
+bou+ b e~ "sin u + bye’sin 2u + Euv,
19

., ¢; are new constants. The bihar-

®, =B(v+a,e"Vcosu)+c e vcos u,

where A, B, E, b, , . .
monic function F'is then

F=(A+B)(u-a;e sin u)(v+a,e~"cos u)
+bou+ be~Usin u+ bye~¥sin 2u
(20)

and the conditions that £=A, =0 for v=0 yield the two
equations of the type

+Euv+c e~ ’cos u(u—a,eYsin u),

2uU(u,0) = —(A+B)(1—acos u) a;cos u

o
h(u,0)
—(A+B)Yu—a;sin u)

X (—a,sin u)—by— b,cos u—2b,cos 2u

—c;cos u(l —a,cos u)
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+c;sin w(l —a;sin w) + 2a®,(u, 0)

(u 0)]

2uA Ox

= Two) au W0

2uW(u,0)= ~ (A + B)a3sin ucos u

i |

— (A +B)(u—a;sin u)(1—a,cos u)+b;sin u

+2b,sin 2u — Eu—c,(cos w)a,sin u

a
+c cos u{u—asin u)+2ad,(1,0) — y (u, 0)]
_ 2uA o ( 21
" h(u,0) v 4,0). @1

These equations are satisfied for each » when the constants
obey the following relations

204, ad?
¢= =t B, hy=— B,
Qa-1) 22a— 1)
B 2w,
e b= -2 Biouaa
Qu—1) ' ' T Qa-n T
2a oa?
E=——""__ B, by=—"' B—2uA. 2
Qa—1) T Ra-1) # @)

The constant B is then determined by requiring that the
point (o, d) with d> > 1, remains fixed. This condition implies

that
2;;U(o,d)=7l(0%5 [—(A +B)(1—a,e~9)(d+a,e~7)
—b,—b,e~—2b, e—2d—Ed
—cie™i(1— e + 20y (0,d) —— * (o, d)] (23)

By expressing the other constants in terms of B through (22)
and omitting the small terms, it is found that

2uA
2ad

Once the harmonic functions ®, and &, are determined, the
stress components are given by (3), but a form like (14) is ob-
tainable by introducing the function

B=—

@4

&) =Bxy=B(u—a;e”’sin u}(v+a,e~’cos u), (25)

which satisfies the relation &, =0®/dx, provided that the
coefficient ¢, in the second of (19) is omitted compared with
B.

Then, by a formula like (13), the new stress function F’ may
be written as

F'= [A + (o — l)B] (u—a,e~"sin u)(v+a,e”"cos u)
+ byu+ be~sin u+ bye~?’sin 2u + Euv. (26)

Given F’ the resultant of surface tractions, parallel to the x-
axis extended along the lower boundary of the strip O<u <2,

is simply

X=- / Q@m0+ or” (0,0), @7
and consequently, using the expression of F’, X becomes

X= —Zw—[A—(a— I)B] —27r1_Ea , (28)

1
and the strain energy is now W=1/2 XA.
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4 The Effect of the Adhesive

After having calculated the strain energy stored in the elastic
body under pure extension and pure shear, it is now necessary
to evaluate the surface energy localized on the welding line L,
where the adhesive is interposed. The simplest expression for
this surface energy derives from the assumption that it is pro-
portional to the length of the line of contact. On denoting by y
the surface energy per unit length, the energy of that part of
the boundary 0 <u <27, v=01s given by

ool SO w) ()

in (29) is

(29)

On recalling that the integrand just

h(u,0)=+1-20a,cos u+ai, the value of U is explicitly com-
putable (cf., Gradshteyn and Ryzhik, 1965, 2.576)
v=4v(1 +a)E(k) (30)
where
4q,
k= TTay

and E(k) is the complete elliptic integral of the second kind.
Thus, v increases with ¢, and so a higher amount of surface
energy may be obtained by increasing the amplitude of the
oscillations. Again, since a; is small, the expression of (30)
may be simplified by retaining only the first two terms in the
power series expansion of E(k) (cf., Jahnke-Emde-L&sch,

1966, V,C)
K2 K
—Ek—1—2———3( ) —- ..
(k) 3 3

To this order of approximation, U assumes the form

U521ry[(1+a1)——(1—j_la—l-)— ] =2m(1+%>.

Once the strain energy W and the surface energy U have
been determined as functions of @,, the optimal shape of the
surface is given by the value of ¢, minimizing the sum
W+ U).

In the case of pure tension, still assuming a, to be small and
d large, the optimum value of a, is the first positive root of the
equation

3D

i W+U)=0
da,
where W=1/2 YA and U is given by (31).
After a substitution from (9) and differentiation with
respect to a,, equation (32) is found to be equivalent to the
following:

(32)

EA a?
2T +47 ¥a —27 Y4 5 =0,
(1-ay)? (I+a) (I+ay)
which, considering only the terms of first-order in a,, admits
the root

EA

a,= __2—’)/—* s (33)
or better, recalling that E= — A/2a with 4 =2uaA/(2a+ 1)d,
pA?
N et nd 34

In the case of pure shear, an equation like (32) must be
solved with respect to a,, with the only difference that now
W=1XA, while U remains unchanged. The resulting equation
in a, is then

EA a4, vat
w +4 -
(=a)? " (+a) " (+a)
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which, recalling that £ =2aB/(2a — 1) with B= — uA/ad, and
neglecting the terms of higher order in a,, yields
| pA?
a=———.
' 2Qa—1)yd

Formulae (34) and (35) show that once the constitutive
properties of the upper body are given through u and v, and
the magnitude of the load is specified by A and d, there is a
unique value of a,, minimizing the total energy. The minimum
in pure tension is lower than the minimum in simple shear.

(€M)
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Interfacial Stresses in Bimetal

E. Suhir

AT&T Bell Laboratories,
Murray Hill, N. J. 07974
Mem. ASME

Thermostats

The magnitude and the distribution of the interfacial stresses in thermostat-like
structures are determined on the basis of an elementary beam theory, with con-

sideration of both the longitudinal and the transverse ( “‘through-thickness’’) inter-
Jfacial compliances of the thermostat strips. The suggested approach is applicable,
generally speaking, to any elongated lap shear assembly, subjected to thermal or ex-

ternal loading.

Introduction

A bimetal thermostat is a useful theoretical model for the
analysis of stresses in thermally-mismatched structures. The
mechanical behavior of bimetal thermostats was apparently
first examined by Timoshenko (1925) on the basis of an
elementary beam theory. In Timoshenko’s analysis, however,
only the normal stresses in the thermostat strips were
evaluated using an assumption that these stresses remain un-
changed along the strips. As to the interfacial stresses, it was
just mentioned that they are of ‘““local” type and concentrate
near the strip ends at the distances comparable with the strip
thicknesses. At the same time, it should be emphasized that
while the normal stresses in the thermostat strips themselves
are responsible for the ultimate and fatigue strength of the
strips, it is the interfacial shearing and peeling stresses which
are responsible for the structural integrity of the thermostat.

Valuable insight into the thermally-induced stresses in
heterogeneous structures, including interfacial stresses and the
“‘edge problem,”’ were later provided by Aleck (1949), Bogy
(1968, 1970), Hess (1969), Zayfang (1970), Chang (1981),
Chen et al. (1982), Wang and Choi (1982), Zwiers et al. (1982),
Blech and Kantor (1983), and others on the basis of the theory
of elasticity methods. The obtained solutions are, however, so
complex that a substantial additional effort seems to be need-
ed to make their utilization convenient in engineering
applications.

Therefore, various simplified approaches to the problem in
question were suggested during the last decade, mostly in con-
nection with the needs of the microelectronics technology.
These approaches, in one way or another, extend the original
Timoshenko theory and are based primarily on the elementary
methods of strength of materials and structural mechanics,
rather than methods of the theory of elasticity. Examples are
Grimado (1978), Chen and Nelson (1979), and Suhir (1986).
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The utilization of the concept of the finite longitudinal inter-
facial compliance enabled the last author to satisfy the stress-
free boundary conditions for the normal stresses in the strip,
and to obtain simple formulas for the interfacial stresses.

In the forthcoming analysis we suggest a somewhat more
complicated analytical model for evaluation of the interfacial
stresses in bimetal thermostats. This model is also based on an
elementary beam (or long-and-narrow plate) theory, but con-
siders, in addition to the longitudinal, also the transverse
(“‘through-thickness’’) interfacial compliance. The obtained
solutions satisfy the boundary conditions for the interfacial
shearing stresses, as well as for the normal stresses in the ther-
mostat strips themselves.

Note that since the mid-1960s many investigators applied
numerical, mainly finite element, methods to analyze
bimaterial structures, subjected to thermal loading: Saganuma
et al. (1984), Blanchard and Watson (1986), Gerstle and
Chambers (1987), and others. Although these methods offer
high flexibility in dealing with different geometries and
material properties, they could be less appealing than suffi-
ciently simple analytical solutions.

Analysis

Basic Equations. The interfacial shearing 7(x) and peeling
p(x) stresses, which occur in an elongated bimaterial plate ex-
periencing temperature change, are related by the following
equilibrium equation (Fig. 1):

(71 e azas = Dowieo -2 7 =
= P W1 2

~D,wi(x)+ %2— T(x). e))]

C# | 0 X

#2

D —

Fig. 1
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Here

X
Tw={" r@a @
is the shearing force caused by the thermal expansion or con-
traction mismatch of the materials, w,(x) and w,(x) are lateral
deflections of the strips, which are treated here as elongated
rectangular plates,
Eh}
Dy=———-">- D,=
Ta— 72

E)h3
12(1-43)

are flexural rigidities of these plates, K, and E, are Young’s
moduli of the materials, », and », are Poisson’s ratios, 4, and
h, are the strip thicknesses, and / is half the thermostat’s
length. The origin of the rectangular coordinates x, y is in the
middle of the plate on its interface. The relationship (1) simply
states that the bending moments

x & h
Mmw={ | p(z')dz'dzw—zi Tt

= [ penag a + 72 1o

acting over the cross-sections of the strips and caused by the
stresses 7(x) and p(x) are equilibrated by the elastic moments
D, w{(x) andD, w;(x).

By differentiating the relationship (1) twice, we obtain:

h,

P =—Dw[ () + - 7' () =Dy wd () - L SR

On the other hand, the peeling stress p(x) can be represented
as:

pX) =K[w, (x) - wy(x)], “

where K is the through-thickness spring constant. This con-
stant is due to the transverse compliance of the thermostat
strips and can be assessed on the basis of the following elemen-
tary considerations. The lateral displacements in a long-and-
narrow strip due to a transverse load p(x) can be evaluated by
the formula w(x)= (1 — »®)A/Ep(x), which can be obtained us-
ing the Ribiére solution for a long-and-narrow strip (see, for
instance, Timoshenko and Goodier, 1970). Treating the
longitudinal cross-sections of the thermostat plates as long
and narrow strips, we obtain the following formula for the
total spring constant in the through-thickness direction:

h2 J 71
E, )

=[a- v
1

From (3) and (4) we have:

V() +—h— 7’ (X)

V() =
M = 5 2D

- D—p”(x)+—hb- ')

wi () = D

where D= D, + D, is the total flexural rigidity and A=h, + A,

is the total thickness of the thermostat. Then equations (3)

result in the following relationship:
P () + 4ot p(x) =4dpait’ (x). (6)
Here, the parameters p and « are expressed by the formulas:
h\D,—h,D,

\D,~h,D, 4 KD
=———————, o= .
2D 4D, D,
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Note that the peeling stress p(x) is zero if the combination of
the material properties is such that the ratio &, /h, of the strip
thicknesses is equal to the ratio D,/D, of the flexural
rigidities.

The second equation for the functions 7(x) and p(x) can be
obtained using the condition of compatibility for the
longitudinal displacements u,{x) and u,(x) of the extreme
(interfacial) fibers of the thermostat strips. If the stresses 7(x)
and p(x) were known, then these displacements could be
evaluated by the formulas:

d h
0@ = wdex=) | 7@+ 70 -2 Wit

x h
Us(X) = o Afx+ A, S_] TE)dE — k() + 72 w3 (x)

)
where «; and «, are coefficients of thermal expansion of the
materials, N\, =(1—-»})/Eh,, and \,=(1~»3)/E,h, are in-
plane compliances of the strips, x, =2(1+»/)h,/3E, and
ky=2(1 +v,)h,/3E, are their interfacial compliances (Suhir,
1986), and At is the temperature change. The first terms in (7)
are unrestricted thermal expansions. The second terms are due
to the thermal mismatch forces 7(x) and reflect an assumption
that these forces are uniformly distributed over the strip
thicknesses. The third terms account for the nonuniform
distribution of the aforementioned forces, and are based on an
assumption that the corresponding corrections can be
evaluated by taking into account only the shearing stresses in
the given cross-section. The last terms are due to bending.

The compatibility condition u,(x)=u,(x) results in the
equation:

m(x)~>\12S: T(¢)ds =AaAtx+% w{(x)+£22— wi®),  (8)

where M\, =N +\; and k=« +«, are the total in-plane com-
pliance and the total interfacial compliance, respectively, and

Aa=a, — a,. By differentiating (8), with consideration of (2},
we find:
h
k7' (X) =N T(x) = AcAt + —2—1 wy(x) + ——w {EIN )

KT”(X)*MzT(x)=% wi' (%) + w3 (x). (10

Using the formulas (5), equation (10) can be presented in the
form:

7" () — k27(x) = mp" (x),

where the following notation is used:
A h? h? ©
k= —, AN=Ap+——=A+N +—\ =—.
N LY, R T R 2

Equations (6) and (11) form a system from which the stress
functions 7(x) and p(x) can be determined. In order to separate
these functions, we rewrite (11) in the form

(11)

PV 0= ’; [r” () — k7’ ()]

and substitute this equation into (6). Then we have:

po)= 1 el (€ +k*r ()~ 7" (%)) (12)

Here
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3

D
€= Ra— —
D1D2 A L+ < 2h«/D1D2 > 2
‘ h,D, - h,D,

is the dimensionless parameter of the peeling stress. This
parameter changes from ¢=0, when 4,/h, =D,/D,, to ¢=3,
when D,>s D, or D, >>D,. Now substituting (12) into (11),
we obtain the following homogeneous differential equation
for shearing stress function 7(x):

V) — (1 + K277V () + 4ot 77 () — 4ot K2 7() =0.  (13)
By introducing the expression for the derivative 7’ (x) from (6)
into (12), one can obtain an identical equation for the peeling
stress function p(x):

PYI(x)— (1 + e)k2pV () + 4o p” () — 404 k*p(x)=0. (14)

Thus, both the shearing and the peeling stresses can be deter-
mined on the basis of the same ordinary homogeneous dif-
ferential equation of the sixth order.

The equation for the shearing force T(x) can be obtained,
using (13) and (2), in the form:

TV () — (1 + K2 TV (X) + 4a* T (x) — 4a* K2 T (x) = 0. (15)

Boundary Conditions. The function 7(x) must be antisym-
metric with respect to the origin. In our analysis we assume
that this function satisfies the following boundary conditions
attheedge x=1/:

AaAt
()= ,

K

7())=0, " ()=0. (16)

The first of the conditions (16) follows from the equilibrium
equation (1), which could be, by differentiation, presented in
the form:

x h h
[ ped =Dyt 09— 2L 709= = Dywg o + 22 700,

The peeling stress p(x) must be self-equilibrated, and therefore
the left part of this equation becomes zero for x =/. The elastic
terms are also zero at x=/, since there are no concentrated
lateral forces at this cross-section and, therefore, wj" ()=
wy" () =0. This leads to the condition 7(/) =0. The second con-
dition in (16) can be obtained from (9) using the facts that
there are no external forces at the free edges, i.e., T(/)=0, and
that there are no bending moments in the cross-section x =/, so
that w{(/)=w,(J). The third condition follows from (10). In-
deed, since 7(/) = 0 and, in addition, w;"(!) = w;"(/)=0, then the
second derivative of the shearing stress function must also be
zero at this cross-section.

It is important to mention, however, that elastic analyses
(see, for instance, Bogy, 1968, 1970; Hein and Erdogan, 1971)
indicate that stress singularities generally occur at the corners
of geometric boundaries joining dissimilar materials, and that
the interfacial shearing stress may become unbounded at the
corner, depending on the particular material combination and
remote loading. The assumption 7(/)=0 seems, nonetheless,
consistent with the elementary approach taken in the present
study. .

The peeling stress p(x) must be symmetric with respect to the
origin and should satisfy the equilibrium conditions for the
lateral forces and bending moments:

Sl_, p)dx=0, SI_,S’:, pE)dgdE=0.

Obviously, these conditions are fulfilled automatically as Iong
as the conditions 7(/)=0 and 7(/) =0 are satisfied.

Journal of Applied Mechanics

The function 7(x) must also be symmetric with respect to
the origin and should satisfy the conditions:

AaAt
77 ()= P

=0, T'(h=0, T"(D=0.

The first condition reflects the fact that no external forces act
on the free edge. The remaining three conditions follow from
the conditions (16) and the relationship (2).

Solutions. In order to obtain solutions to the differential
equations (13), (14), and (15), we form a characteristic equa-
tion:

B8 — (1 +e)k2B* +4a* B2 — 4t k2 =0. 17)
By introducing a new unknown
r=p— 1+e¢ 2,
3

this equation can be reduced to a simple cubic equation:

B+3q,8+2g,=0. (18)
Here

2 1+ 3

do= — 3 2-e)atk? - ( 3 ‘ kz) )
4 1+e¢
= ? - k2>
qi 3 o < 3

The analysis of the discriminant d=g3+ ¢} of the equation
(18) indicates that the d value is always positive, and therefore
this equation has one real and two conjugate complex roots:

a—b
5

+b
§‘I=a+b, {2,3=_—%ii@
Herei=+ -1, and
a=1 —qo+Vd, b=3\/—q0—\/a.

Accordingly, the characteristic equation (17) has the following

roots:
-
1+e
51,2==‘=\/§'1+ 3 k?
l1+e¢ 2 i
Bya= % §’2+Tk==’:71=*=l’)’2 %,
1+e 2 .
Bsg= A8+ 3 k*= £y, Fiy,
-
where
1 1
71=J—2— (\/M+M%+u1), 72=\/-2— (\/M%ﬂt%—ul),
and
a+b 1+ a—b
M=-— 36/{2, By =V3 .

Thus, the solutions to the equations (13), (14}, and (15) can
be presented in the form:

19
px) = C,coshBx + Cycoshy, xcosy,x + Cysinhy xsiny,x, (20)

7(x) = CysinhB;x + C;coshy, xsiny,x + Cssinhy, xcosy,x,

T(x)=A,coshfx + A,coshy, xcosy,x

+ Agsinhry, xsiny,x + Cy, 2n
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where the antisymmetry of the function 7(x) and the symmetry
of the functions p(x) and 7(x) have been taken into
consideration.

Constants of Integration. The relationship between the
constants with the odd indices in (19), on the one hand, and
the constants with the even indices in (20), on the other hand,
can be obtained by substituting (19) and (20) into (6):

s
CZ:% cy, C4=4ya4(51C3+62C§),
Cs =4pa*(6,C; — 8,C5). (22)
Here
5l=f1’)’2"f2’Yl , 52=f171 +f2’Yz,
fi+f3 f+5

fi=pd—pd+40t, fr=2pp,.

The relationships between the constants C;, C;, and Cs and
the constants 4,, 4,, and A4 can be found on the basis of the

equation 7T’(x)=7(x), which follows from (2). After
substituting (19) and (21) in this equation we have:
C ¥1Cs —7v,C Cy+v,C
A= 1, A= 1 25 22 3 6___71 23 ’Y: 5 (23)
B, Yitvz Vi +vs

The constant C, can be determined using the condition
T(/)=0, which results in the formula:

Cy = — A,coshu — A coshv,cosv, — Agsinhv,sinv,. (24)
The constants C;, C;, and Cs in (19) can be found using the

boundary conditions (16). These result in the following system
of linear algebraic equations:

Cysinhu  + Cycoshv,sinv, + Cssinhv, cosv, =0

C,B,coshu + C;(y,sinhv;sinv, + y,coshv,cosv,) +

Aadl L.(25)

+ Cs(y,coshv,cosv, —vy,sinhv,sinv,) =

C,B%sinhu + C;(u, coshv,sinv, + u,sinhv, cosv,) +

+ Cs(p,sinhv;cosv, — pycoshvsinv,)=0

Here, u=p,l, v, =v,{, v, =7,l. Then we have:

AaAt cos2v 1
Ci= - - (cotanh2v1— —-———2>
o sinh2y, / coshu
AaAt / sinv 3 cosv.
Cy= o ( - 24— Y 2 )tanhu -, (26)
kDy \sinhy, 2 u, coshy,
AaAt osv 3 i
Cs= o <C 2 g s'mvz )tanhu
kD, \coshy, 2 p, sinhy, )
where
3 §'1 ( 3 (1 ) sin2v2 :I
= — 2+ _— —————| tanhu
D, [71+ 2, P\, 1) inhao,
COS20,
- h2 —-———)
g ‘(COta“ U 2o,

is the determinant of the system (25). This concludes the solu-
tion of the problem.
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Special Cases

In the case of zero through-thickness stiffness (K'=0), the
peeling stress is also zero and (17) yields:

B=v1+ek.

‘Then we have:

2(1+¢€) 1+e¢ 2
§‘= 3 k2, q0=q1=—( 3 k2> s a:O,

1+e¢
b=
¢ 3

k2, w=p=0, v,=7,=0,

and the equation (19) for the shearing stress reduces to the
following simple formula:

7(x)=C,sinhB;x. 27

The constant integration of C, in this formula can be obtained
from the nonzero boundary condition in (16):

_ AaAt

" «B,coshB, !’

The maximum shearing stress occurs at the end cross-section
x=1I

AcAt

KDy

Tmax =T = tanhf, /.
For sufficiently large §;/ values, tanhf,/ is approximately
equal to unity, and the maximum shearing stress becomes in-
dependent of the plate size.

In the case of infinitely large through-thickness stiffness
(K — o), the basic equations (6) and (11) yield:

PX)=p1'(x), 7"()—K7(x)=0. 28)

Note that in this extreme special case the equation for the
peeling stress p(x) can be still presented in the same form as the
equation for the shearing stress 7(x). Indeed, from the first
equation in (28) we have:

1
7' (X)=—p’'().
s

Introduction of this relationship into the second equation in
(28) yields:

1
T(x)=—“7p’(x).

Substitution of this formula into the first formula in (28)
results in the equation:

") —kpx)=0, 29

which is identical to the second equation in (28) for the shear-
ing stress.
Equations (28) and (29) have the following simple solutions:

7(x) = C,sinhkx, (30)

where the antisymmetry of the function 7(x) and the symmetry
of the function p(x) are taken into account.

Introducing (30) into the first equation in (28), we conclude
that the constants C, and C, are related as follows:

C2 = k[.LCl .

Evidently, since there is only one independent constant of
integration in the solutions (30), all the three boundary condi-
tions in (16) cannot be satisfied. Using the nonzero condition,
we have:

p(x) = C,coshkx,

AaAt

_ _ AaAt
'™ kkcoshkl’

2= coshkl”
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The maximum interfacial stresses occur at the end cross-
sections:

AaAt
pmax = lu‘ K .

AaAt
T =—KO;— tanhk/,

Note that the distributed peeling stresses determined by the
second formula in (30) do not satisfy the conditions of self-
equilibrium. Therefore, concentrated forces

AaAt

1 !
N, =——S0 pX)dx=p (€3Y)

2
should be introduced at the end cross-sections to satisfy these
conditions (Suhir, 1986).

Comparing the formulas for the maximum shearing stress in
the cases K=0 and K— oo, we conclude that when the spring
constant K increases from zero to infinity, the maximum
shearing stress increases by a factor of

=Ll VT
k
Since the ¢ value changes from e=0 (in the cases of
h/hy=D,/D;) to e=3 (in the cases of D,>>D, or
D, >>D,), the factor n changes from =1 to n =2, Therefore,
for thermostats characterized by small ¢ values (and small
peeling stresses), the through-thickness sifffness has a small
effect on the maximum shearing stress. This effect increases
with an increase in the e value, but even for a significant dif-
ference in the flexural rigidities and thicknesses of the ther-
mostats strips (when the parameter e is close to 3) the factor y
does not exceed two. This justifies the fact that in an approx-
imate analysis the maximum shearing stress can be determined
without considering the effect of the finite through-thickness
stiffness at all. This is, of course, a conservative approach,

tanhk/= p7 .,
K

Journal of Applied Mechanics

which results in a reasonable overestimation of the actual
stress.

Numerical Example

The numerical example is carried out for a molybdenum/
aluminum thermostat. The following input data is used:
E, =3.247x10°MPa, »,=0.293, o, =4.9%x10-% 1/°C,
h;=2.54 mm, E,=7.033x10*MPa, »,=0.345,
a,=23.6x10-¢ 1/°C, h,=2.54 mm, [=25.4 mm,
At=240°C.

The calculated stresses 7(x) and p(x) are plotted in Fig. 2 as
solid lines. The maximum shearing stress occurs in the vicinity
of the cross-section x=0.9 and is about 138MPa. The max-
imum value of the peeling stress takes place at the end cross-
section and is 920MPa. The calculated spring constant value is
about K=2.7x103N/m3?. The stresses predicted by the
simplified formulas, assuming K— oo, are shown as dotted
lines. As evident from the obtained data, these formulas con-
servatively predict the maximum shearing stress, but
underestimate the extremes of the peeling stress. (Note that
since the formula (31) determines the maximum force at the
end cross-section, the corresponding stress shown in Fig. 2 was
evaluated, assuming that this stress is distributed over the
same length as in the nonsimplified analysis.) Stresses
calculated on the basis of the present theory for a hypothetical
case of a very large spring constant (K = 102Ib/in?) are shown
as broken lines. These curves are rather close to the curves, ob-
tained on the basis of the approach, assuming infinitely large
through-thickness stiffness.

Conclusion

An engineering theory of interfacial stresses in thermostat-
like structures is developed. In this theory the boundary condi-
tions at the short edges are satisfied not only for the normal
stress in the thermostat strips, but also for the interfacial
stresses. A numerical example showed that the formulas, ob-
tained on the basis of a simplified approach assuming infinite-
ly large through-thickness stiffness, satisfactorily predict the
maximum shearing stresses, but may underestimate the peel-
ing stresses. Therefore, it is recommended that the latter be
evaluated on the basis of the more accurate analysis presented
in this paper.
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This paper studies the three-dimensional transient interlaminar thermal stresses in
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boundary conditions. The transient temperature field and transient interlaminar
thermal stresses of the laminate are obtained by solving the heat conduction equa-
tion and by a zeroth-order perturbation analysis of the equilibrium equations,
respectively. Numerical results for a four-layer angle-ply laminate have shown that

the interlaminar normal stress near the free edge is significantly higher than that in
the interior region and it increases rapidly with the fiber volume fraction.

Introduction

With the increasing applications of advanced fiber com-
posites under severe environment, the thermomechanical
behavior of such materials, especially metal and ceramic
matrix composites, has received considerable attention. This is
mostly because that the temperature at which the metal and
ceramic composites could be utilized is much higher than that
for polymer-based composites.

Among the tremendous research interests in the analysis and
design of advanced fiber composites, the problem of ‘‘free-
edge effect” of laminated composites has atiracted con-
siderable attention. Both experimental studies and approx-
imate analytical solutions have indicated that there exists
highly localized regions of stress concentration near laminate
free edges due to the geometrical as well as material discon-
tinuities. The highly localized, boundary layer stress coupled
with the relatively low interlaminar strength is often detrimen-
tal to the durability of laminated composites. Thus, there is
the need to establish adequate analytical and experimental
techniques to investigate the interlaminar stress behavior near
free edges of laminates due to thermal and mechanical
loadings.

Considerable effort has been made to investigate the
behavior of edge stresses. Pipes and Pagano (1970) first
employed finite difference method to study the nature of in-
terlaminar stresses in symmetric composite laminates due to
mechanical loadings. Wang and Crossman (1977) used the
finite element method to investigate the edge effect in sym-
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metric composite laminates subjected to uniaxial tension and a
uniform temperature change. Wang and Dickson (1978) ex-
tended the Galerkin procedure to reveal the singularity
behavior of interlaminar stress in composite laminates. Wang
and Yuan (1983) presented a hybrid finite element method for
analyzing the composite laminate elasticity problems with
singularities.

The interlaminar edge stress problem also has been exam-
ined by analytical techniques. For example, Pipes and Pagano
(1974) developed an approximate elasticity solution for the
response of a finite width, angle-ply composite laminate under
uniform axial strain and yielded the sinusoidal-hyperbolic
series solution form of the interlaminar stresses. Hsu and
Herakovich (1976, 1977) used the perturbation method to ob-
tain a zeroth-order solution for edge effects in angle-ply com-
posite laminates subjected to a uniform strain. Wang and
Choi (1979, 1982) employed the Lekhnitskii’s complex
variable potential approach to investigate the singularity of
boundary layer stresses in composite laminates subjected to a
uniform extension and a uniform temperature change. Recent-
ly, Kassapoglou and Lagace (1987) obtained the closed-form
solutions to the problem of interlaminar stresses at a straight-
free edge of cross-ply and angle-ply laminates using the force
balance method and the minimum complementary energy
principle. Comparison of the existing results of studies of free-
edge effect has shown good agreements in the far field and ap-
preciable difference near the laminate boundary.

To the authors’ knowledge, there is a lack of fundamental
understanding of the interlaminar stress concentration in-
duced by transient temperature field. Wang and Chou (1987,
1988) initiated the study of this problem. Transient thermal
stress analyses in unidirectional fiber composites have been
reported by Wang and Chou (1985, 1986) and Wang, Pipes,
and Chou (1986). With the development of laminated metal
and ceramic matrix composites for elevated temperature ap-
plications, there is certainly the need for better understanding
of the transient interlaminar stresses.
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Fig. 1 Geometry of the angle-ply laminate for analytical modeling

This paper analyzes the transient heat transfer and ther-
moelastic problem of a balanced, symmetric angle-ply
laminate by dividing the plate into the interior and boundary
layer regions. In the interior region of the laminate, the stress
and displacement are studied by the classical laminate theory,
while in the boundary layer region, a perturbation method is
applied to the elastic governing equations. This approach is
adopted because the transient interlaminar thermal stress in
the boundary layer region can not be assessed accurately by
the classical laminate theory due to the existence of high gra-
dient displacement and stress fields, and the three-dimensional
nature of the boundary layer effect. The Prandtl’s matching
principle of perturbation theory is imposed to match the solu-
tions of these two regions. A four-layer (—60/6), laminate is
presented as a numerical example. The boundary layer stress
singularities, and the fiber volume fraction and fiber orienta-
tion effects have been studied. The laminate thickness-to-
width ratio influence and stress solution sensitivity to the com-
posite elastic and thermal properties have also been assessed.
Finally, the transient thermal effect on boundary layer stress is
compared with that induced by the application of uniaxial
tension.

Thermal Stress Field

1 Basic Equations. A 4-ply symmetric (—0/0), com-
posite laminate is considered in this study. The laminate is of
thickness 24 and width 2b; it is infinite in extent along the x-
direction (Fig. 1). Since the thermal boundary conditions are
uniform along the surfaces y = + b (Fig. 2), the displacements
are independent of the x-axis and expressed as:

u= u(y,Z,f)
V=v(»,2,t) 4y
w=w(y,2,t)

The time variable ¢ will not be written out for convenience in
the following discussions. The equilibrium equations are

00,/0x+ 07y, /0y + 87, /07=0
074,/0x+ d0,/0y + 07, /02 =0 )
07, /0x + 07, /0y + d0, /02 =0.

Here, ¢ and 7 denote normal and shear stress, respectively.
The stress-strain relations for orthotropic materials are
(Vinson and Chou, 1975; Vinson and Sierakowski, 1986):

0, =Cy 16+ Cpaey + Cpye, + Civyy — 61 T
0, =Cpay + Cpe, + Coyep + Copvy — B2 T

0, =Cp3e, + Cp3ey + Cize, + Cigyyy — B3 T 1€)]
Tyz = C44’sz
Tz = CSS'sz

Ty = Cie€x + Cre€y + Cyge, + Cos¥ay —B6 T

602/ Vol.56, SEPTEMBER 1989

Fig. 2 Thermal boundary conditions

where
Br=a,Cp+0,Cpy + 0, Cpy +ay, Cig
Br=0,Cia+ 0, Cyy + 0, Co3 + 1,y Co
By=0,Ci3+0,Chy + 0, Cs3 + ,,, Cg
B =0, Ci5+a,Cyg + a, Cy + 0y Co-

In equation (3), C;; are elastic stiffness constants; a,, a,, o,
are coefficients of thermal expansion, and T = T(y, 1)
denotes the transient temperature field (Appendix A). e, is
given in Appendix C.

Using the stress-strain equation (3) and strain-displacement
relationship (Vinson and Chou, 1975; Vinson and
Sierakowski; 1986), the equilibrium equations are written in
terms of displacements.

Cos02u/0y? + Cs50%U/072 + Crgd?v/8y?
+ Cy60*w/dydz =BT/ dy
Cos0u/3y* + Cp8%0/3y? + C,,0*v/322
+(Cpy + Coy)d*w/3y0z2=B,0T/dy @
Cys0%u/0y0z+ (Cyy + Cy3)320/0y8z + Cpy02w/3y*
+ Cyy P w/d22 = 0.

The following nondimensional variables and constants are in-
troduced: U = u/h, V = v/h, W = w/h, Y = y/b, Z = z/h
and Q;; = C;/Cx, Where C,, is the largest value among all
the C;’s. Thus, the equilibrium equations could be written as
follows after eliminating (4/b) and higher-order terms (Hsu
and Herakovich, 1976, 1977).

Qss82U/322 =0
QL2 V/8Z2 =0 )
Q33 62 W/322 =0.

The solution of equation (5) assumes the following general
form in terms of functions A, B, C, D, E, and Fof Y.

U=A(Y)Z+B(Y)
V=C(Y)Z+D(Y) ©
W=E(Y)Z+F(Y).

With the following conditions of symmetry with respect to the
laminate midplane,

aU(Y,0)/8Z=0
V(Y,0)/0Z=0 M
W(Y,00=0,

the solution of equation (6) becomes
U=B(Y,1)
V=D(Y,t) (8)
W=E(Y,1)Z.

2 Solution for the Interior Region. The classical plate
theory is assumed to hold in the interior region, such that o, =

Ty, = Ty, = 0. Utilizing the condition of ¢, = 0, and equa-
tions (3) and (8), we obtain

E(Y,t) = (B;/Cy)T(Y,1). ®
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It is assumed here that 4/b is sufficiently small (< 10 percent)
and can be neglected. Obviously, the conditions of 7,, = 7,
= 0 are satisfied with the solution form of equation (8).
The symmetry conditions at the laminate central plane are
U(0,2)=0
V(0,Z)=0
aW(0,2)/0Y =0.
Equations (10) lead to ’
B(Y)=—B(-Y) D(Y)‘=—D(—Y).
Furthermore, the requirement of continuity of displacements
in U and Vresults in
BO=B® =, =B(Y) DO=D® =, =D(Y).

Here, the superscripts denote the laminae in the laminate.
Displacement continuity in W is not satisfied in the present
zeroth-order approximation. Continuity in W could be
achieved only when higher-order terms of (4/b) are included.

To obtain explicit expressions of B(Y,?) and D(Y,t), it is
necessary to consider the force equilibrium.

EF), =an(k)tk=0

LF, =Lr, "1, =0 (1)
where ¢, = h,/h, h; = thickness of the kth laminaand # = £
h,.So, B(Y, t)and D(Y, 1) for each layer are given by
(h/D)B(Y,1) =g, Q,(Y,1) —q,Q4(Y,1)1/(q2q5 — 45*)
(h/BYD(Y,t) =qsQ,(Y,1) —(]3Q4(Y,t)]/(q32 ~(>q5)
where
O\(Y,1) =EZ[(Cp3/ C33)B3 — Br1 WO T (Y, 1) by,
G, =LCp, W hy q;=EC)s®hy qs=LCs X hy
Q4(Yat) = E[(C36/C33)B3 “66] (k)I(k) ( Y,t)hk
TO(Y,H)=[3TH (Y,1)dY.

(10)

(12)

The displacement field in the interior region is as equation (8),
and B(Y,t), D(Y,t), and E(Y,?) are given by equations (9)
and (12).

3 Solution for the Boundary Layer Region. Following
Hsu and Herakovich (1976, 1977), a stretching transformation
parameter is introduced.

p=(1-Y)/(h/b) (13)
Then the equilibrium equation (4) becomes
Qe U/ + Qs550° U/BZ2 + Q402 V/
— Q3602 W/0MIZ = (h/b)} (Be/ Cinax)dT/3Y
Q2 U/0m% + 0,02 V/dn? + Q,0*V/3Z2 14)

— Q3+ Qu)PPW/M0Z = (h/b) (By/ Cina)dT/0Y
~ Q46?U/0m0Z — (Qp3 + Qu)3* V/300Z
+ Q0> W/ + Q3,8° W/3Z* = 0.

To satisfy the Prandtl’s matching principle, the following ex-
pressions of the displacement field are assumed.

U® =B(Y,t) + PeMcos(aZ)

V) = D(Y,t) + ReMcos(aZ)
W = E(Y,1)Z + SeMsin(aZ)

15)

Here, B(Y, 8, D(Y, ©), and E(Y, f) are the interior region
solutions of equations (9) and (12); P, R, and S are undeter-
mined coefficients; « is an undetermined positive quantity; A
is the characteristic.

Substituting the. U%), V) and W©® expressions into the
equilibrium equations (14), we obtain

Journal of Applied Mechanics

(QesN — Qssa?)P+ Q)N R — Q36 haS=0

Q2N P+ (QpN? — Quua®)R ~ (Qy3 + Qu)AaS=0

Q36 AP + ( Q3 + Qua)NaR + (QuuN* — Q330%)S =0.
For nontrivial solutions of P, R, and S, the determinants of

(16)

these algebraic equations must vanish and, thus, the
characteristic equation is
QesN* — Oss o? Q267\2 — Oy
NS 00N = Quo? —(Qn + Qu)ha | =0.
O (O3 + Qua)hx QuuN — Qg2
(17

The six roots of X have been found in the following forms (Ap-
pendix B):

ANa=xa®y
Nag=xbPg

Nsg=xcHo

(18)

where ¢'¥), b1} and c'®) are three positive constants. The
positive roots of A\ are dropped to avoid divergence in the
displacement field.

Thus, the displacements in the boundary layer region can be
written as follows:

U® =B(y,t) + (Pe~%1 4 P,e~ben 4 Poe~t)cos(aZ)
VO =D(Y,t) + (R,e” % + Rye b1 + Rye*cos(aZ) (19)
W =E(Y,)Z + (S, + S,e~b + S, c)sin(aZ).

There are ten unknowns for the kth layer solution (P, P,, P,
Rl’ Rz, R3, Sl’ Sz, S3, and O{).

The available equations are: (i) three stress boundary con-
ditions, ¢, (b, ) = 0, 7,,(b,2) = Oand 7,, (), 2) = 0, (i) six
equilibrium equations {16), and (ii/) the integrated equilibrium
condition

1527,(0,2YhdZ = §\7,. (Y, 1/2)bdY.

The nine equations of (/) and (i) are summarized next:
OnaR; + OnbRy + QpcRs + 003 S + 0535,

+ 02383+ QP + QpbPy + QyycPy = Fy/acos{aZ)
Q2R + QbR + QyCR;3 + O3 S| + Q3652

+ Q1683 + QgsaP) + Qo bPy + Qg CP3 = Fy/ acos(aZ)
OuRy + QuRy + QuuRy — Qug0S) — QuabS, — QyecS3=0
B,R +C,S;+A4,P;=0
D,R +ES +B,P =0
B,R,+C, S, + A, P, =0
D,R, +E,S,+B,P,=0
BR;+C.S;+A.Py;=0
D.R;+E.S;+B.P;=0

20)

@n

where

Fi==0pDD—QnE, — QDB+ 3,T,/Cryx
Fy=—0yDD—~QyE, — QDB+ BT,/ Cpax

Ag= Qe —Qss  Ap=0Qb*—Qss  Ac=Q" — Oss

B,= Qyd B, = Qyb? B, =0y

Co= Oya Cp=03b Ce=0x¢

D,= Qna*-Qu Dy=03pb*-Qu D.=0npc-Qu
E,= (Qyn+Qua E,=(Qn+Q0u)b E.=(Qn+0u)k

DQ, =E[(Cy/Cy3)B;— ﬁz](k) T,hy
DQ4 = E[(Cas/csa)33 - 56} ) Tohy
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Tabie 1

Fiber thermoelastic properties

0,(1/°¢0) X1 [
P B omr a2 [ e2s | vy { vy | LT [ K2 ’
(g/cm) | (Gpa) %10 (W/m,K) (3/%g,K)
sic 3.2 406 406 169 | 169 | 0.2 | 0.2 5.2 5.2 86 86 670
Al;03f 3.9 385 | 385 | 154 | 154 |0.26 | 0.26 8.5 8.5 30 30 800
7300 | 1.77 221 14 9 1.8 | 0.2 .25 1 10 84 8.4 920
pP: density

E1,E2,G12,G23: axial,transverse and shear Young's modulus

V12 /Y53 Poisson's ratio

oy, ‘12 :thermal expansion coefficient
K1,K2: thermal conductivity

Cp: specific heat

Table 2 Matrix thermoelastic properties
p E G v o (1/%) K cp
(gread | (GPa) «10° W/mKx) | (J/kg,K)
BG 2.2 63.7 28 0.21 3.25 1.09 711
LAS 2.42 85 35 0.22 1 1.5 800
Al 2.1 69 26 0.33 23.6 300 481
Mg 1.7 45.5 17 0.33 26 169 67

BG: borosilicate glass

LAS: lithium aluminosilicate
Al: aluminum

Mg: magnesium

Table 3 Identifications ot composite systems
fiber
sic Aly03 7300
matrix
8G (11) (12) (13)
LAS (21) (22) (23)
Al (31) (32) (33)
Mg (41) (42) (43)

DB=(q;DQ, - 4,D0Q4)/(a:q5 — a3%)
DD = (qsDQ, — q;DQ4)/(q3* — 4:45)
El =63T0/C33'

Therefore, the P, R, and S could be solved in terms of «. To
determine o, the force equilibrium equation (20) must bé
considered.

Numerical Resuits

A four-layer (—6/0), laminated plate is taken as a
numerical example. Each layer is 5 mm in thickness (%), 200
mm in width (b). The fiber and matrix thermoelastic proper-
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Fig. 3 Transient temperature distributions
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Fig. 4 Transient interlaminar thermal stress of a SiC/BG (— 45 deg/45
deg)g laminate for V; = 30 percentand T, = 1°C

ties come from Chou and Yang (1986), Chamis (1984), Bren-
nan and Prewo (1982), and are listed in Tables 1 and 2.
SiC/borosilicate glass (BG) laminate is used as a baseline com-
posite system for demonstration of the results, and numerical
computations are also performed for eleven other composite
systems (Table 3).

From Appendixes B and C, the eigenvalues of the
characteristic equation (17) are obtained for (—45 deg/45
deg), SiC/BG laminate.

M =—ave,=~—1.1018x
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Fig. 5 Detailed edge stress distribution of Fig. 4
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Fig. 6 Transient interlaminar thermal stress of a (—45 deg/45 deg)
SiC/BG laminate for V; = 30 percentand T, = 1°C

N =—avVw,=—0.7917a
A= —avw; =~ 1.0«

The solution of equation (21) is

R, =0.5555%10-%{T,/[acos(xZ)]}
R,=0.3129% 10-%{ T, /{acos(aZ)]}
Ry=—-0.9247x10-%{ T, /[acos(eZ)]]}
S;=-0.7380x 10~ { T, /[acos(aZ)]}
S, = ~0.2120x 10~ %{ T, /[acos(aZ)]}
S, =0.9247 x 10~%{ T, /[cccos(Z)]}
P,=-0.2576 x 10~ %{ T, /[acos(Z)]}
P,=0.1451x10~%{ T, /[acos(aZ)]}
P, =0.9247 x 10~ %{ T, /[cccos(@Z)1}.
Equation (20) leads to a transcendental equation for deter-
mining « at Z= 1/2 and different time ¢.
t=10s 2 min. 20 min. oo
o=6.2831 6.2833 8.0614  8.9868

Then, the displacement field is readily obtained from equation
(19), and the transient thermal interlaminar stresses are de-
rived from the displacement field.

The transient temperature profile is depicted in Fig. 3 for a
(—45 deg/45 deg), SiC/BG laminate of ¥V, = 30 percent.
There exists a sharp variation of the temperature field along
the width of the plate at the beginning of the sudden heating,
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Fig. 7 Fiber volume fraction effect on interlaminar normal stress for a
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Fig. 8 Fiber orientation effect on interlaminar normal stress for a
SiC/BG (- 6l)g laminate at T, = 1°C,t = 2 min, V; = 30 percent,and Y
= 1.0

and it is obvious that the temperature distribution becomes
uniform as time tends to infinite,

The transient interlaminar normal stress distribution of the
(—45 deg/45 deg), SiC/BG laminate which is subjected to a
sudden edge heating of the magnitude 7,= 1°C at t=0" is
demonstrated in Fig. 4. No stress singularity is found as a con-
sequence of the assumed displacement field, but it is apparent
that the interlaminar normal stress increases very significantly
as approaching to the boundary (Y= 1). The detailed local in-
terlaminar normal stress distribution (¥ = 0.9 ~ 1.0) is
shown in Fig. 5. The stress at ¥ = 1.0 is about 3 ~20 times
higher than that at Y = 0.99 for different transient times. This
indicates the existence of high stress concentration. As the
heating proceeds, the overall interlaminar normal stress in-
creases smoothly, but the stress which is very close to the
boundary remains almost constant. On the other hand, the in-
terlaminar normal stress tends to zero away from the free edge
of the laminate due to the adoption of the classical laminate
theory in the interior region.

Unlike the interlaminar shear stresses induced by axial ten-
sion, which are in the same order of magnitude as the in-
terlaminar normal stress (Hsu and Herakovich, 1977), the
transient thermal interlaminar shear stress 7,, in Fig. 6 is very
small compared to the interlaminar normal stress.

The fiber volume fraction effect is studied in Fig. 7. The in-
terlaminar stress increases significantly with the fiber volume
fraction due to the composite stiffness increase. For (—8/8),
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Fig. 10 Parametric studies of stress solution sensitivity to composite
elastic and thermal properties, SiC/BG (— 45 deg/45 deg)g laminate is
used as the baseline materials. t = 2 minand Y = 0.99.

angle-ply laminates, the interlaminar stress reaches its peak
value when § = 45 deg (Fig. 8).

The laminate thickness-to-width ratio effect is investigated
in Fig. 9. The interlaminar stress increases with the A4/b value,
and the stresses (at Y = 1.0) are the same for different 4/D
values. The present analysis is based upon the thin laminated
plate theory, and neglects A/b and higher-order terms.
Therefore, the theoretical prediction will be more accurate for
smaller 4/b values.

Figure 10 provides the parametric study of the stress solu-
tion sensitivity to the composite elastic and thermal properties.
The Young’s modulus (£,) and thermal expansion coefficient
() along the plate thickness direction have a more significant
effect on the stress solution than the thermal conductivity (K3)
and specific heat (C,). This is so because the linear stress-
strain relationship is adopted and terms containing K3 and C,
are in negative exponential form in the present analysis.

Figure 11 presents the interlaminar thermal stresses of
twelve composite systems (Table 3) versus their moduli. The
data are generated for (—45 deg/45 deg), laminates at V, =
30 percent, ¥ = 0.99 and r = 2 min.

Finally, the transient thermal effect in the boundary layer
identified from the present analysis is compared with that in-
duced by uniaxial tension for a (45 deg/—45 deg),
graphite/epoxy laminate (Hsu and Herakovich, 1977). The
uniaxial tensile strain e, is assumed to be 10~2 for mechanical
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Fig. 12 Comparison of transient thermal effect and axial tension

loading, and the boundary layer thermal condition is 7, =
10°C for computing the transient thermal effect. It can be seen
from Fig. 12 that the interlaminar normal stress tends to zero
away from the boundary layer (Y < 0.8), and increases sharply
as one approaches to the free edge for both cases.

Conclusions

(1) Transient interlaminar thermal stresses within the
boundary layer region of an angle-ply composite laminate are
three-dimensional in nature. They can not be determined by
the classical laminate theory, but they have been examined ex-
plicitly by the present method.

(2) The interlaminar stress o, is very significant close to the
free edge of the laminate and increases with fiber volume frac-
tion due to the composite stiffness increase.

(3) The interlaminar normal stress reaches its maximum at ¢
= 45 deg for (— 0/8), laminates, and a minimum for unidirec-
tional composites (¢ = 0 deg or 90 deg).

(4) The interlaminar thermal shear stress is small compared
to interlaminar normal stress.

(5) The overall interlaminar normal stress increases with the
plate thickness-to-width ratio (4/b), but the peak value of in-
terlaminar stress (at ¥ =~ 1.0) is independent of (A/b). The
present analysis is suitable for small (2/b) values.

(6) The sensitivity of the stress solution to composite ther-
mal and elastic properties is of practical interest. The results of

- these parametric studies indicate that the elastic stiffness and

thermal expansion coefficient have a more severe influence on
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the stress solution than the thermal conductivity and the
specific heat (see Fig. 10). This is due to the assumption of the
linear stress-strain relation and because the terms containing
specific heat and thermal conductivity are in negative ex-
ponential form.

Discussions

(1) There is the need to define the boundary layer width on
a rational basis. Pipes and Pagano (1970) defined the bound-
ary layer width as the distance from the boundary at which the
interlaminar shear stress is about three percent of the value
calculated at the free edge. Since the interlaminar shear stress
is relatively small in the present case, the applicability of this
definition is questionable. Wang and Choi (1982) used an
alternative definition of boundary layer width based on strain
energy density consideration and defined the boundary layer
width as the distance from the free edge where the strain
energy density is three percent higher than that obtained in the
far field.

In the present studies of transient thermal stress, the bound-
ary layer width based on the definition just discussed changes
with time. There is the need of further studies of boundary
layer width for the transient case.

(2) There is still the uncertainty about the existence of the
singular property of free-edge stresses from both
mathematical and physical viewpoints. No mathematical
stress singularity is found based upon the present method of
analysis and assumed displacement field.

(3) Delamination of composites could occur due to the
coupling of low interlaminar strength and relatively large in-
terlaminar stresses induced by transient thermal effects.
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APPENDIX A

Temperature Field

The heat conduction equation for general anisotropic solid
of constant conductivity coefficients without internal heat
generation in rectangular coordinate system is (Ozisik, 1980):

K32 T/ox* + K,,0° T/3y? + K13 02 T/022 + 2K, T/3x9y
+2K,302T/8x02 + 2K 302 T/8ydz = pC,dT/dt.

Here, K; are the coefficients of heat conduction.

We consider an x-direction infinite plate subjected to a
temperature field 7= T, on two edges (y= = b) at time t=0"*
(Figs. 1 and 2) and assume that temperature field in each layer
is independent of the thickness direction, i.e., T=T(y, £) only.

The heat conduction equation for each layer is

»T/9y* =(1/g*)aT/at (A2)

where g* = K,/pc,, K,, p and c, are the coefficient of heat
conduction in y-direction, mass density, and specific heat,

(A1)

respectively.
The boundary and initial conditions are
T(+b,t)=T, (A43)
T(y,0)=0. (A%

The solution of governing equation (42) by the method of
separation of variables is

T=T,(1+XB,cosw,Ye Pn') (A5)
where
B, =(—1)y"4/2n—l)w
D, =I(n—1/2)ng/b)?
w,=(n—1/2)w
Y=y/b.

APPENDIX B

Solution of Characteristic Equation
The expansion of the characteristic equation (17) is
CN + Ca? N+ Cya* N+ Cya® =0 (B1)
where
C, =(Q22Q65 — 226" Q4
Cy=000s6% + 03306 + Q6 Q23” + 2023044 Qo6 — @22 Q13 Qs
= 02Q44Qss — 2023 Q26 Qa6 — 2014 P26 D36
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Cy= 0330065 + 022033055 — Q44 O36* — Qs500” ~ 2020055 K, =KaVi+ K,V

Co= = 03304 0ss. )
Let A = +aVw, then equation (B2) becomes

C 0} + Cyo? + Cyw+ C, =0. (B2)
Let w=vy—C,/(3C,), where C,#0, then equation (B2)
becomes

Y +py+q=0 (B3)

where
p=Cy/C,—C,2/(3C,?)
q=02C,}/27C;3)—(C,C)/(3C,» + C,/C,.
Some properties of equation (B3) are discussed in the follow-
ing based upon the discriminant A = (¢/2)? + (0/3)%:

Case 1: A>0, There exists one real root and two complex
roots.

Case 2: A =0, There exist three real roots, two of them are
equal.

Case 3: A<O0, There exist three unequal real roots.

Let vy =¢ + ¢, then the characteristic equation (B3) could be
separated into two equations

¢ +Y’=—gq
¢y =—p/3 (B4)
which give the following solutions
$*=[—q+ (£Vg’ +4p*/27)1/2
V=[-g— (V@ +4p*/21))/2. (BS)

APPENDIX C

Rule of Mixtures

The rule-of-mixtures which is used to predict the composite
elastic and thermal properties from the fiber and matrix
properties is as follows (Chamis, 1984):

E\=EnV;+E,V, E,=E;=E,/[1-VV,1-E,/Ep)|
G,=G;3=G,/[1 _\/Vf(l - Gm/Gﬂz)]

Gy =G, /1 -VV,(1- G, /Gpy)]

Vi =V =Uma Vet v, Vi vy =u =E,/(2Gy) -1
ay=(anEqVi+a,E,V,)/E
ay=ay=apVV+ (1=NV) (1 + Vv, En/E Dy,

vy = vy = Eyup/E,

608/ Vol. 56, SEPTEMBER 1989

Ky =Ky=(=VV)K, +K,NV /11 -VV)A+K ,,/Kp)].
(cn

From the basic thermoelastic properties of the composite,
equation (C1), the elements in the stiffness matrix of stress-
strain relationship in the direction of material principal axis
are (Vinson and Chou, 1975; Vinson and Sierakowski, 1986)

Cii = -vyvyp)E /A Cry =y + v 13)Ey/A

Cp3=(vy3 +v103)E5/A Cp=(1—vy3v3)E/A

Cps = (vg3 + vy v13)E3 /A Cyy =1 —vppuy)E/A

Cﬁ =G Css =Gy,

C6_6:GIZ' (C2)

Here A = 1- VgV — Uy3zl3p — VUj3l3 — 21)211)32013 and the
underlined subscripts 1, 2, and 3 denote the principal material
axis. The angle between the fiber direction and the reference
axis is defined as #. The elastic constants and thermal expan-
sion coefficients in terms of the reference axis are (Vinson and
Chou, 1975; Vinson and Sierakowski, 1986)

Cyy = Cy;c0s*0+2(Cyy +2Cg4)c0s205in*0 + Cypsin'f
C2=(C); + Cy — 4Cg)c0s20sin?0 + Cy, (cos*d + sin0)
C\3 = C}3¢05%0 + Cy35in?0
Cig = — Cycosfsin®@ + Cy; cos*bsinf
~(Cyy +2Cg)cosbsinf(cos?6 — sin?6)
Cpy = Cyy5in*0 + 2(Cyp + 2Cyg)c0s?6s5in*6 + Cy5c08*0
Cy3 = Cy35in0 + Cy3c052%0
Cy5 = — Cycos*fsing + Cy cosbsin’g
— (Cy, +2Cgg)coshsinb(cos?d — sin’f)
Cyy=Cy
C36 = (Cy3 — Cy)cosbsing
Cyq = C4408%0 + Cs5in0
Cys = (Css — Cyy)cosbsing
Css = Cs5¢08%0 + Cyysin?0
Cos =(Cyy + Cp —2Cp)cos?fsin’0 + Ceglcos®0 ~ sin?6)?
a, =0, c08%0 + or,5in0
o, = o 5in*0 + oty 0520
ozz =03

Qy, = (a) — az)cosfsing. (c3)
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The Extended Free Formulation of
Finite Elements in Linear Elasticity

Carlos A. Felippa

Department of Aerospace Engineering The free formulation of Bergan and Nygard (1984) has been successfully used in the

Sciences construction of high-performance finite elements for linear and nonlinear structural
and Center for Space Structgrei alnd analysis. In its original form the formulation combines nonconforming internal
ontrols,

displacement assumptions with a specialized version of the patch test. The original
Sformulation is limited, however, by strict invertibility conditions linking the as-
sumed displacement field to the nodal displacements. The present paper lifts those
restrictions by recasting the free formulation within the framework of a mixed-
hybrid functional that allows internal stresses, internal displacements, and boundary
displacements to vary independently. This functional contains a free parameter and
includes the potential energy and the Hellinger-Reissner principles as special cases.

University of Colorado,
Boulder, Colo. 80309-0429

The parameter appears in the higher-order stiffness of the element equations.

1 Introduction

Bergan and Nygdrd (1984) have developed the so-called free
formulation (FF) for the construction of displacement-based
incompatible finite elements. This work consolidated a decade
of research of Bergan and co-workers at Trondheim,
milestones of which may be found in Bergan and Hanssen
(1976), Hanssen et al. (1979), and Bergan (1980). The products
of this research have been finite elements of high perform-
ance, especially for plates and shells. Linear applications are
reported in the aforementioned papers as well as in Bergan
and Wang (1984), Bergan and Felippa (1985), and Felippa and
Bergan (1987); whereas nonlinear applications are presented in
Bergan and Nygérd (1985) and Nygérd (1986). By ‘‘high per-
formance’’ it is meant that solution of engineering accuracy
can be obtained with coarse meshes of simple elements, and
that those elements exhibit low distortion sensitivity.

The original FF was based on nonconforming displacement
assumptions, the principle of virtual work and a specialized
form of Irons’ patch test that Bergan and Hanssen (1976)
called the individual element test. A key ingredient of the FF is
the separation of the element stiffness matrix into the sum of
two parts, called basic and higher-order stiffness, respectively.
The basic part is constructed for convergence and the higher
order part for numerical stability and (in recent work)
accuracy.

An intriguing question has been: Does the FF fit in a varia-
tional framework? This was partly answered by Bergan and
Felippa (1985), who showed that the basic stiffness part was
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equivalent to a constant-stress hybrid element. But persistent
efforts by the present author to encompass the higher-order
stiffness within a hybrid variational principle were unsuc-
cessful until the development of parametrized mixed-hybrid
functionals in Felippa (1989a, 1989b). With the help of these
more general functionals it is possible to show that the FF is a
very special type of mixed-hybrid element which does not fit
within the classical Hellinger-Reissner principle. In retrospect,
the classification of FF elements as hybrids is not surprising.
Under mild conditions studied in the Appendix, hybrid
elements satisfy Irons’ patch test a priori, and the FF develop-
ment has been founded on that premise.

To encompass the FF within the hybrid framework, the
following assumptions must be invoked.
(1) A specific hybrid functional, identified as Hg in the se-
quel, is constructed. This functional depends linearly
on a parameter v.

(2) Three fields are assumed over each element:
(@) a constant stress field,
(b) an internal displacement field u defined by #,
generalized coordinates collected in vector q, and
() a boundary displacement field d defined by n,
nodal displacements collected in vector v. Bothd and u
must represent rigid body motions and constant strain
states exactly.

(3) The number of generalized coordinates, n,, equals the
number of nodal displacements, n,, and the square
transformation matrix G relating v = Gq is
nonsingular.

In Felippa (1989b) it is shown that substituting the finite ele-
ment expansions into l'[$ , rendering the functional stationary
with respect to the degrees-of-freedom, and eliminating both
internal fields by a combination of static condensation and
kinematic constraints, leads to the FF stiffness equations in
terms of the nodal uisplacements v. The parameter y appears
as a coefficient of the higher-order stiffness. These stiffness

SEPTEMBER 1989, Vol. 56/ 609
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equations can be readily implemented into any displacement-
based finite element code.

This variational pathway to FF is of interest for two
reasons. First, it explains the behavior of FF elements as
regards convergence, stability, and accuracy. Second, it opens
up the door to extensions that are not obvious from a physical
standpoint. Two such extensions involve: retaining higher-
order stress fields, and allowing more internal displacement
modes than nodal displacements, that is, n, > n,. The main
purpose of this paper is to study these two extensions, which
are shown to be closely related. The resulting framework for
deriving finite elements in elasticity is called the extended free
formulation (EFF).

2 Governing Equations

Consider a linearly elastic body under static loading that oc-
cupies the volume V. The body is bounded by the surface S,
which is decomposed into S: S; U S,. Displacements are
prescribed on S, whereas surface tractions are prescribed on
S,. The outward unit normal on S is denoted by n = n;.

The three unknown volume fields are displacements u # u;,
infinitesimal strains e = e;;, and stresses o=0,;. The problem
data include: the body force field b = b; in V, prescribed
displacements d on S,;, and prescribed surface tractions t=t¢,
onsS,.

The relations between the volume fields are the strain-
displacement equations

=1 1 .
e=——(Vu+ Vv7u)=Du or ej—~(u; +u;;) in V, ¢))

the constitutive equations
o=Ee or o;=E e, in V, 2

and the equilibrium (balance) equations

—dive=D*e=boro;;+b;=0in V, 3)

in which D* = — div denotes the adjoint operator of D = 1/2
(Vv+v7).

The stress vector with respect to a direction defined by the
unit vector v is denoted as ¢, =¢.v, or o,; = o,0;. On S the
surface-traction stress vector is defined as

6, =0.1, OF 0,;=0yN;. )

With this definition the traction boundary conditions may be
stated as

a,,:for o,-jnj=f,on S 5
and the displacement boundary conditions as
u=dor u;=d, on S,. (6)

3 Notation

Field Dependency. In variational methods of approxima-
tion we do not work, of course, with the exact fields that
satisfy the governing equations (1)-(3), (5)-(6), but with in-
dependent (primary) fields, which are subject to variations,
and dependent (secondary, associated, derived) fields, which
are not. The approximation is determined by taking variations
with respect to the independent fields.

An independently varied field will be identified by a super-
posed tilde, for example, ii. A dependent field is identified by
writing the independent field symbol as superscript. For exam-
ple, if the displacements are independently varied, the derived
strain and stress fields are

¢ (V + V7)ii=Di, ¢* =Ee* =EDil. ™

An advantage of this convention is that u, e, and ¢ may be
reserved for the exact fields. »
Integral Abbreviations. Volume and surface integrals will
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Fig. 1

Internal interface example

be abbreviated by placing domain-subscripted parentheses and
square brackets, respectively, around the integrand. For ex-
ample:

02 | rav,nE| ras, 1,

[ sy sas ®)

Sd

If f and g are vector functions, and p and q tensor functions,
their inner product over ¥'is denoted in the usual manner

def
o2 | teav=| rgav,

def
®.0, = | paav={ pa,av, ©

and, similarly, for surface integrals, in which case square
brackets are used.

Domain Assertions. The notation
(@=b)y, la=bl, [a=bls, la=bls, (10)

is used to assert that the relation ¢ = b is valid at each point of
V, S, S;, and S,, respectively.

Internal Interfaces. In the following subsections a varia-
tional principle is constructed, in which boundary
displacements d can be varied independently from the internal -
displacements w. These displacements play the role of
Lagrange multipliers that relax internal displacement continui-
ty. Variational principles of this form will be called
displacement-generalized, or d-generalized for short.

The choice of d as independent field is not variationally ad-
missible on S, or S,. We must therefore extend the definition
of boundary to include internal interfaces collectively
designated as S;. Thus,

5:8,US8,US,. (11)

On §; neither displacements nor tractions are prescribed. A
simple case is illustrated in Fig. 1, in which the interface S;
divides Vinto two subvolumes: V+ and V~. An interface such
as S; on Fig. 1 has two ‘‘sides’’ called S;* and S;; which iden-
tify S; viewed as boundary of V'* and V—, respectively. At
smooth points of S;, the unit normals n* and n~ point in op-
posite directions.

The integral abbreviations (8)-(9) generalize as follows, us-
ing Fig. 1 for definiteness. A volume integral is the sum of in-
tegrals over the subvolumes:

def

Ny= Sy+de+ Sy_de. (12)
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An integral over S; includes two contributions:

def
ey | gras+ | emas, (1)
S; S
where g* and g~ denotes the value of the integrand g on S;*
and §;; respectively. These two values may be different if g is
discontinuous or involves a projection on the normals.

4 The Hu-Washizu Principle

There are several essentially equivalent statements of the
Hu-Washizu functional of linear elasticity. The starting form
used here is the four-field functional

I0%,(8,8,5,d) =—~(0°,8) + (3,6~ &), — P4,  (14)
where P is the “‘forcing’’ potential
Pd(ﬁﬁd) (b,u), +[d,,1 d]sd+[t u]S +[d,,0 d]S (15)

The function II%is called d-generalized in the sense that the
volume fields i, &, &, and the surface displacement field d are
subject to independent variations, whereas in the conventional
form of the principle the relation [d=1]g 2US; is enforced a
priori. The superscript d is used to d1stmgu1sh it from the t-
generalized variant
(6%,8)y + (7,6%—8), — 16)
in which the surface tractions f are varied independently from
the internal stress field & This is the starting form in the
classical textbook of Washizu (1968). Parametrized versions
of (16) are studied in further detail in Felippa (1989a).
Functionals that are not d or f-generalized will be called
conventional. The three versions differ only in the forcing
potential term.

5 Parametrization

Constraining the Hu-Washizu functional (14) by selectively
enforcing field equations and boundary conditions a priori
yields six functionals listed (in their conventional form) in
Chapter 4 of the monograph of Oden and Reddy (1983). Of
particular interest for the present study are the d-generalized
Hellinger-Reissner functional

I (6,5,d) = —— (5, + (7,6") — P, an
as well as the d-generalized potential energy functional
04 (,d) =——(a" "), — P (18)

These two functionals are special cases of the following
parametrized form

o ox F 1 T
I5(,5,d)=—(1-)(c",e")y

— (@€ +1(G,)y — (19

where v is a scalar. If y = 1 and 0 we obtain the functionals
114 and 114, respectively. Parametrized forms, such as (19), of
the elast1c1ty variational principles were studied by Chien
(1983).

First Variation.
" yg+(1—v)o* in V, o}%yd, +(1—v)e¥ on S

Defining the y-weighted stresses
(20)
the first variation of (19) can be written
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ST1¢ =y (e* —e°,85), — (div o7 +b, 501),
ay,ol]s, —[u—d,85,]s,
[ d,6,]5, — [&,,6d]s,-

Since d is unique on S; whereas @ and & are generally discon-
tinuous on it, the interface integrals in (21) split as follows:

—~ [t~ 03,805, - [3, - @n

- [6n _51,(“"1]3’. -

[5, ‘711,6‘115 [o;—a7 ’5ﬁ+]si+ +[6,—& 60" ] -
fi—d,50], =[u+ —d,55," ++[u dBa] )
[,,8d]s, —[aa‘,éd] ++[a,,,6d] _=[a} —an,(Sd]S

Setting the first variation to zero and takmg (22) into account,
the Euler equations and natural boundary conditions for y#0
are found to be

(" =e%)y, (div o7 +b=0)y, [0} =1l;,,
[0,, ZGZ]Sd, [ll= (i]sd: IUZJ“ ‘orer:O]Si’

[}~ —07=0l5,, [u* =u~ =dlg,, [0;~

23)

0117=0]S,- .

The constitutive equations do not appear since they are en-
forced a priori in Hd If y=0, the first equation (¢¥ = e%),,
drops out.

Modified Forcing Potential. Substituting d in lieu of u in
the forcing potential (15)

P, 5,d) = (b,), +[,,d— d]s +1, dls, + 13,1 -dis, ¥
is not variationally admissible because incorrect Euler equa-
tions result. A correct potential that resembles (24) can be ob-

tained in two stages. First, surface terms [d,, i~ d] s, and [&,,
ii—d) 5, are added and subtracted to produce

PG, a,d)=(b,8), + [6,,d— d]sd~[a,, t,u]st +1,,i—dls.

(25)
Second, { is assumed to be in the range of @, and the condition
[6, = tl s, satisfied a priori, reducing (25) to

P, 5,d)= (b, i), +[5,,d—dls, +[Ld]s, +[5,i-dls. (26)

This expression differs from (24) in that the all-important sur-
face dislocation integral is taken over S rather than §;. Further
simplification results if the displacement boundary conditions
[d=d]g , are exactly satisfied:

P4 (i1,5,d) = (b, 1), + [t,d]5, +[,,0 - dl. 27)
This expression of P? is used in the sequel, as modifications
required to account for the case [d=d]g , are of minor

importance.

6 Energy Balancing

Distances. Let U(e)= 1/2 (Ee,e), denote the strain energy
associated with field e. We may rewrite (19) as a potential-
energy deviator

I =104 —yU (e" —€%), 28)
because
Hd 114
Y P z(a’eu_eu)y__ (b‘._au’eu)V
v/2
=(o" —d,e" —e%) = (Ee¥ —Ee’ " —¢%),. 29)
If E is positive definite, U (e¥ —e°) = 0 and, consequently,
Hgsﬂg if ¥>0. (30)

If @ is kinematically admissible, IT$ exceeds the exact potential
energy as will be shown. It follows that to improve solutions in
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energy, we expect to take v = 0. Thus, principles associated
with v < 0 have limited practical interest.
Let II(u) denote the exact potential energy
T(w) = —-(0,6)y — (b,w), — [L,uls,, @31
where ¢ and e denotes the exact stress and strain field, respec-
tively. If & is kinematically admissible and thus satisfies
[u=d]g » then the energy distance from II4(d) to the exact
functional (31) is (see, e.g., Section 34 of Gurtin (1972))
I§—Tl=—(0"—0,e" —e) , = U(e" —e). (32)
Adjusting y. To derive an ‘‘energy balanced’’ approxima-
tion we impose the condition H;’ =TI, which yields
U(e? —e) (6" —o,8"—¢)
Vb= u P U __ 5 ol AN (33)
U(e* —e°) (0" —F,e" —e7)
For example, if we assume that the exact stresses and strains
lie halfway between the approximate fields,

o=—(0"+3), e=—(e’+ev), (34)
then v, =1/4. But, as the exact stresses and strains for the
elasticity problem are not generally known in advance, the
practical determination of v, has been based on application of
(33) to element ‘‘patches’ under simple load systems, as
discussed in Bergan and Felippa (1985) and Felippa and
Bergan (1987).

Error Estimates. The strain difference e* — e’ may be used
as a pointwise measure of solution accuracy, and the
associated ‘‘dislocation work’ Uf(e*—e”) as an energy error
measure for applications such as adaptive mesh refinement.

7 Finite Element Discretization

In this section the finite element discretization of II¢ is
studied. Following usual practice in finite element work, the
components of stresses and strains are arranged as one-
dimensional arrays whereas the elastic moduli in E are ar-
ranged as a square symmetric matrix. The FE assumption is
globally written

(i=Nq),, (F=Aa),, [d=Vv],. (35)
Here, matrices N, A, and V collect generalized-displacement
shape functions, internal stress modes, and interface displace-
ment modes, respectively, whereas column vectors q, a, and v
collect generalized internal displacements, stress mode
amplitudes, and generalized interface displacements, respec-
tively. The assumed volume fields é and @ need not be con-

tinuous across S;. The derived fields are
(¢'=DNq=Bq),, (¢“=EBq),, (¢=E-'§=E"'Aa),.
(36)

Inserting these expressions into Hz with the forcing potential
(27), we obtain the algebraic form

¢ (,4,8) =—(1 - 1)a"K,q ——a’Ca
+vq”’Qa—q"Pa+v’La-q"f,—Vv'f, 37
where
K, = (BTEB), =K, C=(A’E"'A), =CT, Q=(B7A),,
L=[VTA,ls, P=[N"A,;, f,=(N"b)y, f,=[N"ts,.

The matrices K,, C, Q, L, and P are called internal-
displacement stiffness, compliance, leverage, nodal-force
lumping, and boundary dislocation matrices, respectively.
Making (37) stationary yields the linear system

38)
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—-yC yQT—-PT LT a 0
YQ-P (1-vK, 0 qr=11 (39
L 0 0 v £,

The first matrix equation is the discrete analog of the first,
fifth, and eighth relations in (24), and expresses internal and
boundary compatibility. The third matrix equation is the
discrete analog of the last relation, and expresses equilibrium
across S;. The second matrix equation is the discrete analog of
the remaining relations, and expresses internal and boundary
equilibrium.

It is shown later (in Section 9) that if the assumed stress
modes in A are divergence free (self-equilibrating), then
P=Q, and (39) simplifies to

—vC  —(1-y)QT LT a 0
-1-»Q (0-vyK, 0 qr=<1, (40)
L 0 0 v £,

These results are now reinterpreted in terms of hybrid
elements.

8 Hybrid Elements

Approach. The preceding treatment is relevant to the con-
struction of displacement-connected hybrid elements. Hybrid
elements based on more restricted assumptions were originally
constructed by Pian and co-workers (see Pian, 1964; Pian and
Tong, 1969; Pian, 1973). From current perspective, the prin-
cipal features of the hybrid formulation are:

(A) The domain is subdivided into elements before the
variational principle is established.

(B) Continuity requirements across element boundaries
are relaxed by introducing boundary tractions or boundary
displacements as Lagrange multiplier fields.

(C) All stress and internal-displacement degrees-of-
freedom are eliminated (by either static condensation or
kinematic constraints) at the element level.

(A) says that hybrid functionals are effectively mesh-
dependent, because the domain subdivision process introduces
element boundaries which must be treated as infernal inter-
Sfaces, and therefore become part of S;. Previous develop-
ments remain valid if one reinterprets ‘‘body’’ as ‘‘individual
element,”’ ‘“‘volume’’ as ‘‘element volume,”” and ‘“‘surface’’ as
““interelement boundary.”’

Continuity and Connectors. The internal fields & and i
may be discontinuous across elements. The boundary
displacement field d, however, must be continuous on S, i.e.,
it must have the same value on adjacent elements. This condi-
tion may be satisfied if d on an interface separating two
elements is uniquely interpolated by nodal values on that inter-
face. 1t is natural to take such nodal values as entries of v,
which automatically becomes the vector of connected node
displacements or connectors.

9 Kinematic Relations

In this and subsequent sections we work with an individual
element unless otherwise noted. The element volume is ¥ and
the element surface is S: §; U §, U S;. The v subvector con-
tains n, element-connector degrees-of-freedom, whereas q and
a contain n, and n, internal freedoms, respectively. We shall
assume that n, = n,.

The first matrix equation (the discrete compatibility equa-
tion) in (39) can be interpreted as the dislocation-energy
balance statement
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L y(@,e* —e%),—aT (PTq—L7v), =0. 1)
Setting v =0 and observing that a is arbitrary, (41) forces the
kinematic constraint

PTq=LTy (42)

to be satisfied. The same relation emerges if y =0 but the ele-
ment displacements are forced to obey

(7,e"—e%), =0 (43)

as an optimality condition which says that the work of the
strain error over the assumed stress field vanishes for arbitrary
element motions. The constraint (42) plays a key role in subse-
quent derivations. An immediate consequence is that the first
matrix equation in (39) reduces to the equivalent of (43),
namely yaT (- Ca+Q7q) = 0, thus, if y # 0,

a=C~'Q7q, ora=C 'LTvif P=Q. 44)
Next, suppose that q and v are connected by the linear
algebraic relations
(45)
(46)
where G is an, X n, transformation matrix and Hisa n, X
n, transformation matrix. The determination of these

matrices and their connecting relationships is discussed later.
Using (45)-(46) the constraint (42) may be stated in two ways:

v=0q,
q=Hyv,

Internal Displacement Decomposition. Next, the 1
assumption is decomposed into rigid body, constant strain,
and higher-order displacements:

ﬁerqr+Nch+thh' (53)

Applying the strain operator D = 1/2 (Vv + v7) to i we get
the associated strain field:

e = Dqur + DNcqc + Dthh = qur + chc + thh . (54)

But B, = DN, vanishes because N, contains only rigid body
modes. We are also free to select B, = DN, to be the identity
matrix I if the generalized coordinates q, are identified with
the mean (volume-averaged) strain values é*. Consequently,
(54) simplifies to
e'=¢"+el=¢6"+B,q,, (55)
in which
qt‘=é” :(E“)V/U, (Bh)VZO‘ (56)
Equation Partitioning. Assume that all elastic moduli in E
are constant over the element. The degree-of-freedom parti-
tion

g q,
a= , q= 4 >, (57)
ay qp

induces the following partition of the general element equa-

PT=L7G, P'H=L". 47 .
“7 tions (39)
[—yE-' 0 BT BT —Br LT] (&) [ 0]
0 _’YC;, _Pijl;‘ _PIY;C ’YQZ_P}{}I LI{ a, 0
-P, -P, 0 0 0 0 J q, £,
> =< >
yl-P, -P, 0 (1—ynE 0 0 & f,c
~P,  yQy~Py 0 0 (-yKy 0 @ o
L I L, 0 0 0 0] LvJ) UfJ
Elimination of a and q in (39) through (44)-(46), with account  where

taken of the second of (47), yields the external stiffness equa-
tions

Kv=f, (48)
in which
K=v[LC'QTH+HTQC'LT-LC-'L7]
+(1-y)H'K H, f=f,+HTf,. 49
If P = Q, system (40) reduces to (48) but with
K=vLC- LT+ (1 —y)HTK, H. (50)

10 Internal Field Decomposition

To gain further insight into the structure of the element
stiffness equations (48) and eventually link up with the free
formulation, we proceed to decompose both internal element
fields as follows.

Stress Decomposition. The assumed stress field, &, is
decomposed into a mean value, &, and a deviator:
F=a+6,=d+A,a,, (51)

in which
o=(d),/v, (A;)y=0, (52)

where v = (1), denotes the element volume measure. The
second relation in (52) is obtained by integrating (51) over V
and noting that a, is arbitrary.

Journal of Applied Mechanics

C,=(AfE7'A})y, Q,= (BJA))y, K, = (BJEB)),,
P,=[NLls, x=r,c,h, P, = [NTA,]5, Xx=r,c,h,
L= v, s» Ly= [VTAhn]S» qu = (NIb)Va x=r,ch. (59

Integral Transformations. Application of the divergence
theorem to the work of the mean stress on e¥ yields

(6,6*)y = (5,8% +B,q,), =v57e" +&57(B,) yq), =va'e*
= [6n ’ﬁ]S = [&H’qur + Ncéu + Nth]S
=6T(I-’,q,+l"cé“ +thh). (60)
Hence,
(61)

A similar analysis of the stress-deviator work (,, €¥), does
not yield simple forms for the P, matrices unless &, is
divergence-free, in which case

P, =0,P,.=0,P,,=Q, (62)

Hence, P = Q as claimed in Section 7. Inserting (61)-(62) into
(58) yields the partitioned form of (40):
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[ —yuE-! 0 0 —(—yul 0 LT
0 -G .0 0 -(1-yQ] Lf
0 0 0 0 0 0
—(1 =yl 0 0 (1-v)E 0 0
0 -(1-vQ, 0 0 1-mK,; 0

| L L, 0 0 0 0 |

Orthogonality Conditions. If the higher-order stresses are
divergence free so that P=Q, the relations (47) partition as

0uvl 0 LT
= [Gr Gc Gh]7
00 Qf L7
r -
0 0 { LT}
H = s (64)
00 Q] ‘ L]
H,
whence the relations
L7G,=0, L7G,=ul, L7G,=0, L"=uvH,, 65)

L[G,=0, LZGL‘:O’ LITGh: iJ;’ L;=QI{Hh'

The first four were obtained through other means by Bergan
(1980) and Bergan and Nygérd (1984), who called them the
Jorce orthogonality conditions on account of the physical in-
terpretation of L as a ‘“‘boundary nodal force lumping’’
matrix in the free formulation studied next.

If the higher-order stresses are not divergence-free, the last

four of (65) are replaced by
LG, =P[, L]G.=P[, L[G,=Pj, 66)
L}=P], H,+PLH, +PLH,.

11 The Free Formulation

The free formulation of Bergan and Nygdrd (1984) was
originally conceived as an incompatible finite element
displacement model that passes a cancelling-tractions version
of the patch test which Bergan and Hanssen (1975) called the
individual patch test. Here the formulation is reinterpreted in
the context of the hybrid principle (19). The assumptions that
lead to the FF are listed in the Introduction and will be studied
in further detail.

Constant Internal Stress. The internal stress field is con-
stant. Consequently, there are no a, parameters, reducing (63)

to
[ —yvE~1 0 —(1-y)l 0 77 &

0 0 0 0 0 a,
—(1-ypul 0 (1-v)vE 0 0 | 4 L=
0 0 0 (I-yK, 0 a

L L 0 0 0 o] LvJ
0
£
J foe (- (67)
Eon
L1,
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Ce) (00
a, 0
q, £
F= 1 > (63)
_é“ ch
qy fqh
- v J ~ fv J

Invertible G. Matrix G in (45) is constructed by nodal col-
location, that is, by evaluating the expansion 1 = Nq at the ele-
ment boundary nodes. This establishes the transformation

q,

v=Gq=[G, G, G,]< ¢ (68)

qx

According to the assumptions listed in the Introduction,
matrix G is square and nonsingular so inverting (68) we get

q=G~'=Hv or
q, H, H,
qa={ e b= |m [ v=| oL |v (69)
qy Hh HIY;

The FF Stiffness Equations. Eliminating ¢ and q from
(67) yields the FF stiffness equations

Kv=[K,+(1-pK,lv=1, (70)
where
K,=v 'LE-'L7, K,=H]K_,H,,
f=f,+HIf, +v 'L, +H,,. (71)

In the free formulation, K, and X, receive the name basic and
higher-order stiffness matrices, respectively. A 1/2 scaling of
K, derived from energy-balancing studies was recommended
by Bergan and Felippa (1985) for a plane-stress element. This
corresponds to taking y=1/2. But in general the value of vy
can be expected to be dependent on the type and geometry of
the element.

As K, is rank-deficient (except for the simplex elements)
choosing y=1, which corresponds to the d-generalized
Hellinger-Reissner functional (17), is not admissible.

12 The Extended Free Formulation

In the extended free formation (EFF) the number of internal
displacement freedoms, n, = dim(g), is allowed to exceed the
number of nodal displacement connectors n, = dim(v). We can
establish the relation (68) as before, but matrix G will now be
rectangular and cannot be directly inverted. One way of cir-
cumventing this difficulty is to retain n,—n,=dim(a,) higher-
order stress modes; an alternative procedure is discussed in
Section 13. The stress modes are assumed to be divergence-
free so (62) holds. The available relations are

Cya, =L{v=Qlq,,
which can be combined to form the matrix system

v Gr Gc Gh q,
= [ (73)
a 0 0 Ci'Qf qp
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The matrix on the right side is square, and invertible if G, C,,
and Q,, have full rank. Solving for q and eliminating a, one
obtains

q, H, 0
v
q= q. = Hc ¢ =
ay
Qs H, J, )
H, H,
H, v=| H, |v, (74)
Hh’ +Jhchv l(IhT Hh

where H, and J,, result from the inversion process. Since H,/
G, + 3, C; 1 QF =1, we can express H,, as
H,=H;+I-H|G,. 75)

Having H available, replacing into (48)-(50) we obtain the
EFF stiffness equations

Kv=[K, + K, + (1-7)K,lv=*, (76)
where K, K, and f are the same as in (71), and
K., =L,C; L], an

Is ¥ = 1 now admissible? If K, + K,, has correct rank, yes!
Curiously enough, if the body force field b vanishes and y =
1, (76) are precisely the stiffness equations for the original
equilibrium-stress-assumed hybrid elements of Pian (1964),
which can, of course, be constructed without any internal
displacement assumptions.

13 Hierarchical Connector Augmentation

An alternative approach to building an invertible transfor-
mation such as (73) consists of augmenting v with n, —n, con-
nector degrees-of-freedom collected in subvector v,. These
must be selected to give a square transformation of the form

q,

v G, GC Gh
= éu

\A 0 0 G,
Gy

If this approach is followed, it is important to choose v, in
hierarchical fashion so that the expanded G has the structure
just shown. In other words, v, must not be “‘excited’’ by rigid
body or constant strain motions. Otherwise the interelement
compatibility of boundary displacements is generally violated
for such motions, and the patch test discussed in the Appendix
fails.

Inversion of (78) provides the H matrix. The FF stiffness
equations (70) can be constructed with the strain-energy con-
tribution from v, flowing to the higher-order stiffness K,.
Finally, the v, freedoms can be statically condensed.

Which EFF approach is better? The decision seems to be
element-dependent. The choice primarily hinges on whether it
is easier to choose divergence-free stress modes than hierar-
chical connectors while preserving element invariance. If both
approaches appear equally feasible, there is not presently
enough experience to decide which one is preferable.

(78)

14 Concluding Remarks

The qualifier free in ““free formulation’” was meant to em-
phasize “‘freedom from conformity requirements’’ that are a
pervasive part of the conventional displacement formulation,
and the possibility of ‘constructing the basic and higher-order
stiffness contributions through largely independent assump-
tions. But when the FF is studied from a variational stand-
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point, several constraints become immediately apparent. The
extended FF releases the most troublesome one at the cost of
buying more complicated stress assumptions, or additional
hierarchical connectors. So it is fair to state that the admirable
goal of absolute freedom has not yet been attained.

The development of the EFF as reported here was motivated
by difficulties encountered in the construction of the following
elements:

3-Node Plane Stress Triangle with Nodal Rotations.
Similar to the element constructed by Bergan and Felippa
(1985), but with a fully quadratic internal displacement field.
Thus, n, = 9, n, =12 and three additional self-equilibrating
stress fields are needed.

4-Node Tetrahedron with Nodal Rotations. The extension
of the previous element to three dimensions has n, = 12, n, =
18 and six additional stress fields are needed.

Assuming fully-quadratic internal displacement fields
eliminates the higher-order mode selection difficulties dis-
cussed by Bergan and Felippa (1985). Progress in the deriva-
tion of these elements will be reported in subsequent papers.
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APPENDIX A
The Cancelling-Traction Patch Test

It is instructive to study whether this element class passes the
patch test for an arbitrary . To investigate this question we
use the sketch of Fig. 1 and view the subvolumes ¥+ and V'~
as two elements connected along S; with an external traction
boundary S,. Both elements are in a state of constant stress o;.
The prescribed surface tractions are [t=gy,] 5, and the body
forces b vanish.

First, take (63) to be the governing discrete equations for the
two-element assembly. The only nonzero forces are f, =
VTt s, The key observation is that

L= [Vﬂs = [VZ]S,’ (79
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because the integral over S; vanishes as (V, =V _)5 on ac-
count of the interface compatibility conditions stated in Sec-
tion 8, andn* = — n~. Now, for any v it can be verified that
the solution of (63) is that demanded by the patch test, namely

6=06,=3d", a,=0, q,=arbitrary,
(80)

In checking this assertion one finds that the following rela-
tions, listed in (65), must be satisfied:

L/G,=0, L7G, =, LG, =0, L,G,=0. 81)

If instead we take the more general equations (59), verification
of the solution (81) demands that
P,=0, B,=ul, P, =0, P[,=L[G,,
PZC = L[Gc’ P}Th = L;Gh' (82)
The first three follow from the divergence theorem as shown
in (60). But the last three, listed in (66), are a consequence of
the kinematic constraint (43), which is thus directly correlated
to satisfaction of the patch test.
As noted by Fraeijs de Veubeke (1973), the physical mean-
ing of this form of the patch test is that the interface virtual

work is zero when the element patch is in a constant stress
state.

e =E 45, q,=0, v=L75,+G.q,.
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Unknowns for Two-Dimensional
Potential Problems

A boundary integral equation called Derivative BIE is developed for two-
dimensional potential problems in terms of tangential and normal derivatives of the
potential on the boundary, by integrating by parts the Cauchy formula. The poten-
tial values on the boundary can be calculated by integration after the solution is ob-
tained. The primary unknowns in this formulation can be of direct interest in a

shape design sensitivity analysis where the tangential derivatives of the potential are
also required. The method is applied to several test problems, and the results show
better accuracy than those by the conventional boundary element method, not only
Jor the derivatives of the potential but also for the potential itself.

Introduction

One of the most popular and earlier applications of the
boundary element method (BEM) is found in the potential
problems governed by the Laplace equation such as potential
flow and heat conduction. Generally the unknown variables in
the boundary integral equation (BIE) consist of two kinds.
One is the potential on the Neumann part, and the other is its
normal derivative on the Dirichlet part. In this conventional
formulation, both the potential and its normal derivative are
approximated by the same interpolation function, despite they
are different in smoothness. The solution thus obtained on the
boundary, however, is known to be usually more accurate
than those by a classical finite element method (FEM) with
similar meshes. Specifically, as for the flux on the boundary
the BEM solves it directly, while in the FEM it is calculated by
a numerical differentiation of the potential and an extrapola-
tion to the boundary, which might be a source of poor
accuracy.

There is a class of problems in which the tangential
derivative information of the potential on the boundary is as
equally important as its normal derivative, such as in the free
boundary value problems (Liggett and Liu, 1982) and shape
design sensitivity analyses (Kwak and Choi, 1987). This is
more obvious if we look into the plane elasticity problems
where the critical stress occurs usually on the boundary. It is
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often expressed in terms of the von Mises stress, which
depends not only on the tractions, but also on the tangential
derivative of the displacements (Banerjee and Butterfield,
1981).

In the conventional BEM, tangential derivative of the
potential on the boundary is calculated by a numerical dif-
ferentiation after the primary solution is obtained. This pro-
cess, however, degrades the accuracy by an order as compared
to that of the original potential. One obvious way to alleviate
this problem is to employ higher-order interpolation functions
for the potential. Another method is to use a new formulation
that was developed in this paper. In this approach, the tangen-
tial derivative of the potential is taken as an unknown variable
instead of the potential itself, such that both the tangential
and normal derivatives are the primary unknowns on the
boundary. Once we get the boundary solutions, the potential
value can be obtained by an integration of its tangential
derivative along the boundary, which is numerically more ad-
vantageous than a differentiation.

There are a few papers which consider the tangential
derivatives, although they are somewhat different from ours,
either in the method of derivation or in the usage.

Athanasiadis (1985) formulated a BIE for the derivatives of
the potential on the boundary, in an attempt to derive many
different kinds of integral equations in the heat conduction
problem. However, he ended up by adding a stronger singular
kernel in his equation than that of the conventional one, which
was not desirable. Katz (1982) used a tangential derivative
term, but it was introduced only as a means for a better
calculation of interior values, especially for points close to the
boundary. The boundary solution from the conventional
BEM was still used. Recently, Ghosh et al. (1986) included the
tangential derivatives of displacement as unknowns in their
elasticity formulation, which was brought to our attention on-
ly in the last stage of this writing. The resulting formula con-
notes an idea fairly similar to ours, even though we deal with
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p=p on Fp

Fig. 1

Definition of potential problem

two-dimensional potential problems and the method of
derivation is different.

In this paper, a systematic development of the new BIE,
called derivative BIE, is presented for two-dimensional poten-
tial problems. The derivation is based on integration by parts
of the Cauchy formula in the complex variable theory. In the
following, the conventional BIE is first reviewed in complex
variable theory, before our new BIE is formulated. The ad-
vantage over the conventional boundary elements will then be
presented illustrating some numerical examples.

Conventional BIE From Complex Variable Theory

The most usual way for the formulation of the classical BIE
has been to apply Green’s formula for the potential, introduc-
ing a suitable fundamental solution. Of special importance,
however, is the fact that the well-known Cauchy integral for-
mula for complex analytic function is a generalized expression
of the conventional BIE for the real potential in the complex
domain (Carrier et al., 1966).

Let ¢ (z) be an analytic function in a simply-connected com-
plex domain Q with a simply-closed boundary I". Then ¢ (z)
can be written in terms of two real variable functions such that

o=u(x,y) +iw(x,y), z€Q e8]

where z=x+1iy, i=v(—1), u is a potential function to be
sought, and w is a conjugate function which satisfies the
Cauchy-Riemann equations

du aw du ow

= , =— . 2
ox ay ay dx @

It is noted that 4 and w are harmonic and satisfy the Laplace
equation. Then the Cauchy integral formula states that (Car-
rier et al., 1966)

¢ (zp), Z9€Q
1
o 2D dm lap(z), zer ®
2wi JT Z—2
0, Zy€ outside T'

where o denotes the interior angle at z, on the boundary divid-
ed by 2=, which will be one half if the boundary is smooth.

The complex expressions of equation (3) can now be written
in terms of their real and imaginary parts to obtain a pair of
integral equations for ¥ and w, which are similar to the con-
ventional BIE:

1 d a

au(x0)=-57—r—gr iw i In r+u o In r}ds ({1)
1 a ]

(XW(XO)ZE;—SF {wmln r—ugln r}ds (5)

where x, is on I', and r= Ix —x,|. These equations have cou-
pled expressions with respect to the potential # and its con-
jugate w, hence, two equations may be solved simultaneously
for both ¥ and w. However, what we need now is the BIE for
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Branch cut

(a) (b)

Fig. 2 Multivaluedness of complex logarithm function; (a) when the
point zg is within the domain, (b) when the point z; is on the boundary

the potential u only, which can be done by integrating by parts
the first one in the right-hand side of equation (4) and utilizing
the Cauchy-Riemann relations for the (n, s) coordinates. Then
the desired BIE is obtained as,

au(x)= | (POGERX) -~ uOFXx)Ids, K€l (©)

where G and F denote the fundamental solution and its
derivative, respectively, given by

1
G(x,Xg) = ~3e In Ix—x4l,

F(X’Xo)z'é?n_ G(X, XO) (7)

and p=0u/dn denotes the flux on the boundary.
In a well-posed problem, only the value of u or p is pre-
scribed at each boundary point as shown in Fig. 1, i.e.,

u=u onl,
®
p=p onTl,

where I', and T', denote the Dirichlet and the Nemann boun-
dary, respectively, and T, UT',=T. If we discretize equation
(6) approximating the boundary and the variables # and p with
suitable shape functions and apply the resulting equation at
each collocation point, a system of equations is obtained,
which determines the remaining unknowns u and p on their
respective boundary. Although the potential u# and its flux p
have a different smoothness requirements, the same shape
function is taken for both u and p in most boundary elements.
If the values for the tangential derivative of u# on the boundary
are needed, they are calculated by a numerical differentiation
after the solution is obtained, which yields a result one order
less smoother than u or p.

Formulation of Derivative BIE

Consider first a simply-connected domain. The derivative
BIE is then developed starting from an integration by parts of
Cauchy’s formula (3), to obtain

1 b (2p) — ¢ (20)s 20€Q
—-g In(z—zy)¢’ (z)dz= )
2mi Jr 0, z,€T and outside T

where ¢’ (z) =dd¢/dz is the derivative of ¢ in complex sense,
and z; is a point of intersection on I', by a branch cut
originating at z,, in Q and passing to infinity, as shown in Fig.
2(a). This is due to the multivaluedness of complex
logarithmic function, which has appeared as a result of the in-
tegration by parts. Especially when z; is on T', care should be
taken to the direction of the branch cut for equation (9) to
hold at z;, on I, such that the cut should not cross any point on
the boundary except the point itself as shown in Fig. 2(b).
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To now derive the derivative BIE, the complex expressions
are rewritten in terms of the real and imaginary parts, utilizing
the following relations

In(z—z¢) =Inlx—x, | +i6(x—x,) (10)
3¢ du ow
" (2)dz = s % +i s ds
ou , du
= (G i)
= (q+ip)ds an

where the symbol ¢ denotes the angle between the vector x —x,
and a reference direction which corresponds to that of the
branch cut. In equation (11), g=3du/ds denotes the tangential
derivative of u on the boundary. Substitute equations (10) and
(11) into equation (9) when z, is on I, and take the real and
imaginary parts, respectively, from the resulting equation.
Then a pair of boundary integral equations are obtained for p
and ¢:

| 16xx P00 +H g 1ds=0, xper  (12)

| tHxP (0 ~Glx)a(0)ds=0, xpel  (13)

where H denotes the conjugate of the fundamental solution G,
given by

1
H(x,xy)= o 0(x—xp). (14)

Note here that if the integration by parts on the boundary were
applied directly to the conventional BIE of the potential
problem, only equation (12) could be obtained.

It is interesting to note that unlike equations (4) and (5), the
two equations just derived are expressed in terms of the poten-
tial u, or actually its derivatives only. That is, there appears no
conjugate function w in equations (12) and (13). This implies
that the two real integral equations hold simultaneously for
the derivatives of u at each point of the boundary. Therefore,
one can use either equation (12) or (13) at his convenience at
any collocation point x4, provided that certain continuity of
the potential and single valuedness are satisfied, as will be
discussed later.

It is further observed that the kernel A has no singular
behavior which stabilizes the integration process and removes
the necessity for special treatment. However, when the boun-
dary element equations are made from equation (12) or (13),
the elements of H are found to be all of similar order in
magnitude, possibly leading to a poor behavior of matrix, as
experienced in a test when only equation (12) was used. This
problem, however, can be solved by suitably selecting equa-
tions out of (12) and (13) such that G-term-—which shows
diagonally dominant behavior—takes place in the diagonal of
the main matrix. This is possible by applying (12) on the
Dirichlet part, and by applying (13) on the Neumann part,
respectively. Thus, one finally obtains the derivative BIE for ¢
and p suitable for a numerical calculation as

Sr G (x,Xp)p (X)ds = — Sr H(x,x0)q(x)ds, x,€T,

(15)
Sr G(x,X0)q (x)ds= Sr H(x,x0)p(x)ds, xq€I',

where ', corresponds to I',, hence, I' UT', =T'.
Now the boundary conditions (8) can be rewritten as

Journal of Applied Mechanics

(16)

where ¢ is obtained by differentiating w# along T',. A
distinguishing feature of the derivative BIE 1is that
homogeneous boundary conditions are encountered, since all
the variables consist of the derivatives of u. A typical example
is a heat conduction problem with zero flux and constant
temperature in each boundary, as shown in the examples in
this paper. For these problems, the generated equations will
obviously be homogeneous, yielding a trivial solution for p
and g unless the coefficient of unknowns is a singular
operator. Hence, to ensure a nontrivial unique solution some
auxiliary conditions relating given information on the poten-
tial # need be imposed. Assuming that the potential is con-
tinuous throughout the boundary, the relation between & and
q is utilized for this purpose as follows:
S qds=Au=u,—u, a7
Tp

where u; and u, denote the prescribed values of the potential
at the starting and ending points of the Neumann boundary
I',, where g is unknown. This condition is to be imposed for
every segment of T',.

Now, equation (15) should be solved under constraint (17).
The classical Lagrange multiplier method (Hildebrand, 1965)
can be efficiently used. As in the conventional BIE, equation
(15) is discretized and reordered for the unknowns to obtain

o o o) e 11501
- Hpq Gpp qp - qu pr b
(18)

where p,and g, are the remaining unknowns on their respec-
tive boundary, and the vector b simply represents the resulting
values of the second matrix operation. Note here that while in
the conventional BEM only the columns between F and G are
exchanged (Banerjee and Butterfield, 1981), both the row and
column are exchanged in (18), so that the diagonal terms are
always G. Next, the constraint (17) becomes, after
discretization,

19

Introducing the Lagrange multiplier A for constraint (19), the
complete system of equations is obtained as

cTq,=d.

Gy Hy 0 Dq
-H,, G, ¢ q, r=4b 20)
0 e’ 0 N J d

Once the solutions for p and g are obtained from this equa-
tion, the potential ¥ will be calculated, if necessary, by in-
tegrating g along the boundary.

Conjugate Fundamental Solution

As was discussed in the previous section, one should
evaluate carefully the integration involving the conjugate fun-
damental solution H because of its multivaluedness. It has the
following form

I(xy)= Sr 0 (x—xg)o(x)ds, x,€T Qn
where ¢ denotes either p or ¢ as shown in equation (15), and
the integration over x is done along the contour T
counterclockwise starting from x,.
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The angle (x—x;) can be measured from any reference
direction, but the change in the reference direction brings into
an additional term

Iy=06, SF ods 22)
where 6, is the magnitude of the angular change of the
reference direction at x,. Unless the integral in equation (22)
vanishes, 6, should be carried on as additional unknowns in
the formulated BIE (15). The developed BIE, however, holds
independently of 8,, if there is no net flux or circulation,
which means that the integral in equation (22) vanishes iden-
tically. When o is p, the integral denotes the total flux over the
whole boundary. When o is ¢ it is the circulation, and no cir-
culation means that the potential u should be single-valued
and continuous over the whole boundary. In the BIE
developed here, this condition can be satisfied by the condi-
tion (17), which is imposed on g, assuming u is continuous.
However, for problems with nonzero circulation, the formula-
tion should be appropriately modified.

In the following no circulation and no net flux will be
assumed, so ,; does not appear. The reference direction can
then be chosen arbitrarily, say, in the outward normal at x, on
the boundary. The angle 4 is measured counterclockwise with
respect to this direction, and does not undergo jump as x
traverses the boundary. Then, for the geometries shown in
Fig. 3, the angle is added by 27 on the thicker curve part of the
boundary, which allows 8 to go beyond the range between 0
and 2, varying continuously throughout the boundary except
at x, itself (Jaswon and Symm, 1977). Hence, the whole do-
main can be considered as a single-valued branch. This can be
thought of as a kind of analytic continuation applied to 6.

Moultiply-Connected Domain

Unlike the conventional BIE, the derivative BIE just
described needs a slight modification for a multiply-connected
domain because of the multivaluedness of conjugate fun-
damental solution H.

Consider a multiply-connected domain as shown in Fig. 4,
where I, i=1,2,. .. ndenote inner holes and I'? denotes the

n
outer boundary. Let I'=XTVUT°, Following the usual treat-
ment, the problem can be considered as simply-connected by
introducing an arbitrary cut C' from each inner hole to a com-
mon point on the outer boundary. Then, the integration by
parts of Cauchy’s formula (3) gives

1 7
< SP In(z—20)¢’ (z)dz

{0, zg€I®
$(z°) —d(z'), zo€lM,i=1,2, ... ,n

where z' and z° are the end points of the cut C' on I'V and T'°,
respectively. Note that the integration on the inner boundary
I is done in the clockwise direction. When z, is on I'° the
equation (23) is identical to (9) of the simply-connected one,
which bears no further difficulty. On the other hand, when z,
is on I, the difference of complex potential between z’ and z°
appears on the right-hand side of equation (23) because of
multivaluedness of logarithmic function. Therefore, the equa-
tions when x, is on the inner boundary I'! should be modified
accordingly as follows:

(23)

SP G(X,Xo)p (x)ds+ SP H(x,X0)q (x)ds=u}, xo€T,

| B e
| 6maeods— | Hoxp(ds= —wh, xeery

where I';, and I', denote the Dirichlet and the Neumann sub-
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Fig. 3 Measurement of the angle ¢ in conjugate fundamental solution
for a simply-closed boundary

Fig. 4 Mutiply-connected domain

boundaries of inner boundary I', with I'; UT, =T", and u},
and w} denote changes of # and w from those at x to x° on the
cut C7, respectively.

Since the cut is arbitrary, one can choose the end points of
the cut to belong to a segment of the Dirichlet boundary where
the potential is prescribed; otherwise, #/, will not appear
because I') = ¢y in equation (24). Then u); becomes known;
hence, there is actually one more unknown wi, requiring an
additional equation for each inner boundary. As in the simply-
connected case, the following relation between ¢ and » must
be imposed for every segment of the Neumann boundary:

S q ds=Aw 25)

Tp;

where Aw/ denotes the prescribed difference of u between the
starting and the ending point of the jth Neumann boundary
patch I‘pj. These equations satisfy the condition for unique-
ness and also determine w. Therefore, the complete solution
is obtained by solving equations (24) and (25) simultaneously.
It is noted that the I'-integrals in equation (24) are performed
over a single-valued branch, while there is a jump in argument
across the cut and at x,.

Numerical Implementation

Numerical implementation of the present formulation is
essentially the same as the conventional one—by introducing
suitable boundary elements and integration. However,
because of the argument measurement and the end points of
the cuts introduced, additional bookkeeping is necessary. Fur~
thermore, the resulting matrix has a somewhat different shape
from that in the usual BEM. The block matrix in bold letters
in equation (20) can be singular, although the whole matrix is
not. This may add some numerical difficulty, which has not,
as yet, been looked at in this paper.

As in the conventional BEM, the numerical treatment of the
corner points should be made with care, and needs more
study. In the conventional boundary elements, three
variables—the potential and its two derivatives in each normal
direction on the corner—are defined on the corner node,
where two out of three are prescribed, making the solution
possible for the remaining one (Banerjee and Butterfield,
1981). However, in the present case four variables—two
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Table1l Results for Problem 2 at selected poiuts

Tangential Derivative

Potential q along AB Flux p along BC Total
] uatk E B B F Flux
Exact 5850 1.443 9618 7214 7214 7214 .000
Solution
Conv. QUA 5854 1.408 .9414 7094 7156 7200 76(~2)
LIN 5875 1.463 9556 6854 7410 7168 28(—-1)
Deriv.
QUA .5849 1.437 .9623 7209 7222 7215 .63(—3)
m
f f
n=1/72
Q
n=-1

@ ()

Fig. 5 Partially discontinuous elements; (a) linear element, (b)
quadratic element. Symbol “ o ” denotes the geometric node and sym-
bol “ x ” denotes the collocation point.

1.00
(W] (©)

1.00 LOO

l 1.00
q

Fig. 6 Heat conduction in a rectangle; (a) problem definition, (b) solu-
tion by conventional BEM, and (c) solution by derivative BEM

derivatives in each tangential and normal direction—are de-
fined, and still only two are known on the corner, which
makes the equation indeterminate. To avoid this problem,
partially discontinuous elements (Patterson and Sheikh, 1984)
can be introduced, as shown in Fig. 5, which is to locate a col-
location point near the corner instead of on the corner.
Another approach, which has been suggested by one of the
referees, is to enforce the continuity of Vu at a corner and to
use the equation

Journal of Applied Mechanics

Fig. 7 Heat conduction in an annular cylinder

ou du
U,; =W n; +T e

Example Applications

Four examples are presented to illustrate the use of the
derivative BEM, which consider only the simply-connected
domain. For each problem, constant, linear, and quadratic
elements are tested, and the results are compared to analytic
solutions when possible and those by the conventional boun-
dary elements otherwise. Also, the total flux, which should be
theoretically zero, is calculated for each problem to check the
solution quality.

Throughout the following results, potential values by the
present method are one-order smoother than the solutions p
and g, and the corner values of p and g are the extrapolated
values obtained from the partially-discontinuous elements.

Problem 1: Heat Conduction in a Rectangle. The boun-
dary of this problem is discretized using 16 nodes with boun-
dary conditions, as shown in Fig. 6(e), which has a linearly-
varying solution for the temperature in the x direction. Com-
puted results using constant elements are given in Fig. 6(b) and
6(c) for the conventional and present method, respectively. In
the conventional methods, g can not be calculated, since u is
constant on each element. Figure 6(c) shows that the results
match the exact solution, and u varies linearly, while p and ¢
are constant on each element. From these observations, some
nature of the present method can be clearly understood.

Problem 2: Heat Conduction in an Annular
Cylinder. An annular cylinder is subjected to different con-
stant temperatures on the inner and outer boundaries. Because
of its symmetry only one quarter is considered, with the
geometry and the boundary conditions as given in Fig. 7. The
results at some selected points as well as the total flux are given
in Table 1, which shows that the present method gives better
accuracy than the conventional one for both p and g values.
Note in this table that the tangential derivatives by quadratic
elements of conventional BEM are averaged values of
numerical differentiation of the solution for u between each
adjacent elements.
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Table 2 Results for Problem 3 at selected points

Tangential Derivative

" Potential q along DE Flux p along AE Total
‘uatF E F D A G E Flux
Conv. QUA .5874 2.210 1.762 1.303 .0013 1.553 2.216 42(-6)
(refined)
Conv. QUA 5875 2.180 1.740 1.292 .0135 1.549 2.216 .16(—-3)
LIN 5915 2.255 1.758 1.296 —.051 1.565 2.216 SI(=-2)
Deriv.
QUA 5874 2.210 | 1.764 1.303 -.007 1.547 2.212 14(-3)
Table3 Results for Problem 4 at selected points
Potential Flux p Total
B C H G I Flux
Conv. QUA 6667 .9008 .5496 2948 —.5787 12(-4)
(refined)
Jaswon 6667 .9009 .549s5 — - -~
and Symm
LIN 6672 9025 5513 .2937 —.5810 A1(=1)
Conv.
QUA .6665 .9003 .5496 .2966 —.5783 .93(-3)
LIN .6665 .9003 .5492 .2949 —.5772 37(-3)
Deriv.
QUA .6665 .9009 .5499 .2949 —.5774 37(=3)
20
= Conv. QUA 71853
& Deriv. LIN
~o~ Deriv. QUA 463
1.5 ~—  Conv. QUA .
(R%%e% Sol.) 1440
o 1212
1.0
0.5 T T T T
A 0.2 0.4 0.6 0.8 B

Distance along AB

Fig. 10 Tangential derivative of the potential along AB in Fig. 9

denser than the test model here. The results at some selected
points are given in Table 2. While the values for potential and
flux show similar accuracy in both methods, the tangential
derivatives show excellent accuracy compared to the conven-
tional ones.

Problem 4: Potential Problem With Reentrant Cor-
ner. The geometry and the boundary conditions treated are
shown in Fig. 9, where 28 nodes are used for discretization.
This problem has a reentrant corner, which gives rise to a
singularity for the derivatives at point B. As in the previous
problem, the results from a four times more refined model by
the conventional BEM are used as a reference of comparison.
The results are also compared with those obtained by Jaswon
and Symm (1977), where this problem is solved by a conven-
tional method taking into special account the singularity at B.
The values of the potential and the flux at some selected points
are given in Table 3, in which better accuracy by the present

Fig. 9 Potential problem with reentrant corner

Problem 3: Potential Flow Past a Cylinder in a Chan-
nel. Consider a flow past a cylinder located between two flat
plates. The potential # in this problem actually denotes the

stream function. With properly specified boundary condi-
tions, only one quarter of the domain is considered, and 32
nodes are used for this geometry as shown in Fig. 8. As this
problem has no analytical solution, the accuracies of the
derivative BEM are compared with a solution obtained from a
conventional quadratic element model which is four times

622/ Vol. 56, SEPTEMBER 1989

method is observed for the potential, and also seen is the good
agreement with those given by Jaswon and Symm (1977). The
tangential derivatives are shown in Fig. 10. The singular
behavior at B is better approximated by the present method
with both linear and quadratic elements than the conventional
quadratic element model.
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Summary and Discussions

A new boundary integral equation, called derivative BIE, is
developed for two-dimensional potential problems by in-
tegrating by parts the Cauchy formula and employing tangen-
tial and normal derivatives of the potential on the boundary as
the primary unknown variables. This formulation has several
advantages over the conventional method in that the tangen-
tial derivative along the boundary is obtained directly from the
generated equations, and the potential value is calculated
afterwards by integrating the solution obtained, which can im-
prove the accuracy of the derivatives as well as the potential
itself. In the developed BIE, a new kernel called conjugate
fundamental solution is introduced, which is regular, but a
careful treatment is needed because of its multivaluedness. To
ensure uniqueness of the solution an auxiliary condition is
necessary, relating the unknown derivatives to the prescribed
potential information. The expression is simple when the
potential is assumed continuous throughout the boundary.
General problems with multivalued or discontinuous poten-
tial, such as the flow with nonzero circulation, can also be
treated with some modifications. Multiply-connected domains
can be treated as well but with additional terms in the formula-
tion. Extra bookkeeping efforts for the computational im-
plementation may be necessary as compared to the conven-
tional method. Although not studied yet, the method, being
general in nature, can be applied advantageously to many im-
portant applications, especially when accuracy of the tangen-
tial derivatives is crucial such as in a shape design sensitivity
analysis.

Four examples are presented to illustrate the behavior of the
solutions. Comparisons with the conventional method show
that the present method has provided better accuracy not only
for the potential but also for the flux values. In particular, for
the problem with a reentrant corner where a singularity exists,
the present method shows significantly better distribution of

Journal of Applied Mechanics

the derivative, even with the rather coarse linear element
model.
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1 Introduction

Real membranes often exhibit wrinkled regions, which are
not predicted by membrane theory in its usual form. The con-
figuration of the wrinkled region is controlled by the small
bending stiffness of the material. In membrane theory, as
distinct from the theory of plates and shells, this bending stiff-
ness is treated as zero, so the theory cannot give the details of
the deformation in a wrinkled region.

The onset of wrinkling is associated with the appearance of
compressive stresses in membrane solutions. Since states with
compressive stress are unstable (Steigmann, 1986), such solu-
tions are not physically meaningful. To obtain a solution with
no compressive stress without resort to plate theory, tension
field theory can be used (Wagner, 1929; Reissner, 1938; Kon-
do et al., 1955). However, particularly when a membrane is
only partly wrinkled, it is usually not simple to decide which
theory to use in a given part of the membrane.

It has recently been shown (Pipkin, 1986) that tension field
theory can be incorporated into ordinary membrane theory
simply by replacing the strain energy function by a suitable
relaxed energy density, and then proceeding as usual with the
equations for finite elastic deformations. In wrinkled regions,
the relaxed energy density represents the average energy per
unit initial area over a region containing many wrinkles. The
stress-strain relation obtained from a relaxed energy function
gives stresses that are never compressive, but in states of strain
for which wrinkling is indicated, one principal stress compo-
nent is zero and the theory reproduces all of the main assump-
tions of tension field theory.

A solution within this theory gives only the average defor-
mation in a wrinkled region, with nothing to indicate the
detailed structure of the wrinkles. The designation of a par-
ticular region as wrinkled can be deferred until after the solu-
tion has been obtained, but this final step is necessary for
proper physical interpretation of the mathematical result.

In the present paper we outline the theory of finite elastic

1Presently at the Department of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 2G8, Canada. ’

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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Paper No. 89-WA/APM-10.

624/ Vol. 56, SEPTEMBER 1989

Wrinkling of Pressurized
Membranes

deformations of isotropic membranes, subject to edge loads
and normal pressure. Here we consider only membranes that
are planar in the stress-free reference state, or that are initially
developable surfaces, such as cylinders and cones. Kinematics
are discussed in Section 2, and the stress-strain relations and
equilibrium equations are outlined in Section 3. In Section 4
we describe the main features of a relaxed energy density, and
in particular we give the kinematic criterion by which a given
state of deformation can be classified as wrinkled or not.

Within the theory, a wrinkled region is simply defined as a
region in which the stress is uniaxial at each point. In such
regions the deformation has some special features, which we
describe in Section 5. In particular, the two fundamental equa-
tions for the tension direction and the corresponding stretch,
which we have derived elsewhere (Steigmann and Pipkin) for
the special case of no normal pressure, remain valid for in-
flated membranes.

The special features of the deformation in a wrinkled region
can be used to construct solutions when the approach by or-
dinary elasticity theory might be difficult, as we have shown
elsewhere (Steigmann and Pipkin). In the present paper,
however, we make no use of these special features. We solve
two problems without any reference to tension field theory,
and then identify certain regions of the deformed membrane
as wrinkled.

The problem in Section 6 concerns an infinite strip that is
sheared and subjected to a uniform pressure. The deformation
is controllable in this case. That is, the deformation can be
specified in advance, and the resulting stress field is in
equilibrium regardless of the form of the strain energy func-
tion. For materials that are incompressible in bulk, we show
that the deformation represents a wrinkled state whenever the
amount of shear exceeds a certain definite function of the cur-
vature. This explicit criterion is valid for all isotropic, incom-
pressible materials.

In Section 7 we consider the inflation of a semi-infinite tube
that is tied off at one end. The solution is easily obtained by
Kydoniefs’ method (Kydoniefs, 1969). We then show that near
the tied-off end, the solution represents a wrinkled state. The
shape of the membrane in the wrinkled region is described by a
specific function whose form is independent of material prop-
erties; such properties enter only through a certain scale
factor.

2 Kinematics and Notation
We consider deformations of a membrane that occupies
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some region of the x;, x, plane in its reference state. Let
e;(i=1, 2, 3) be unit vectors in the coordinate directions. Then
the reference position of a particle is x=x,e,, where summa-
tion over the range a=1, 2 is implied. In a deformation of the
membrane, the particle initially at x goes to the place r=re;,
where summation over the range /=1, 2, 3 is implied. The gra-
dient V is the two-dimensional operator

Vv =¢,3/0x,. : 69
The deformation gradient F, defined by dr =F+dXx, is defined
equally well in terms of its transpose F! by
Fi=vr=e,(0/3x,)r;®e;. 2)
We use dyadic notation, in which a®b is the tensor whose ij-
component is (a®b),; =a;b;.
By an extension of the polar decomposition theorem

(Pipkin, 1986), the deformation gradient can also be expressed
in terms of principal directions and principal stretches as

Fi=9r=Av@u+uv*@u*. 3)

Here v and v* are orthogonal unit vectors in the x;, X, plane,
while u and u* are orthogonal unit vectors tangential to the
deformed surface. The principal stretches A\ and p are non-
negative by definition.

We use the strain tensor g defined by

g=FF = (Vr)/+(Vr)
=Nu@u+pu*®@u*. )

We also use the unit tensor § on the deformed surface, which
can be defined in terms of u and u* by

S=u®@ut+u*@u*. 3)
Let I and J be the isotropic strain invariants defined by
J=Np=(det g)!? (6)
and
I=N\+p=(tr g+2J)2, @
Finally, let n be a unit vector normal to the deformed surface,
n=uxu*, 8)

3 Stress and Equilibrinm

We consider isotropic elastic membranes, for which there is

a strain energy W per unit initial area that can be expressed as

a symmetric function of the stretches \ and p. W can equally

well be expressed as a function of the symmetric invariants 7
and J. Let f| and f, be the principal forces,

Ji=0W/aN\, f,=0W/0u. ®

These are the normal forces that must be applied to a unit

square of material to stretch it into a rectangle of dimensions A

and p. The stresses o, and o,, which are the forces per unit
current length in the deformed state, are

o, =fi/p, 63=F2/\. (10)
Let T be the engineering stress, given by
T=fiu@v+Lu*@v*. (11)

Then in the deformed state, the force across an element that
had length ds and rightward normal » in the undeformed state
is

Tevds=fiu(verds) + fLu*(v*epds). (12)

Let o be the ordinary stress, which measures force per unit cur-
rent length in the deformed configuration:

o= (fi/pu@u+ (f,/M)u*@u*.
This is related to T by

(13)
o=J"'T-F, (14)
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where J and F’ are defined by (6) and (3). By using (4) and (5),
it can be shown that

o= (W /INg+ (W/I+ W,)3, (15)

where
W,=aw/dland W,=0W/3J. (16)

We consider the equilibrium of a membrane loaded by a
pressure pn per unit of deformed area. We note that Jin (6) is
the deformed area per unit initial area. Then equilibrium of an
arbitrary part of the membrane requires that

(§)T-vds+ Hpn]dxldx2 =0, a7
in which the integrals are taken over an arbitrary part of the
initial domain and over its perimeter. By using the divergence
theorem and the arbitrariness of the region, we obtain the
pointwise equilibrium equation

v T+ pJn=0. (18)

4 The Relaxed Energy Density

Real membranes have some small bending stiffness, which
is neglected when membrane theory is used. The deformation
of a real membrane may exhibit a wrinkled region, in which
the size and configuration of the wrinkles is determined by the
bending stiffness. Membrane theory, in which the stiffness is
zero, cannot predict the details of such a deformation.
However, the mean deformation and stress in a wrinkled
region can be predicted from ordinary membrane theory if the
strain energy function is replaced by a suitable relaxed energy
density (Pipkin, 1986). The stress derived from a relaxed
energy density is never compressive, and the kind of instability
that would be produced by compressive stress is taken into ac-
count automatically,

For A> 1, let w()) be the smallest value of the stretch p such
that £, >0 when u>w(\). We call w()) the natural width in
simple tension. For u = w(}\), the material is in a state of sim-
ple tension with

So=0, fi=fiA, wN]=F(N(say). 19

For example, for any material that is incompressible in bulk,
the stretch of the membrane in the thickness direction is 1/Au,
and in simple tension this is equal to u, so

w(N)=\"172, 20)

The force f(N) is proportional to the force that would be re-
quired to stretch a string of the material to A\ times its initial
length.

For p<w(\) (with A>1), where the given strain energy
function might yield a compressive stress f, <0, the relaxed
energy density is defined to be equal to its value at the natural
width,

W) =WINLWwNIA> 1, p S w(N). 3y}
Because of the symmetry of W with respect to A and p, similar-
ly

W) = WIw(p,ul w>1, NS w(w). (22)

When both X\ and p are less than unity, the given strain energy
function might well predict both f; <0 and f,<0. In such
cases the relaxed energy density is defined to be equal to
W (1,1), which we take to be zero.

WA =0AZ1, uZ1). (23)

From these properties of the relaxed energy density it
follows that the principal forces satisfy

f1>0, £,>0if u>w(N) and A\>w(p),
fi=f(N), f,=0if A>1 and p = w(N)

@24
25
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(26)
@7

fi=0, fo=F(p) if p>1 and A= w(N)
Si=fo=0if A\S1and p=1.

5 Tension Field Theory

When a relaxed energy density is used, ordinary membrane
theory incorporates tension field theory automatically. The
stress and deformation in a tension field have special features
that may facilitate the process of solution in some problems,
although these features need not be used explicitly.

We say that a region of a deformed membrane in which
w<w(\) is wrinkled, even though the deformation predicted
by the theory will generally be perfectly smooth. In such a
region the stress takes the form

T=Ff(Mu®v, (28)
and the force across every arc is parallel to u:
Tevds =f(Nu(verds). (29)

For arcs parallel to v in the initial domain, ver =0, and no
force is exerted across such an arc. The curves defined by the
direction field v are the stress trajectories. Since f>0 (when
A>1), the force is purely tensile. The deformation carries the
stress trajectories onto the curves with tangent u on the
deformed surface. These curves are the tension lines.

In a wrinkled region, the equilibrium equation (18) reduces
to the form

Ve (Mu+f(veViu+pn=0. 30)

Since both n and v Vu are orthogonal to u, this implies that
Ve (fv)=0 @3n
f(ve)u= —pJn. (32)

The former result expresses the fact that the amount of force
channeled between two stress trajectories is constant along
their length.

Let 8/3s be the derivative with respective to arc length along
a tension line. In terms of this arc length the stretch A is ve Vs,
and since J= Ay, (32) can be written as

(f/p)du/ds = —pn. (33)

Here f/u is the tension (per unit deformed length) in a tension
line.

Because the change in u along a tension line is purely in the
normal direction, each tension line is a geodesic on the
deformed surface (Zak, 1982). It is useful to parameterize the
deformed surface by a system of geodesic coordinates (Struik,
1950). Let ¢ be a parameter that numbers the tension lines. On
the deformed surface, select some curve that is orthogonal to
the tension line at each point. Let ¢ be the distance of an ar-
bitrary point from this base curve, measured along the
geodesic that passes through that point. Then the curves
¢ =constant are geodesic parallels, and each of these curves is
orthogonal to the geodesics (Struik, 1950). With position on
the deformed surface given as a function of ¢ and , we have

or/d¢ =u, dr/dy =mu*(say), (34)
where u* is the second principal direction, orthogonal to u.

The deformation is specified by giving ¢ and ¥ as functions
of x. The deformation gradient is then

Vr=9Y¢&r/d¢+ VY& or/oy. (35)
With (34), comparison with (3) shows that
Av=Vo¢and uv*=mvy, (36)

where m is the magnitude of dr/dy.
From (31) and (36) we obtain two fundamental equations
for Nand v,

V[f(NV]=0, V X (AV)=0. 37
These were derived for the special case p=0 elsewhere
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(Steigmann and Pipkin). They can be reduced to a single
second-order equation for ¢ by using (36). Alternatively,
can be chosen so as to represent a stress potential,

SJNv=Vy Xe,, (38)

and (37) then gives a second-order equation for y. The curves
¢ = constant and = constant are orthogonal in the initial do-

‘main as well as on the deformed surface, when they are treated

as material lines.

The preceding results are of use in solving some problems.
For the examples in Sections 6 and 7, however, we do not use
any of these results explicitly. We merely solve the given
problem and then, after the fact, identify certain states as
wrinkled.

6 Example: Sheared and Pressurized Strip

As an example, consider a strip that initially occupies the
region —oo<x< oo, —H<y<H (here x=x, and y=x,). We
consider a deformation in which the strip is sheared parallel to
its length and subjected to a uniform pressure on one side. The
deformation has the form

r{x,y) = (x+«y)e, + Ri(f) —e,Rcosb,,, 39

where

(40)
Here « is the amount of shear. The deformed membrane is
cylindrical, with radius of curvature R. The parameter o is

determined by the requirement that the edges y = + H have no
displacement in the y or z directions:

i(0) =e;cosd +e,sind, 0 =wy, 0, =wH.

wH =arcsin(H/R). 41)
The deformation gradient is
Vr=(e; +«e,)Qe, + Rwe, Rj6), (42)
where j(§) =i’ (6):
J(6) = —e;sinf +e,cosf. (43)

The vector j(f) is tangential to a parallel of latitude on the
cylinder. The unit tensor on the deformed surface can be
represented as

b=e, ®e; +j(O)®j (). (44)
From (4), with (42), the strain g is
g=(1+x%)e, e, +«Ruw(e; Rj+ji®e;) +(Rw)i®j. (45)
Then, from (6) and (7), the invariants I and J are
I=[x* + (1 +Rw)?]'"2, J=Ruw. (46)

From the stress-strain relation (15), with (44) to (46), the
shearing stress is

ejeosj= (W,;/ )k, 47

and the x-component of the equilibrium equation is satisfied
because this is independent of y. The hoop stress jeo+j is also
constant, so the j component of the equilibrium equation is
satisfied. The normal component of the equilibrium equation
gives the pressure required to support the deformation:

PR =jeaej=(W,/I) (Ro+ 1)+ W, (48)

We have verified that the specified deformation is an
equilibrium configuration. However, for an arbitrary form of
W, it might well be the case that one of the principal stress
components is negative, so that the given state of deformation
is unstable. When W is a relaxed energy density, compressive
stress cannot occur, but one of the principal stresses may be
zero for some deformations.

To determine whether or not the given deformation
represents a wrinkled state, it is necessary to calculate the
larger and smaller principal stretches A and u. Then, if
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p<w(\), the given deformation represents a wrinkled state.
Let us use the form w(A)=A"12 that applies to all incom-
pressible materials. Then the wrinkling criterion is w?A< 1, or
uJ <1, since J=Ap. The stretches A and p are the larger and
smaller roots of the equation

x2—~Ix+J=0. 49)

From this, the stretch p is easily determined. Then a rather
lengthy algebraic manipulation brings the condition uJ< 1 in-
to the form

k2> (1+J-2)(J2 = 1)2. (50)
Here, J= Rw, with w defined in terms of R by (41). The family
of deformations is parameterized by the amount of shear «
and the curvature 1/R. The wrinkling criterion (50), which is
valid for all isotropic incompressible materials, compares the
amount of shear « to a certain function of the curvature. We
note that /= 1 in all cases, with J=1 only when there is no
pressure.

When the wrinkling criterion (50) is satisfied, we do not ex-
pect to observe a deformation of the form (39) experimentally.
Instead, we expect to see a deformation like (39) with a
periodic wave superposed on it. The principal direction u
defines the direction paralle] to the wave crests. Because u is
an eigenvector of g, it is easily determined from (45). With

u=e; cos a+j@sin «, 1H
the angle « is given by
tan a= (Q+J*—1—«?)/2Jx, (52)
where Q is the positive root of
Q*=(1+x>+)? -4, (53)

The distance between crests of the wave should depend on the
bending stiffness of the material, and membrane theory gives
no information about this.

7 Example: Pressurized Tube

Now consider a membrane that initially has the form of a
circular cylinder of radius R and length L, with L large in com-
parison to R. The location of a particle on the undeformed
cylinder is specified by its cylindrical coordinates (R,6,z).
Because the cylinder is developable into the plane, the general
remarks in Sections 2 to 5 are all applicable, with x, = R§ and
X2 =2Z.

We consider certain axisymmetric deformations without
twist, in which the particle initially at (8,z) goes to the place

r=r(2)i(0) + ¢ (2)k, 54

where i(f) and k are unit vectors in the radial and axial direc-
tions. The element of arc length along the deformed meridian
is defined by

ds?=dr2 +d¢2, (55)
The principal stretches are
N=ds/dz, u=r/R. (56)

The principal directions corresponding to the stretch A are
v=k and

u = kcosy +i(f)siny, 57

where
(58)

We treat the tube as semi-infinite, in the region 0<z<oo.
The end z=0 is contracted to zero radius, 7(0) =0, and sealed
so that the tube can contain an internal pressure. If the infla-
tion pressure is only moderate, for large z the tube can ap-
proach a uniform cylindrical state with constant stretches A,
and p,. The radius of the deformed cylinder in this limiting

siny =dr/ds.
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state is 7y = Ru,. Equilibrium requires pr, to be equal to the
hoop stress f, /X, so
PR=F(N,m) My (59)
For equilibrium under no externally-imposed force, the
total force across a plane { = constant must be zero, so
2w Rf cosy—part=0. (60)
Thus,
cosy =pRu?/2f,, (61)
where we have replaced r by the dimensionless radius u=r/R.
For z— o0, v approaches zero and thus
PR=2f\ (N} i (62)
We regard p,; as given. Then A, is determined from the
equation obtained by eliminating p from (59) and (62), which
is equivalent to 2¢, = ¢,. Then the boundary conditions to be
used are

r0)={0)=0, r—Rpu, and {~\;z as z— oo, (63)
Let H(\,u) be defined by
H(p)y=Mi0np) = W(p). (64)

Equilibrium requires H to be constant (Pipkin, 1968). Thus,
H\p)=H(\,p1). (65)

We are following the procedure explained by Kydoniefs
(1969). From (65) we obtain A as a function of u. (It is easy to
show that dN\/dp is finite along a curve H=constant if
af;/dN>0, so a single-valued locus A=A () is obtained.) The
function A () is substituted into (61), with p given by (59) or
(62). Then (61) gives cosy as a function of u. With (55), (56),
and (58), the various unknowns can then be found by integra-
tion. In particular, the shape of the deformed tube is given by

o
g/R=|" ctn oy (u)du. (66)
[

We remark that this procedure fails if the expression (61)
for cosy is greater than unity at stretches near the state A, p,,
and we state without proof that this is the case when the
uniform state A, u, is unstable, and only then. Stability has
been discussed by Corneliussen and Shield (1961) and by
Haughton and Ogden (1979). When A; and g, are only
moderately greater than unity, the uniform cylindrical state is
stable, and Kydoniefs’ method is valid.

Now, let us consider the possibility that p<w(\) in some
region, so that the deformation is wrinkled there. Because
=0 at z=0, the membrane is certainly wrinkled near the end
z=0. By setting x=0 in (65) we obtain an equation for the
stretch A\, in the wrinkled region,

H(N,,0)=H (N, p). (67)

Because H is independent of u for u<w(A), the stretch \ is
constant at the value N\, throughout the wrinkled region. In
fact, for axisymmetric deformations of cylinders, A is always
constant in wrinkled regions (Steigmann and Pipkin).

With A, known, we evaluate the corresponding natural
width w(X,). Then the deformation is wrinkled in that part of
the end region for which the dimensionless radius p is less than
w(A,).

Because A is constant and f, is independent of u in a wrin-
kled region, then f is constant at the value f()\,). Let P be the
constant defined by

P2=pR/2Af(\,). (68)
Then from (61),
ctny = (Pp)?/[1 = (Pu)*]V2. (69)
1t follows that the shape (66) is given by
P¢{/R=F(Pr/R), (70)
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where F(x) is the function defined by the integral

X
F(x)= S 21—t~ V2dy, an
o
For small x, F(x) is given by
F(x)=(1/3)x*+1/14)x" + (3/88)x11 + . . .. (72)

It is interesting that the end shape (70) depends on p and the
properties of the material only through the scale factor P/R.
Assuming that the interior of a sausage is approximately a
fluid under uniform pressure, the function F defines the shape
of the end of a sausage. This is the shape in the region where
the sausage skin is wrinkled, near the place where it is tied off.
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sectional area of the beam and the stiffness distribution of the foundation are design
Sfunctions. They are chosen to minimize the compliance (or, equivalently, the area
displaced by the beam deflection function). The calculus of variations is used to
derive optimality conditions, and results are obtained for cantilevers and pinned-
pinned beams. Several types of solutions are found, involving a single elastic sup-
port or a region of uniform foundation bordered at internal locations by elastic sup-
ports. In comparison to a reference uniform beam-with uniform foundation, the

decrease in compliance is significant.

Introduction

Optimization of beams attached to elastic foundations has
received some attention in the past. Typically, a uniform foun-
dation is specified and the variation of the beam cross-section
is optimized (e.g., Plaut, Johnson, and Olhoff, 1986). In six
recent papers, however, the foundation has been optimized,
rather than the beam. Szelag and Mréz (1979) minimized the
total foundation stiffness for a specified fundamental fre-
quency of free vibrations. In Taylor and Bendsge (1984), a
beam was displaced downwards and the foundation stiffness
distribution was chosen to minimize the maximum pressure.

Dems, Plaut, Banach, and Johnson (1987) considered a
foundation with piecewise-constant stiffness and minimized a
measure of the beam deflection. In Plaut (1987), the com-
pliance (i.e., the work done by the load) was minimized, and
the optimal solutions involved elastic supports and regions of
uniform foundation. In addition to beams, circular plates also
were treated. Finally, optimal elastic foundations for max-
imum buckling load were determined in Shin, Haftka, and
Plaut (1988) and Shin, Haftka, Watson, and Plaut (1988).

In the present paper, both the distribution of beam materiai
and the distribution of foundation stiffness are optimized. A
cantilever and a pinned-pinned beam with sandwich cross-
sections are considered. The total volume of the beam and the
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total stiffness of the foundation are specified. A uniformly
distributed load is applied, and the compliance is minimized.
(For this loading, the compliance is proportional to the area
displaced by the beam in the vertical plane.) Optimality condi-
tions are derived using the calculus of variations, and optimal
solutions are obtained for several values of minimum cross-
sectional area and a range of values of total foundation
stiffness.

Formulation

Consider an elastic beam of length L which has a sandwich
cross-section. The face sheets have varying thickness and their
cross-sectional area is denoted A(X) where 0<X<L. The
mass and stiffness of the core are neglected. Let A, and EJ,
represent the face-sheet area and the bending stiffness of a
reference uniform beam which has the same total volume. The
beam is attached to an elastic foundation of the Winkler type
with varying stiffness coefficient K(X). Elastic supports with
stiffnesses C; at locations X = L; may be included in the foun-
dation. A downward, uniformly distributed load ¢ is applied
to the beam, and the resulting downward deflection is denoted
W(X).

The analysis is carried out in terms of the nondimensional
quantities

x=X/L, ox)=AxL)/A,, k(x)=L*K(xL)/(EL,),

c;=L3C;/(El,)), a;=L;,/L, wx)=El,W(xL)/(L*q) (1)

where 0<x<1 (see Fig. 1). Then the equilibrium equation is
given by
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Fig. 1 Geometry of beams in nondimensional terms

[a)w” ()] " +k(Iw(x) =1 @

(Plaut, Johnson, and Olhoff, 1986; Plaut, 1987). At x=a;, if
0<a; <1, the functions w, w’, and w” are continuous, while

w”(a;")=w"(a;")=c;w(a). 3
The constraint of given total volume is
1
SO a()dx=1. @

The specified (nondimensional) total foundation stiffness is
denoted K7, so that

S(: k(x)dx + z": c;=Kr 5)
i=1

where 7 is the number of elastic supports. Additional con-
straints are given by

a()=za,,

k(x)=0,

where «,, is a minimum value for the (nondimensional) area.
Also, k(x) turns out to be continuous except at x=a;.

The design variables are «(x), k(x), c;, and g;, and the objec-
tive function to be minimized is the compliance G defined by

¢=0, a;<a;,, ®

1
G= S w(x)dx 0]

where w(x)=0 for the heams to be analyzed. The following
augmented functional G is constructed:

1 1
G = So wdx + SO A= (aw”)” —kw+ 1]dx
+u<501 kdx+ gc,-—KT) + Sol B(—=k+0*)dx
+ g’)’i("ci‘*’@z)"‘f\(S; adx— 1> ®)

1 n—1
+ |, T —yier B vaai +9D)

In equation (8), A(x), u, B(x), ¥i» A, I'(x), and »; are Lagrange
multlphers while 0(x), ¢;, ¥(x), and ¢, are slack variables. G
is made stationary with respect to the design variables,
Lagrange multipliers, and slack variables (Dems et al., 1987).

For the beams to be treated here, the resulting equation and
boundary conditions for A(x) are the same as those for w(x), so
that A(x) = w(x). (This only occurs because the load is uniform
and the objective function is given by equation (7).) Then the
remaining stationary equations lead to the following optimal-
ity conditions, where A and u are constants:

W ()12 = A if 0(0) > otpn; ©®)
w?(x) = wif k(x) >0; (10)
wia)=p, wa)w'(a)=0if ¢;>0. (11)
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Fig. 2 Types of optimal solutions for cantilever

Optimal solutions are obtained with the use of equations
(2)-(5), (9-(11), and boundary conditions on w(x). In the ex-
amples, A and u are positive and w’(a;) = 0. When k(x) >0, the
deflection is constant (equation (10)), so that w”(x)=0, and
then equation (9) requires that a(x)=a,,. [t follows from
equation (2) that k(x) will be a constant. When «a(x)>«,,,
w” #0 (equation (9)) and w(x) is not constant. Then equation
(10) requires that k(x)=0, and it follows from equations (2)
and (9) that o(x) will be a quadratic function. (If «(x) were not
proportional to the cross-sectional moment of inertia, equa-
tion (9) would involve a(x) and the optimal variation of the
area would not be quadratic.)

Cantilever

Consider the cantilever shown in Fig. 1(g). The boundary
conditions are w=w’=0 at x=0 and aw” =(aw”)' =0 at
x=1. If there is an elastic support with stiffness ¢ at x=1, the
last of these conditions is replaced by (aw”)’' =cwatx=1".

Two types of optimal solutions are possible, as illustrated in
Fig. 2. For sufficiently small values of the total foundation
stiffness K4, Type I occurs, in which the area « is nonuniform
(decreasing) in a region 0<x<d, a=a,, for d=<x=1, and the
foundation consists of an elastic support at x=1. As K is in-
creased, w'(1) becomes zero and then Type II governs, in
which o is nonuniform (decreasing) in a region 0<x<d,
a=a, for d=x=1, an elastic support of stiffness c exists at
some location x=a (d<a< 1), and there is a uniform founda-
tion with stiffness k, for a<x<1. The governing equations
can be solved analytically for w(x) and «a(x), leading to a sixth-
order polynomial equation to be solved for d in the Type I
solution, and four coupled polynomial equations involving d,
a, ¢, and k; in the Type II solution.

Numerical results are presented in Fig. 3 and Table 1 for
o, =0.8, 0.6, 0.4, and 0.2. Points A, B, and C correspond to
K =0, the transition from Type I optimal solutions to Type II
solutions (marked by circles in Fig. 3), and K= 50, respec-
tively. The maximum value of «, denoted o, , occurs at x=0
and is listed in Table 1. The last column in Table 1 compares
the compliance associated with the optimal solution to that of
a reference beam (Hetényi, 1946) which has uniform cross-
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Fig. 3 Optimal values of d and a for cantilever, as a function of Kr;
ay, =0.8, 0.6, 0.4, and 0.2

section (with the same total volume) and a uniform founda-
tion (with the same total foundation stiffness).

When K =0 (point A), only «(x) is a design variable. The
value of d varies from 0.365 for o, =0.8 to 0.695 for «,, =0.2,
and the reduction in compliance ranges from 24.6 percent to
40.5 percent. Point B occurs in the range 11.8 <K;=24.2 for
the results presented, with the corresponding value of d vary-
ing from 0.236 for «,, =0.8 to 0.500 for «,, =0.2. With fur-
ther increase in K, d decreases further and a also decreases.
For these Type 11 solutions between B and C, the reduction in
compliance is in the range 55.3-64.1 percent.

In the Type II solutions, the optimal ratio ¢/K is given by

c/Kr=(a—d)a+2d)/[3(a+d)—2a*+ad+dH)]. (12)

At point C (K;=50), this ratio has the values 0.707, 0.668,
0.600, and 0.490 for «,, =0.8, 0.6, 0.4, and 0.2, respectively.

Pinned-Pinned Beam

In this section, the pinned-pinned beam of Fig. 1(d) is con-
sidered. The boundary conditions are w=aw” =0 at x=0,1.
Figure 4 depicts the types of optimal solutions which occur,
with Type I governing for small values of K, Type II for an
intermediate range of K, and Type I1I for large values of K.
The solutions are symmetric about x=1/2. The area is at its
minimum allowable value near the pinned ends and also, for
Type II and Type III solutions, in a central region of the
beam. In the first two types of solutions, the optimal founda-
tion is a central elastic support, while in Type III it is a
uniform foundation about the center of the beam, bordered
by elastic supports.

As for the cantilever, one can obtain an analytical solution
for the deflection w(x) and area a(x), with polynomial equa-
tions to be solved for the design variables: b in the Type I op-
timal solution, » and d in Type II, and b, d, a, c, and k; in
Type III. Optimal values of b, d, and « are plotted as a func-
tion of K in Fig. 5 for the case o, =0.8. Similar curves are
found for other values of «,,. Numerical values are listed in
Table 2 for «,, =0.8, 0.6, 0.4, and 0.2.

When K, =0 (point A), the optimal value of b in F1g 4(a)
varies from 0.192 for «,,, =0.8 to 0.035 for a,, = 0.2, the value
of a(1/2) varies from 1.29 to 1.49, and the reduction in com-
pliance is in the range 8.7-16.3 percent. As K increases, b
decreases and c(1/2) decreases. The transition from a Type I
to a Type 11 optimal solution occurs at point B, when «(1/2)
has the value «,,. The beam then has a form as in Fig. 4 (b) but
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Fig. 4 Types of optimal solutions for pinned-pinned beam
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Fig. 5 Optimal values of b, d, and a for pinned-pinned beam, as a func-
tion of Ky; o, =0.8

witl_l d=1/2, i.e., no central uniform region. At point B, the
optimal value of b is a root of the equation

8a,,b* — 120,,0% + 6(2 -, )b —t,y, = 0. (13)
The corresponding total foundation stiffness varies from
Ky=73 for a,, =0.8 to K =166 for o, =0.2. It is noted that
these values of K are beyond the K range shown in Fig. 3 for
the cantilever.

From point B to point C, where the Type II solution of Fig.
4 (b) governs, the values of b and d decrease as K increases.
The area function a(x) for b=x=d is quadratic and sym-
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metric about its center, x =(b+ d)/2. Maximum values, o,
are listed in Table 2.

As K increases beyond point C in Table 2 (and in Fig. 5 for
a,, =0.8), the Type III solution of Fig. 4(c) is optimal. The
lengths b, d, and a all decrease as K increases. The area is
symmetric in the region 0<x=<a, i.e., a—d=>5 and o, oc-
curs at x=a/2.

The stiffness of the elastic supports in the Type I1I solutions
satisfies the equation

c/Ky=a/[2(1 —a]. (14)

At point D, where K;=500, the ratio ¢/K is 0.358, 0.364,
0.367, and 0.370 for «,, =0.8, 0.6, 0.4, and 0.2, respectively.
For the Type II and Type III solutions given in Table 2, the
reduction in compliance is in the range 29.9-39.4 percent, in
comparison with the reference beam.

Concluding Remarks

Beams attached to elastic foundations were considered in
this paper. The distributions of beam material and foundation
stiffness were optimized simultaneously, with total beam
material and foundation stiffness specified. Cantilevers and
pinned-pinned beams were treated. The beams had sandwich
cross-sections with cores of negligible stiffness, and were sub-
jected to a uniformly distributed load. The compliance was
minimized.

Several types of optimal solutions were obtained, as il-

Table 1 Optimal values for cantilever

lustrated in Figs. 2 and 4. The governing type depends on the
minimum allowable cross-sectional area of the face sheets and
the total foundation stiffness (relative to the beam stiffness).
If the total foundation stiffness is sufficiently small, the op-
timal solution is a single elastic support; if it is sufficiently
large, the optimal solution contains a region of uniform foun-
dation, bordered at internal locations by elastic supports.
Where the foundation exists, the beam is uniform (with its
minimum area). For the pinned-pinned beam, the optimal
area distribution satisfies special symmetry properties.

Even though the formulation allows the foundation to be
nonuniform, the optimal solution does not involve a
continuously-varying function k(x). Either k is zero, a positive
constant k,, or a delta function (corresponding to an elastic
support). This property is due to two factors, the uniform load
and the objective function used in this study. The quadratic
variation of the area when it is nonuniform is caused by these
factors plus the assumption of a sandwich cross-section.

In comparison to a reference beam with uniform cross-
section and uniform elastic foundation, the optimal solutions
decrease the compliance significantly. Typical results are
presented in the last column of Tables 1 and 2. The reduction
in compliance for these cases is as high as 64.1 percent for can-
tilevers and 39.4 percent for pinned-pinned beams.
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0.2 C 0.442 0.822 50.0 5.51 60.8 Structural Design Problems Including a Method for Relaxing Constraints,” Jn-
ternational Journal of Solids and Structures, Vol. 20, pp. 301-314.
Table2 Optimal values for pinned-pinned beam
. Percent
oy, Point b d a Kr O max decrease
0.8 A 0.192 — — 0 1.29 8.7
0.8 B 0.132 0.500 0.500 73 1.21 29.9
0.8 C 0.096 0.404 0.500 200 1.29 37.0
0.8 D 0.075 0.343 0.417 500 1.36 37.0
0.6 A 0.123 — — 0 1.40 12.7
0.6 B 0.076 0.500 0.500 108 1.31 34.0
0.6 C 0.061 0.439 0.500 202 1.39 37.8
0.6 D 0.047 0.374 0.421 500 1.51 38.0
0.4 A 0.074 — — 0 1.47 15.0
0.4 B 0.043 0.500 0.500 138 1.38 36.1
0.4 C 0.037 0.463 0.500 201 1.45 38.2
0.4 D 0.028 0.387 0.423 500 1.62 38.8
0.2 A 0.035 — — 0 - 1.49 16.3
0.2 B 0.019 0.500 0.500 166 1.45 37.4
0.2 C 0.017 0.483 0.500 197 1.49 38.7
0.2 D 0.013 0.412 0.425 500 1.73 39.4
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The Buckling of Thin-Walled
Open-Profile Bars

Morris Ojalvo
Columbus, Ohio 43221

The theory of buckling for thin-walled open-profile bars is criticized. Its several
derivations are faulted for violating statics, using a variational theorem approxi-

mately, using an incorrect variational statement, and/or using an inconsistent fil-
ament representation of the bar. Significantly, the theory yields buckling loads that
contradict engineering expectations. A theory to replace it with general equations
Jor computing buckling loads is presented. A problem solved under the old and new
theories shows how torsional buckling is viewed under the new.

Introduction

H. Wagner (1929) laid down several concepts from which a
general theory for thin-walled open-profile bars has grown.
Some are known to be incorrect, others endure. A Wagner
concept that endures, though it is not correct, is the notion
that longitudinal stresses can induce torsional moment on nor-
mal sections of a deformed bar. The reasoning which attempts
to justify what is called the Wagner effect and which is based
on equilibrium considerations views the bar as if it were a
bundle of longitudinal elements acting, to an extent, indepen-
dently of each other. Such a conceptualization is inconsistent
with the model used to define the bar’s other characteristics.
Concerning this, Lenz and Vielsack (Lenz, 1980) conclude that
““. . . the assumptions and results of the theory of torsional
buckling based on a filament model cannot be brought into
conformity with the assumptions and results which a theory
based on the principles of modern continuum theory suggests.”’
While this conclusion is reached through an examination of a
thin-walled tube, the reasoning applies as well to other sections.
In general, equilibrium method derivations in which Wagner
effect terms appear are deficient for not identifying the free
body with which torsional equilibrium is expressed and/or
violating statical principles (Ojalvo, 1987).

Variational method derivations in which Wagner effect terms
appear fare no better. Some fail because the underlying the-
orem on which the derivation must be based (the theorem of
stationary potential energy) is misused: Components of a
finite strain tensor are used in the strain energy expression
when infinitesimal strain expressions are clearly called for by
the theorem (Ojalvo, 1982, 1987). Kappus (1937) and F. Bleich
(1952) use the inconsistent multifilament model to determine
the potential of external longitudinal tractions that act at the
ends of a bar. For their analysis the ends of a filament move
towards one another because of the sag resulting from its
transverse displacements. The potential of the end tractions is
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the integral over an end face of the product of the relative
movement for the ends of a filament and the end traction. At
best the procedure is approximate. It yields different potentials
for different distributions of the end tractions even when their
statical resultants (be they centroidal forces, couples, or both)
are the same (H. Bleich, 1956; Ojalvo, 1981). It will be shown
that potentials do not depend on a particular distribution of
end tractions when a single model for the bar is adhered to
for all phases of the derivation.

Other derivations which have produced the conventional
results for buckling equations (Goto et al., 1985; Hasegawa
et al., 1985, Nishino et al., 1973) must be questioned for their
use of Washizu’s virtual work principle (theorem) and/or his
principle (theorem) of stationary potential energy for finite
displacements (Washizu, 1968, equations (3.49) and (3.68)).
The proofs offered for these theorems depend on equilibrium
equations (ibid. equations (3.22), (3.23)) that have no basis in
a conventional understanding of statics: Quantities called
pseudo stresses are determined for faces of elementary par-
allelepipeds of the material in the deformed state with a La-
grangian representation. That a deformed body’s geometry
can be expressed with coordinates of the undeformed state is
not in dispute. What is objected to is a failure to use actual
stresses acting on a defined parallelepiped for the equilibrium
equations.

Cywinski and others (1986, 1982, 1971) have determined
torsional buckling loads for tapered I-shaped columns with
the established theory which accepts the Wagner hypothesis.
The constant depth columns achieve taper with a gradual de-
crease of flange widths from a midlength maximum to a min-
imum at the ends. Torsional buckling loads were compared
with those of columns that were similar except that their flange
widths were uniform for the column’s entire length. The nat-
ural expectation is that the uniform cross-section column yields
the higher buckling load when cross-sections are the same at
midlength. Surprisingly, the opposite was found. Lind (1973)
performed additional computations to resolve the paradox but
only succeeded in confirming that the conventional theory
predicts substantially higher buckling loads for the tapered
columns. Thus, once again the conventional theory is found
wanting.
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A new theory with equations for buckling is presented next.
It does not accept the validity of the Wagner effect and differs
in one other important way from the conventional theory. Its
derivation follows a discussion of the theorem of stationary
potential energy. :

The Theorem and Its Application to Buckling Theory

The following with caveats serves us as a statement of the
theorem of stationary potential energy: The first variation
of the potential is zero for a body in static equilibrium (Fung,
1965, pp. 284-288). The statement contemplates a domain in
space occupied by a body. The variation of potential is in
consequence of an arbitrary continuous displacement field that
satisfies the body’s physical constraints, both external and
internal. It is required that suitable potential functions exist
for external loads, body forces, and internal stresses. The last
often limits the use of the theorem to bodies that have not
previously suffered large displacements.

Buckling is said to occur when distortions of a new type
appear in a bar that has already been deformed by loads or
support movements. Thus a bar that is subject to only lon-
gitudinal contraction before buckling acquires flexural and,
possibly, torsional distortion when buckling begins.

The analysis for buckling considers the bar in its buckled
configuration and, because the buckled bar is in equilibrium,
the theorem of stationary potential energy applies. Variations
of the potential, however, can be the result of only variations
of the buckling distortions because buckling occurs without a
change in the pre-buckling distortions. The foregoing allows
a bar’s potential to be determined from the unstressed state
as a datum or from the loaded but as yet unbuckled state. We
follow Bleich (1952) and make the latter state the datum.

The Bar

The particular longitudinal line with which a bar is modeled
is crucial to the analysis for buckling. Each point of the line
represents a transverse cross-section {(profile) of the bar. The
average lateral movement of a profile of the undeformed bar
is the lateral movement of the corresponding point of the line.
Similarly, the profile’s average longitudinal movement is the
longitudinal movement of the corresponding point of the line.

The extentional strains for the line are the average extentional
strains for the corresponding profiles. Planes intersecting the
line at right angles are called normal planes. The direction of
the line is what the theory assumes for the longitudinal direction
of the deflected bar at the corresponding profile.

The line assumes importance when the theorem of stationary
potential energy is used for the derivation of buckling equations
because, as will become obvious, different lines result in dif-
ferent expressions for the potential of external and body forces.
For equilibrium derivations the line defines the orientation of
normal planes. These are bounding surfaces for bar lengths
that are considered as free bodies for the analysis. The torsion
equilibrium condition is expressed for an axis that is normal
to a normal plane and it is thus that the choice of line impacts
on the derived buckling equations for equilibrium method
derivations (Ojalvo, 1981).

We use the line of centroids to model a bar. Adopting the
line of shear centers without, at the same time, adopting the
dubious Wagner hypothesis leads to at least one anom-
aly: Namely, that a monosymmetric I-beam with uniform
moment buckles at the same value of the moment irrespective
of whether the larger or the smaller flange is in compression
(Ojalvo, 1987). All derivations that reach the conventional
equations for buckling use the sheer center line for the modeling
of the bar and either explicitly assume the validity of the Wag-
ner hypothesis or do something of a questionable nature to
insure the appearance of Wagner effect terms in the final
results.

Uniform Compression

Point ¢ (Fig. 1) locates the centroid of a thin-walled bar’s
profile. Principal centroidal axes x and y serve as a global
coordinate system to which transverse displacements and the
location of points on a profile are referred. S(x,, y,) locates
the shear center, I, and I, are principal centroidal moments of
inertia, and I, is the warping torsion constant of a profile. All
points of a profile may move laterally when a bar deforms
(Fig. 2). Because the displacements of a buckled bar are as-
sumed small and profiles are assumed not to distort in their
own planes, one may represent lateral movement for the points
of a profile as though the profile is embedded in a rigid normal
plane that is translated parallel to the x and y axes and then

Nomenclature
r, = distance between ¢ and S o = a deflection angle, see

A = profile area on a profile Fig. 6(b)

a = distance on y axis to S = a point locating the shear # = a small rotation of the
point of transverse load center of a profile profile about a longitudi-
application U = strain energy nal axis

¢ = point locating centroid u, v = shear center displace- £,m = principal centroidal axes
of a profile ments in the x and y di- of a profile in a normal

E = Youngs modulus rections plane of the deflected

L, I, = profile area moments of u., v, = centroid displacements in bar
inertia about x and y the x and y directions (") = designates differentiation
axes V, V1, V, = external and body force with respect to z

G = shear modulus of elastic- load potentials @ = a quantity equal to 2d —
ity V, = bar shear in the y direc- Yo

1, = warping torsion constant tion I, = polar moment of inertia
for a profile w = displacement in the z di- of a profile about its

J = St. Venant torsion con- rection shear center
stant for a profile w. = average profile displace- Py = torsional buckling load

L = length of a bar ment in the z direction t = profile wall thickness

P = compressive end load x, ¥y = centroidal principal axes ¢ = a traction in the z direc-
acting on a bar of a profile tion acting on an end

p = transverse distributed Xg» Yo = x and y coordinates of S face of a bar

_ load z = longitudinal axis and co- M, = internal bar moment

P = total potential ordinate about the x axis
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Profile

Fig. 1

rotated through a small angle about an axis that is perpen-
dicular toit. Let § = 6(z) be therotation where zis a coordinate
of the line of centroids of the undeformed bar. The displace-
ments of ¢ parallel to the x and y axes are u, and v,. Those of
S are u and v. The principal axes of the profile for a normal
plane of the deformed bar are £ and y (Fig. 2). Displacements
u, v, U, and v, are related according to

U, =u + y,o

(1a)
and
(1b)
Let the load consist of a distribution of tractions ¢ in the z
direction acting on an end face of the bar at z = 0 and let the
bar be restrained longitudinally at its opposite end z = L. The
resultant of the load is a compressive force P acting through
the centroid of the end face.

Vo =0 — X, 0.

P = —SAadA )

where the integral is over the profile area A.

A nonzero bimoment on an end face signifies a boundary
condition in # that is not homogeneous. The bimoment is
| o w dA where w is the principal double-sectorial area coor-
dinate of a location on the profile. Since boundary condition
equations in 6 must be homogeneous for a buckling problem,
{owdA = 0is a restriction on permissible distributions of
o. Additional restrictions { 6 x dA = { 0 y dA = 0 apply
because P intersects ¢ both before and after buckling.

The load potential measured from the loaded but not yet
buckled bar is

V=1[,0wdA 3

where w expresses longitudinal displacements of the end profile
for a small buckling deformation of the bar and ¢ = o(x,)).
Displacement w is (Vlasov, 1961)

wW=w—ux-—vy—60uw ]
where w, is the average longitudinal displacement of a profile

and a prime, (), indicates a differentiation with respect to z.
The potential of loads ¢ is seen to be

V=—Pw, (5)

after substitution from equation (4) is made in equation (3)
and cognizance is taken of equation (2) and the above three
restrictions on the distribution of o. w, as used in equation (5)
is also the distance by which end profiles approach each other
along the z axis when a bar buckles. It is also the distance by
which the ends of the centroid line approach each other. The
relative movement is due entirely to sag displacements u, and
v.. Extentional strain of the centroid line plays no part because
that type of distortion is of a type that occurs in the bar prior
to buckling.
It can be shown that w, is given by

e + 0 e
we =5 Jo [ + (o)l ©)

Journal of Applied Mechanics

Fig. 2 Deflected profile

provided terms smaller by two or more degrees of magnitude
than (u,.')? or (v.')? are discarded. After u. and v’ are ex-
pressed with #’, v’, and 8’ in accordance with equations (1),
one has for w,

ISL )2 )2 20'2
WL':E 0[(“) +(U) +(ro)( )

+ 207 (u’ — xv')] dz N

where 2 = x2 + )2 is the square of the distance between the
centroid and shear center of a profile. Using displacements of
the shear center in place of displacements of the centroid in
the expression for w, is a matter of convenience. The use of
u and v for dependent variables leads to simpler expression
for the strain energy. u. and v, continue to define the transverse
displacements of the bar.

The strain energy U for the distortions of the displacement
field associated with buckling is (Bleich, 1952)

1 L

+ GJO')? + EL(0") dz ®)

where E is Young’s modulus, G is the modulus of elasticity in
shear, and Jis the St. Venant torsion constant for the profile.

The total potential P is the sum of U and V and obtained
with equations (5), (7), and (8). The first variation of the
functional P, éP, is equal to zero in accordance with the the-
orem of stationary potential energy. It leads to three Eulerian
differential equations

ELu"™ + Pu” + Pyf" =0 (9a)
EILu™ + Pp” — Px,0” =0 (9b)
ELO™ + [P(r> — GJI9" + Pyu” — Px,p” =0 (9¢)

with which the buckling of uniformly compressed bars is
studied.

Equations (9) are not new, having been previously derived
with an equilibrium method derivation (Ojalvo, 1981). The
present demonstrates that equilibrium and variational method
derivations yield identical results if the idealization for the bar
is the same in both. It can not be otherwise for both rest on
the same principles of statics, geometric continuity, and ma-
terial behavior.

The old theory which uses the Wagner hypothesis and defines
normal planes with the shear center line yields equations that
differ in only one respect from equations 9: Where 72 occurs
in equations (9¢) one finds in the old theory a term which is
the square of the profile area’s radius of gyration about the
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Fig. 3 Monosymmetric profile

shear center (Timoshenko, 1961). Solutions based on the equa-
tions are profoundly influenced by the difference.

Bars With a Longitudinal Plane of Symmetry

Transverse loads are applied to a bar in its y~z plane of
symmetry (Fig. 3). End loads which may also act on the bar
have resultants which, at least until buckling occurs, are in the
y-z plane. The bar’s flexural stiffness about its x axis is large
compared to its flexural stiffness about its y axis so that pre-
buckling curvature about the x axis may be ignored, and buck-
ling without curvature about that axis may be presumed. As
a consequence, the strain energy of the virtual buckling dis-
tortions is (Bleich, 1952)

L
U= % SO [EL(u")* + GJ(0')* + EL,(0")2dz. (10)

The potential of a centroidal longitudinal load is determined
separately from the potential of end moments about the x axis
and transverse loads:

(a) Potential of Centroidal Longitudinal Load. The shear
center line for the buckled bar has a curvature component v”
in the y-z plane even though there is no flexural distortion
about the £ axis (the displaced x axis) of profiles. v” is due
entirely to twist distortion and flexure about the % axes. One
may substitute u” for curvature about the 7 axis because 0 is
small (Fig. 4) and then it is seen that v” is very nearly feu”.
Evidently, v” is of a higher order {smaller by a degree of
magnitude) than #” and, because of it, v’ is of a higher order
than u’. Thus, the term including (v')? in equation (7) may
be eliminated. Taking this and the fact that x, = 0 into con-
sideration causes the potential V| derived from equations (5)
and (7) to be

) ,
Vi = —%P So [ + GO + 290" u'ldz. (A1)

(b)) End Moments and Transverse Loads Potential.
Transverse loads p are at first assumed to act at the centroid
line. A modification introduced later accounts for a positioning
of p above or below the centroid. The virtual work theorem

636/ Vol. 56, SEPTEMBER 1989
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Fig. 5 Element dz

is used to facilitate the determination of the potential of these
loads. See Ojalvo (1961) for a statement of the theorem in the
form in which it is used. The loaded but as yet not buckled
bar is the traction field contemplated by the theorem and the
displacement field contemplated is that which characterizes
buckling.

An element of the unbuckled bar is represented by a length
dz of the centroid line (Fig. 5). It is in equilibrium under
moments M,, shears V,, and loads p = p(z). M, and V, are
components of the internal stress resultant on normal planes
as determined from a linear analysis which assumes an un-
deflected bar in its establishment of the equilibrium conditions.

The displacement field characterizing buckling produces rigid
body motion for the element dz, curvature u” + y,0” of the
centroid line about the n axis, and twist §” about a longitudinal
axis through S. By the virtual work theorem, the work of the
forces and moments of Fig. 5, for all elements and in conse-
quence of the buckling displacements, is equal to the work of
the end moments and transverse loads on the bar for the same
displacements. V,, the potential of these moments and loads,
is the negative of this work. Work as used here is a scalar
product which should not be confused with energy stored within
an elastic body as the result of gradually applied loads.

The traction field of Fig. 5 does no work for the rigid body
motion of dz because the forces and moments are in static
equilibrium. Forces ¥, do no work because transverse shear
distortions do not occur in the displacement field. Only mo-
ments M, do work, and this in consequence of the rotations
of the end faces of element dz about axes parallel to the global
X axis.

Curvature u” -+ y, 6” causes a relative rotation (u” + y,
0") dz of the planes bounding element dz. The relative rotation
about the % axis (Fig. 4) has a component —8(u” + y, 0")dz
about the x axis. Twist 8’ about a longitudinal axis through
S produces additional curvature of the line of centroids in the
y-z plane (Figs. 6(a), (b)). The increment of longitudinal ro-
tation for the bounding planes of the element produces a rel-
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¢ Yo (8'd2)

dz

- 2
a=}yy(6')°dz
b

Fig. 6 Curvature induced by twist distortion

ative displacement of the centroids in the % direction of
V4y,(0'dz)?. The line of centroids is depicted (Fig. 6(b)) as a
string of elements dz with slope discontinuities o« where they
join. The representation of the centroid line in this manner
facilitates understanding how twist affects curvature in the
y-z plane without introducing further approximation to the
the derivation. The normal to a segment is represented by a
perpendicular in the y-z plane at its right end. Relative dis-
placement Y2y, (8’ dz)? between the ends is shown as a distance
parallel to the normal for the preceding segment. Deflection
angles o are ¥2y,(8')* dz so that curvature of the centroid line
about the x axis resulting from twist is — V4 y,(6')2.

The curvature of the centroid line about the x axis from
both distortionsis — [8(u" + y,0”) + Y2y,(6')*]. By the virtual
work theorem, the work of the loads is

L
—S M 6" + y,(0") + Y2y,(6')] dz.

Before writing the expression for ¥, we note that the potential
is increased by {5 %p @ 02 dz when p is distributed on a line
with y coordinate @ (Fig. 3). With this,

L
Vo= |, (g + 3, 87
+ Va3, 6'V] + Vi pit?) dz. (12)

The total potential found by adding U (equation (10), V,
and V, is

L
P = SO (VBEL(u") + EL(0") — YAP(u')

+ WIGT = PR + M,y JO')* + M, 0 u”
— Py, 0'u’ + My 00" + Yipa 6%} dz. (13)

The Eulerian equations used for the determination of buck-
ling loads and mode shapes for bars with a plane of symmetry
are obtained from the condition 6P = 0. These are, after V,
is substituted for M, and —p for M/,

ELu"™ +Pu” + (M, +Py)0" +2V,0' =pb = 0 (14a)

Journal of Applied Mechanics
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and
EL, 0" + [P(y,)* — GJ + M,y 00" + V,y,0'
-p(o— @) + [Py, + MJu” = 0. (14b)

Equation (14b) differs considerably from what would be
obtained with the old theory.

Example

The torsional buckling load of a column of length L whose
profile is a flanged cruciform is required. The profile has a
constant thickness ¢ which is sufficiently small compared to
its other dimensions so that quantities multiplied by ¢ raised
to the power three may be ignored in the computation of section
properties I, I,, and I, (Fig. 7).

The torsional buckling equation under the theory using the
Wagner hypothesis is (Bleich, 1952)

EIL, 6" + [P%’ - GJ] 6” =0 (15)
where I, is the shear center polar moment of inertia of the
profile area. For boundary conditions § = ” = 0 at z equal
to zero and L the buckled form is defined by a half sine wave
variation of # and the buckling load P, is

A w2 16 B 16
P, A (GJ + EI, L2> 9 G p 27 td3

Buckling of a purely torsional nature is never indicated by
the new theory. If, however, the cruciform column is perceived
as four 7T columns and the 7s were to buckle simultaneously
in a lateral-torsional mode with a common longitudinal axis
of enforced rotation, the effect would be the same as a pure
torsional buckling of the cruciform. The new theory permits
a determination of the buckling load for one such T (Fig. 8).
The enforced axis of rotation intersects its profile at the toe
of the stem.

Equations (14) (and equations (9), for the matter) may not
be used when there is an enforced axis of rotation. Such axes
impose conditions which must be reflected in the total potential
before the Eulerian equations are determined. Their effect is
to reduce the number of dependent variables. For the T bar

16)
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considered (Fig. 8), the imposed conditions u = —2d §, u’
= —2d6’,and u” = —2d6"are used to eliminate u from
equation (13). For uniform compression p and M, are absent
so that P for the bar considered reduces to

- 151‘ 2y (972
P =2\ UEL + EIL (2d}%) (07)

+(GJ — Pa® (0" dz a7

where a = 2d — y,. The buckling equation for the T bar
obtained from 6P = 0 is s

(EI, + EI, {2d}) 6™ + (Pa* — GJ)9” = 0. (18)

The buckling load obtained with equation (18) is V4 Py where
Py, is the buckling load for the cruciform. With boundary
conditions 6 = 6” = 0 at z equal to zero and L and with the
section properties as tabulated in Fig. 8, four times the buckling
load for the T is found to be

4 o T2
Py = = | GJ + (El, + EI, {2511)17

9 B
2 G 4 +

Buckling loads for the example under the old and the pro-
posed theories are in the ratio of 64 to 81. Such discrepancy
indicates a need for experimental verification. Before pro-
ceeding too far in this direction, however, it is essential that
thought be given to the nature of buckling and failure.

A buckling load comes from the solution of a mathematical
eigenvalue problem. The equations of the problem are obtained
with an idealization of the actual bar. Thus, the idealization
assumes infinitesimal displacements, a profile which retains its
shape, the absence of shear strains in the bar’s middle surface,
and that St. Venant torsion theory applies even when the tor-
sion is not uniform. It is therefore not remarkable that tests
do not yield what can be clearly identified as buckling loads.
At best they indicate a load range where small load increments
begin to produce large displacement increments.

Failure load, on the other hand, is clearly identified in a
test. It is a load which is of paramount interest to designers
of machines and structures.

The study of buckling is justified by the hope that correlation
exists between failure load and buckling load. Such correlation
is generally acknowledged for columns that fail by excessive
bending. Correlation is less certain for columns which fail with
substantial torsional deformation and for beam columns and
beams loaded in a plane of symmetry. This is largely due to
the lack of a great deal of experimental information in this
area. Nevertheless, experimental failure loads for columns and
one beam column have been assembled and comparisons made
with buckling loads (Ojalvo, 1983). These indicate that a better
correlation is obtained with the proposed theory of buckling.
Under the old theory some loads are greater while others are
smaller than the failure load. Buckling loads computed with
the proposed theory were always higher than the corresponding
experimental failure loads. Discrepancies with the proposed
theory averaged 6 percent and were as much as 14 percent.
With the old theory failure loads were, on the average, 7 percent
higher than the buckling load, and in one instance the failure
load was 20 percent higher.

(19
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Conclusions

A bar buckling theory should, whenever possible, show con-
sistency in its idealization of the bar. The multifilament model
used for the Wagner effect is inconsistent with the single fil-
ament model used elsewhere by the theory.

_ It seems evident that buckling must be defined before it may
be examined mathematically. Our definition is couched in terms
of the onset of new types of distortions.

The virtual work theorem can be useful in the sometimes
difficult task of evaluating the potential of the loads for a
variational derivation of the buckling equations.
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A thin elastic rod is held at one end in a strong cross wind. The nonlinear large
deformation equations are formulated and solved by perturbation and numerical in-

tegration. The problem is governed by a nondimensional parameter K representing
the relative importance of aerodynamic drag to flexural rigidity. For large K,
phenomena such as nonuniqueness, instability, and hysteresis may occur.

Introduction

The study of the behavior of thin elastic rods in cross wind
is important in the design of antennas on roof tops and mov-
ing vehicles. Due to the interaction of fluid mechanics and
elasticity, literature on the flexible rod has been scarce. The
drag of inclined rigid circular cylinders was experimentally
documented by several researchers (Hoerner, 1958). The drag
of a long curved cylinder may be estimated by integrating the
drag coefficients of element inclined straight cylinders. The
method has been applied successfully on ocean cables (McCor-
mick, 1973), where weight is important but the flexural rigid-
ity can be ignored. For antennas in a strong cross wind studied
in this paper, the problem is substantially different since flex-
ural rigidity and aerodynamic drag dominate while the effect
of self-weight can be ignored.

Formulation

Consider a thin cantilever in cross wind shown in Fig. 1(a).
The cantilever is relatively inextensible, has uniform proper-
ties, and one end is fixed at an angle o with the uniform flow.
Let s’ be the arc length from origin, L be the rod length and 8
be the local angle of inclination. For an elemental length ds’
(Fig. 1(b)), the free stream velocity gives rise to a normal drag
per length g, and a tangential drag per length g,. The horizon-
tal force X’ acting on the elemental length is then

L
X' =S , (—q,sinf —q,cosf)ds’ . 1)
Similarly, the vertical force is
L
Y= S , (g,cos8—g,sind)ds’ . Q)

A balance of local moment m on ds’ gives
dm=X’sinfds’ —Y'cosfds’. 3)
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If the rod is thin enough, the local moment is proportional to
the local curvature (elastica model, see Frisch-Fay, 1962)

df
ds’
where EI is the flexural rigidity.

Now, g, and g, are complicated functions of cylinder cross-
section, free stream velocity ¥V, angle 8, and Reynolds number.
Experiments on rigid inclined circular cylinders (Hoerner,
1958) support the cross-flow principle, that for high, sub-
critical Reynolds numbers the net steady resistance is the sum
of the resistance due to the normal component of the free
stream, and that in turn is due to the tangential component.
Thus

m=E

)

1
qn:CnTPUn|Un|D (5)

1
q:=¢ TPUt U, 1D (6)

where p is the fluid density, D is the diameter, C, and C, are
drag coefficients in directions normal and tangential to the
cylinder, and U,=Usin 8, U, =U cos 6. Experiments also
show C, and C, are approximately constant at high subcritical
Reynolds numbers (McCormick, 1973; Schlichting, 1979).

Normalize the arc length by L, the forces by EI/L?, and
drop the primes. Equations (1)-(4) yield

1
X= —KS (sin? @ Isin 61 + X cos? 6| cos 01)ds @)
§
1

Y=KS sin 6 cos 8(Isin @1 =\ cos 81)ds ®)
s il =Xsin0-Y 0 )

oo =X sin cos 0.
Here A\=C,/C, is usually small and K= C,pDL3U?/2EI is an

Y

T‘\modm
_ i) m——x %\)o
L m| O
Qe
(b)

(a) The coordinate system and (b) forces on an elemental length

Fig. 1
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important nondimensional parameter signifying the relative
importance of drag due to velocity and resistance due to rigid-
ity. Equations (7) and (8) in differential form are

_‘:i;\;ZK(Sin 20 isin 61+ cos? 81 cos 81) (10)
dy .
T=Ksmecos 6N\ | cos 61 — | sin 01). an
The boundary conditions are
X()= Y(1)=—gg—— (H=0, 60)=a. (12)

After 6(s) is found, the configuration of the rod (x, y) is ob-
tained by integrating
d
% _sin6, x0)=y0)=0. (13)
ds

X
——=cos §
ds ’

Perturbation Solution for Small K

Small X implies relatively high flexural rigidity. We expect
the rod to be almost straight. Let K = ¢ << 1 and we expand

= a + e, + €26, + 0@ (14)
X= eX| + &X,+0() (15)
Y= €Y, +€2Y, +0(). (16)
The first-order terms of equations (9)-(12) are
%‘—=X1 sin a— Y, cos o a7
ax
—a&i= sin? o | sin el + A cos? o | cos al = &, (18)
ay, .
e sin « cos a(\ Icos al — Isin al) = k,. (19)
The solutions subjected to
db
X (1)= Y1(1)=—EE1~ 1)=6,0=0 (20)
are
X, =k (s-1), Y=k (-1 (21)

0 ( s s + al )s'n | sin ! 22)
={ — - —+— ) si .
! 6 2 2 ol

The proper expansion for the absolute values of sin § and cos 6
is

23)
@49

where sgn denotes the sign of the argument. The second-order
equations are

| sin @1 = | sin | +€f; cos « sgn(sin @)+ . . .

[ cos 8t = | cos ol —efsin o sgn(cos @)+ . . .

d*6
_CE;J X, sin a— Y, cos o + 0,(X, cos o + Y, sin a) (25)
dx day.
=0k, — 2=k, 26)
where
ky= sin o cos afsin o sgn(sin a)
—\ cos o sgn(cos o)+ 2 Isin al — 2\ Icos al] @7

Ky

cos 2af\ Icos al — Isin al]

—sin o cos af\ sin o« sgn(cos o) + cos o sgn(sin a)l. (28)

The solution is
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4 3 2 1
X= (S - S+ - o )sinalsinali, @9)
4 3 2 1
Yz=< ;4 - —2 +—i4— - -—8—)sin alsin o lk, (30)
9.(36 s5+s4 SZ+3)'n
=2 - 2 2 2 7 )si
2=\ 720 ~ 120 48 16 40 /"¢

X lIsin alcos afsin o sgn(sin &) +

+ Isin ol =\ |]+(S6 . Ss+s)
St ol = A leos « 180 30 12 12 20

X Asin « cos o Isin « cos al. @3Dn
The force experienced at the origin is
k
—X= ek, + € sin « lsin o 73 + 0(%) (32)
. . k4
—~ Y= ¢k, + € sin o lsin ol ?4—0 ). (33)
The moment at the origin, normalized by EI/L, is
do €
M:—-—— = g i —_—
e (0) = sin « lsin a[{ 2
2 S0 [3 sin o sgn(sin o)
(04
40 g
+3lsin ol =N lcos el] + O(e3)}. (34)
Thetip angleats=11s
0(1)=a+sin o Isin o] {%
+é? cos o 19 (si n(sin o)
70 [Sin o sg o
) 3
+ Isin al — 19 Nleos al] + 0(53)}. 353

The configuration of the rod is described by the Cartesian
coordinates

5
x=S cos @ ds= s cos o
0

4

3 2
—e sin? o Isin af (% - —g—+%>0 ) (36)
5
y=50 sin 6 ds=s sin «
s s s?
+ in « lsi I(————+——>+O 2. 37
€ COs o sin o lsin o oy 5 , )] 37

Numerical Integration of the =0 Case

For large K the nonlinear equations (9) - (13) can only be in-
tegrated numerically. Owing to the boundary conditions, it is

© more convenient to change the independent variable to

r = 1—s. Thus, the equations are

&0 = Xsinf—-Y 0 38
ar sin §— Y cos (38)
dx . .
= —K(sin? 0lsin 61 +\ cos? flcos 81) 39)
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Fig. 2 End angle as a function of K for «=0;

D

E
U

FG

Fig.3 Configurations for =0, A =0.014. A: K=9.2; B: K= 20, C: K =50,
D: K=20, E: K=50. The states correspond to those shown in Fig. 2. D
and E are unstable.

dy
——=—K sin @ cos 8(Nlcos 8] — Isin 6)

dr o)

at r=0 X= Yz—q—e——=0.

dar
For given K, N\ we guess § at r=0 and integrate equations
(38)-(41) as an initial value problem by the Runge-Kutta-
Fehlberg algorithm, The integration terminates at =1 where
we check whether § =a. If not, the initial guess is adjusted.

Figure 2 shows the end angle (1) plotted against K for a =0
or when the cantilever rod is pointing towards the wind. The
solutions are the trivial (straight) solution #(1)=0 and the
curve EDABC. The value of N for circular rods is less than
0.02 and the solution curve is indistinguishable from the A=0
curve. For 0<K<9.2 there is only one solution, the trivial
one. When K is large, say K=20, three solutions at states
F,D,B are possible. Note that the nontrivial solutions do not
bifurcate from the trivial solution. The analytic proof of non-
bifurcation is given in the Appendix. The graph of the mo-
ment at the base, 6'(0), show similar characteristics. Thus,
small deformation theory and stability theory would not be
able to predict such nonuniqueness. The phenomena is very
different from a tip-loaded Euler column which has a pitch-
fork bifurcation.

Now let us look at the stability of the nonunique solutions at
large K. Since the trivial solution does not bifurcate, it is stable
to infinitesimal perturbations. The branch ADE has negative
slope, i.e., the higher the velocity the lower the deformation
and strain energy. We conclude this branch is unstable and can
not be realized in practice. The branch ABC has positive slope
and is thus stable.

What would happen if the speed or K is gradually increased
for a straight rod at « =07 It will remain straight unless a large
enough finite perturbation causes it to jump to a nontrivial
branch. For example, suppose at K=20 a perturbation causes
the rod to jump. from State F to State D. Since State D is
unstable, the rod instantly snaps through State A and settles at

G2
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Fig. 4 End angle as a function of K; A =0.014 and various «. Dashed
lines are from equation (35).

Fig. 5 Nonunique configurations at K =12 for «=5 deg. 1), @, ®
are stables @, @ are unstable. The states corresponds to those in.
dicated in Fig. 4.

State B. The branch BC will be followed as K is further in-
creased. As K is decreased from Stable B, the rod follows to
the upper branch to State A X=09.2. Then there is a sudden
snap back to straight configuration at State G and remain
straight when K falls below 9.2. The hystersis loop would hap-
pen only if there is an energy input from State F to State D. At
higher K, the required perturbation energy becomes smaller.
Figure 3 shows the shape of the rod at various states.

The Inclined Cantilever

When o #0 or 180 deg, the undeformed rod is pointing at an
angle to the free stream. For nonzero K, the rod will always be
bent. Figure 4 shows the end angle 6(1) for A=0.014 and
various a. Changing the sign of « is equivalent to changing the
sign of 6(1). Thus, negative « represents the case when the rod
is bent with opposite curvature, i.e., to the other side. Let us
study the case when o= +5 deg. The solution is unique when
0<K<8.8, three solutions (one unstable) when 8.8< K< 10,
five solutions (two unstable) for 10< K< 18.4, and three solu-
tions (one unstable) for k> 18.4. The behavior of the slightly
inclined rod (¢=35 deg) differs from the parallel rod with
a=0. As K is increased from zero, the rod starts to bend
following the curve HI. Then, even without an outside pertur-
bation, it snaps to State J and follows JM as the cross flow is
further increased. When X decreases the path MIN snap RH is
followed. Thus the rod has an natural hystersis loop. The
states on the curve PQ (bent to the other side) does not happen

SEPTEMBER 1989, Voi. 56 / 641
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Fig. 6 Configurations for « =90 deg, A=0.014; (§): K=0, (7): K =20,

®: k=50, (@ K=33.6, 10)K=50

unless there is a large enough appropriate perturbation. The
five equilibrium configurations for the same K =12 is shown
in Fig. 5. The natural hysteresis loop and jumps occur only for
values of o between 0 deg and 15.79 deg. For larger angles the
rod would bend smoothly. The configurations for a cantilever
rod held perpendicular to the free stream are shown in Fig. 6.
In general, the higher the angle «, the higher the minimum
value of K for the rod to be able to bend to the other side. Our
approximate solutions compare well with exact numerical
results for low K.

Our study, however, considers only in-phase deformations,
out-of-plane perturbations, such as those due to vortex shed-
ding, would certainly cause the « negative states (or those bent
to the other side) to be swept by the cross wind into the stable
o positive states. Figure 7 shows the maximum normalized
moment which occurs at the base of the cantilever rod. For
clarity, only the most stable states are shown. Figure 8 shows
the horizontal and vertical forces experienced at the base.
Although the drag (— X) is always positive, the transverse
force (— Y) may be negative at low K and low «.

Discussions and Conclusion

For rough circular cylinders the value of A=C,/C, is less
than 0.02 (Hoerner 1958, McCormick 1973). This value is even
smaller for smooth cylinders. Our computations show (e.g.,
Fig. 2) that A can be set to zero without much error for circular
cylinders. However, A may be nonnegligible for laterally-
ridged or finned cylinders where the transverse drag may in-
crease several fold.

Although the present analysis also applies to low X values,
we note the Reynolds number should be kept high and sub-
critical (500~ 500,000) such that C,, C, are approximately
constant. The importance of the nondimensional parameter X
can not be over emphasized. For small K (K <6.513), the rod
is relatively stiff and the solution is unique. For large K the
possible nonlinear phenomena of nonuniqueness, instability,
and hysteresis jumps must be considered.

For high, subcritical Reynolds numbers, oscillations due to
alternate vortex shedding are always present (Blevins, 1977).
Do these oscillations affect our results which are derived from
steady, mean deformation equations? The answer is unlikely.
Experimental investigations (Keefe, 1961, Schmidt, 1965) on
the magnitude of the oscillatory forces on a rigid cylinder nor-
mal to free stream showed that order of the unsteady lift is of
the same order of the steady drag and the order of the

unsteady drag is much less than the order of the steady drag. .

Now, lift is out of the plane of elastic deformation and
therefore would not affect our basic equations. Furthermore,
this unsteady lift rapidly decrease in magnitude as the local
angle # deviates from 90 deg. On the other hand, the unsteady
drag is in the plane of the elastic deformation. However, its

magnitude is orders smaller, and therefore would not ap-

preciably affect the deformation. Assuming no resonance

642/ Vol.56, SEPTEMBER 1989

g0 |

2r 135°

Fig. 7 Maximum moment (at the base) for the most stable states;
dashed lines are from equation (34)

20(

Fig. 8 Forces at the base for the most stable states; horizon-

tal force, ---- vertical force

modes are excited, our results should be accurate. We hope
this paper will elicit some experimental research on the in-
teresting flexible cantilever.
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APPENDIX

Bifurcation Study of the o =0 Case

When « =0, equations (9)-(12) show =0 is a solution. We
shall study the possibility of bifurcation from this state. For
< <1, the equations linearize to

d*6
— =Xbp-Y 42
ds? b “2)

170.4

=K\ 43
R 43)

dY
=KNM0. (44)

ds

Integration of equations (43) and (44) and using the boundary
conditions give
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a*o

— (1)=0. 48
= O (48)
Due to uniqueness of an initial value problem, equation (47)
gives identically

X=KN(s~1), Y=K)\S:0d5. (45) ~§g—(l):

Substitute into équation (42) and differentiate once yield

d*e db
KN -5) ——=0. 4 do
s’ (1=9) —-=0 (46) ——=0. (49)
The general solution is the Airy functions Since #(0)=0, the only solﬁtion is 8(s) =0, and therefore no
do bifurcation.
ds CiA; (1) + GBi (1) “7 Buckling of beams without the usual pitchfork bifurcation
also occur in other instances, for example the heavy horizontal
where p= (KN)'3(1—s). But equations (12), (42) show beam (Wang, 1984).
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Elastoplastic Buckling of Annular
Plates in Pure Shear’

E. Ore

A linear buckling analysis is presented for annular elastoplastic plates under shear

loads. The standard plate buckling equations are used in conjunction with the small

D. Durban
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strain J, flow and deformation theories of plasticity. The main numerical finding is
that deformation theory predicts critical loads which are considerably below the
predictions obtained with the flow theory. Furthermore, comparison with ex-
perimental data for different metals shows a good agreement with the deformation
theory results over a wide range of geometries. The limiting buckling problem of a

long narrow panel under shear stresses is treated separately. This problem admits an
exact solution and it is shown that the critical loads for the panel are approached
asymtotically by the annular plate results. Contact is made with earlier studies on the
buckling of elastic-orthotropic and elastoplastic shear panels.

1 Introduction

A common method for determining the stress-strain
response of metal plates is based on the in-plane torsion test of
annular plates. However, the applicability of that test is
limited by the phenomenon of out-of-plane buckling when the
external torsion moment reaches a critical value.

In this paper we present an elastoplastic buckling analysis of
the annular plate in pure shear. The study is within the usual
framework of plate buckling theory and small strain plasticity.
Material behavior is modeled by the J, flow and deformation
theories of plasticity with arbitrary hardening characteristics.

The governing equations are given in the next section where
we derive the homogeneous fourth-order partial differential
equation for the normal velocity at buckling. This equation is
supplemented by four homogeneous boundary conditions, for
either clamped or simply-supported edges. The resulting eigen-
value problem is examined in Section 3 via a separation of
variables solution which leads to an ordinary differential
equation for the radial profile of the normal velocity. A finite
difference scheme is employed to determine the buckling loads
(smallest eigenvalues) for a few representative materials. For
thin plates our numerical results agree with the elastic buckling
analysis of Dean (1924). In the elastoplastic range there is a
difference between the predictions obtained from the two
plasticity models. As expected, deformation theory gives
critical loads which are considerably below the flow theory
results. That difference increases as the plate becomes thicker

IThis work was based on part of a thesis to be submitted to the Technion, in
partial fulfiliment of the requirements for the degree of Doctor of Science.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MEcHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED
MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
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and can be very wide—up to an order of magitude—in the
deep plastic range.

A detailed comparison with recent experimental data ob-
tained by Bauer (1987, 1988) is shown in Section 4. Bauer’s
tests were made with clamped annular plates over a wide range
of geometries and for three different metals. The main finding
here is that while deformation theory predictions for the
buckling loads are in good agreement with measured results,
the flow theory predictions considerably overestimate the
values of the experimental critical stresses. That observation
highlights the so-called ‘‘plastic buckling paradox’’ (Hutchin-
son, 1974). It is likely that initial imperfections will lower the
maximum load predictions of the flow theory, but
engineering-wise, one can use the deformation theory results
of the bifurcation loads for all practical purposes.

Finally, in Section 5, we investigate the limiting buckling
problem of a narrow shear panel. Here we obtain an exact
analytical solution for the bifurcation modes, and the
associated eigenvalues follow from simple transcendental
equations. Sample calculations for the buckling loads reveal a
picture which is very similar to the annular plate
results: Flow theory predictions are considerably higher than
the deformation theory predictions. We also show that the
results for the annular plate approach asymptotically the
critical eigenvalues obtained for the narrow panel.

The paper concludes by exploiting a formal correspondence
between our elastoplastic analysis and the study by Durban
and Stavsky (1982) on the shear buckling of elastic-
orthotropic panels. That correspondence leads to useful
aysmptotic approximations for the critical loads in the plastic
region. A further confirmation of these simplified expressions
is obtained from the recipe given by Stowell (1948) for assess-
ing the elastoplastic buckling stress of shear panels.

2 Governing Equations

An annular plate (Fig. 1(a)) with inner radius a, outer radius
b, and constant thickness 7 is subjected to uniform shearing
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Fig. 1 (a) Notation for the annular plate, (b) the limiting problem of a
long narrow panel. The thickness for both problems is h.

stresses along the boundaries. The state of stress within the
plate is that of pure shear with the statically determined radial
profile

AH2
T ="
?T 042
where \ is a constant, r—the radial coordinate, and the factor

of 24 has been introduced for convenience.
The constitutive relations during buckling may be written as

M

(’rr = Errérr + Er()é(?o (2)
Ggp =Egé, + Egpéoy 3)
719 =2Cpépy “

where (6,,, 0g9, 7,9) are the stress rates, (¢, €y, €,) are the
strain rates, and (E,, E,, Eyp, G,) are the instantaneous
moduli of the material. :
Combining (2)-(4) with the standard plate buckling equa-
tion, and observing that the only active prebuckling stress
component is (1), results in the differential equation

1 1
T [r(ErrKrr +Er0K66 )],rr m_r— (ErGKrr +E00K60 ) N

4 1 A
+_rZ_ (rG,,,x,ﬂ),,e+—r? (E gk, +Egokgp) gp —a K =0 (5
where the rates of curvature change (k,,» k4, Kg) are given by

W W, Wpm
K =W Kg= <—_r > . K= +—"r2 (6)

with w denoting the out-of-plane velocity at the onset of
buckling. Equation (5) is supplemented by boundary condi-
tions which are either those of a clamped edge where

w=0 w,=0, ‘ )
or those of a simply-supported edge where
E
w=0 w,,+( "’)Xi=o. ®)
S E, r

s

The instantaneous moduli in (2)-(4) are determined by the
type of constitutive model employed in the analysis. Here we

Journal of Applied Mechanics

shall use the two small strain versions of the elastoplastic J,
model. First we have the flow theory with
SiSutu

= ®

e

where G, Mg are the usual elastic Lamé constants, S; is the
stress deviator, o, is the effective stress (in our problem o, =
V3 7,), and Gy is the tangent shear modulus defined by

11 + ( 1 1 ) 10)
Gy G E; E
where E is the elastic modulus and E is the tangent modulus
of the uniaxial stress-strain curve (and therefore a known
function of the effective stress). The instantaneous moduli
associated with (9) for the pure shear field are readily found as

E vE
Err:EW:I—‘T E,= 5 Gy=Gr=G(1-Ry)
—p 1—-»
Qa1
where
I—9r E;
Rj=—mo——— Np=—r (12)
’ . (1—21') " E
3 nr

and v stands for Poisson’s ratio. Inserting relation (11)-(12) in
(5) and using definitions (6) gives the equation

21~ S
vy 202 [rRT(-——W"’”) ] ——z(l”i) =0 (13)
r r oA r r R

where

14

A noteworthy observation here is that the moment-free condi-
tion (8) takes the usual elastic form
(15)

wr
W, +v——=0.
’ r

The second constitutive model employed in the present
study is that of the J, deformation theory whose rate form is

Si‘S é
6y =2G ¢+ NByjée — 3G, — Gp) —-2 (16)
e
where (G,, \,) are the secant moduli defined by
E
G, = _€5__ .= TP an
2(1 + ;) A+p)(1-20)
v, is the secant Poisson ratio
1 1 E;
=g (5 )% (1)

and E, is the secant modulus of the uniaxial stress-strain
curve. Notice that the secant shear modulus G, is related to the
secant modulus E, by an expression which resembles (10),
namely

o1 11
11 -4, 1
G. G +3<Es E) (19)

The instantaneous moduli obtained from the deformation
theory follow as

Ey=v.E;

G,=G(1-Ry) (20)

(the shear modulus G,, is identical with the one given by the
flow theory). Substituting the moduli (20) in (5) and using the
kinematical relations (6), we get the equation
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- Rl (e e)])
— JrEw, +y | —+——
r s Nid 5 r r2 o
1 7= W, W
——r'— [ES(VSW_"'*' - + r2 )],r

1 .
> ’_] . +r—2 Es(sz,rr

W w,,,,;) __S_( E >_1V_9) =0
T e e T A=A\ T

The moment-free condition from (8) can now be rewritten as

+;i2 G[r(l—RT)(

W 6o
’

e2y)

W r
W tvg —5=0. 22)

Thus, the buckling problem is governed by a partial dif-
ferential equation, (13) or (21), along the four homogeneous
boundary conditions. That system has a nontrivial solution
only for certain eigenvalues of the load parameter S (or A} and
we wish to determine the smallest possible =S, which is
identified with the buckling load. Unlike the analogous elastic
buckling problem, equations (13) and (21) have coefficients
Ry, E, v,) which vary along the radius in a way that depends
on the particular stress-strain characteristics of the material.

3 Solution and Examples

Following the method of Durban and Stavsky (1982), we
write the solution for the normal velocity at buckling as

w=Re{¢(r)em)

Inserting (23) in the flow theory equation (13) results in the
ordinary differential equation

m integer. (23)

¢II

2

2
" +—¢"'+[2(1"V)m2RT—l_2m2]
r

’

+[142m2+2(1 —»)m*(R$—R;) —imS] 5

+[m* —4m? - 2(1 — v)m>(rR4—Ry) +imS] %:0 24

where the prime indicates differentiation with respect to r.
Similarly, the deformation theory equation (21) is reduced to

AL 2014 Té6:

¢ =0 30)
r

¢=0 ¢” +v*
for a simply-supported edge, where »* = » with the flow theory
and »* =, with the deformation theory.

Equations (24)-(25), along with the proper boundary condi-

tions, can be solved by available numerical schemes based on

the finite difference method. This procedure leads to a system
of linear homogeneous equations with the requirement for
vanishing of the system’s determinant A at a nontrivial solu-
tion. The coefficients of that determinant are complex
numbers but the roots (eigenvalues) of the determinant are
real. The smallest root of A=0 determines the critical eigen-
value S, at which the plate will buckle.

Sample calculations were performed for three materials
represented by the Ramberg-Osgood relation

Ge Ge "
ek (3)
E E

where n, K are material constants. The radial profile of the ef-
fective stress follows from (1) and (14) as

3

&l E h\2

O, =—24 ("—1 _ DZ ) ("7') S (32)

Accordingly, the tangent and secant moduli become

ET { [ \/§S ]n—l < h>2(n—l)]—l

—— =31 +nK|——— —_— 33
E "2 r 33)

Es [ [ \/§S :In—l ( h)Z(rt-l)}—l
— = {1+ K{— — . 34
E 24(1 - »?) r 34)

All radial coefficients of equations (24)-(25) are therefore ex-
plicit functions of the radial coordinate r.

The searching technique which has been used for.finding S,
is that of tracing the values of Re?{A} +Im?{A} for increas-
ing values of S until the smallest eigenvalue S, is located with
sufficient accuracy. This is done for given material constants,
fixed geometry (h/a and b/q) and a chosen number m of cir-
cumferential waves. The procedure is then repeated with dif-
ferent wave numbers until the smallest (S, ) of the first eigen-
values (Sp,;,) is determined.

Figures 2(a)-2(b) show the variation of the critical eigen-
value S, with the thickness ratio #/(b—a) for three metals.
The uniaxial tension curve is described by (31) with the follow-
ing material constants:

commercial aluminum: FE=68700 MPa »=0.3 K=1.27-101 n=3.72
E=69000 MPa »=0.33 K=6.08:10° n=15.62
E=201000 MPa »=0.28 K=7.61.10% n=27.6

ST AISI 4340:

@7 . ¢’
2 + (F| —im\) 3

_ 2 _ -
Egg" +— (rE{+E)9" +F,

+ (m?F, +im\) -"-ﬁ-:o (25)
where the radial functions F,, F|, F, are defined by
Fy=—r2vE/ +r(—2rv!+2v,+ )E!
(=P 42! =20, 2+ m?)E,—4G(rR}+1—R7) (26)
Fy=r,E/ +rQ2rv.—2mPv,— DE
+ (Pyr=2mro] + 2mPv + DE, + 4m*G (rRjp+ 1—R;) 27)
Fy =r2E!+ (v, + 29rEl— 2m2v, + 1)E, —4m*G (1 — R,). (28)
The boundary conditions on function ¢ are now
$=0 ¢’ =0 29

for a clamped edge and
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Buckling loads were computed for the radii ratio b/a=4.18,
with the two J, theories, and for clamped and simply-
supported plates. Comparison is made also with purely elastic
buckling where (24) and (25) coincide with the equation, Dean
(1924),

” ’

" 2 4 ¢ .
16} +~;—— " —(1+2m?) ~—ri—+(1+2m2—1mS)

3

+ (m* —4m? +imS) iz0.
r4

Initially, for sufficiently thin plates, both theories predict the
known linear elastic results: S, =88.3 for the clamped plate
(Dean (1924)) and S, =52.7 for the simply-supported plate
(Durban and Stavsky (1982)). For thicker plates, however,
where buckling occurs in the elastoplastic range, there is a con-
siderable departure of the S, versus 4/ (b—a) curves from the
purely elastic values. The most striking finding that emerges
from the curves displayed in Figs. 2(a)-2(b) is the increasing

(33)
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difference, as the plate is getting thicker, in the prediction of
S, obtained from the two J, theories. As expected, the defor-
mation theory gives lower eigenvalues than the flow theory,
but the extent of the difference between the corresponding
eigenvalues is not common in plastic buckling analysis. That
difference appears to increase with the hardening parameter
1/n. Similar results were obtained for the two cases of mixed
boundary conditions with one edge clamped and the other
simply-supported. The critical loads for these cases fall be-
tween the corresponding results of Figs. 2(a) and 2(b), and are
somewhat higher when the inner boundary is clamped in com-
parison with a clamped outer boundary. The critical eigen-
values for thin plates, with mixed boundary conditions, were
again found to be in agreement with the elastic analysis by
Durban and Stavsky (1982). It is worth mentioning in this con-
text that the elastic buckling equation (35) admits an exact
solution of the form ¢ ~ r® where « stands for the four roots
of the characteristic equation associated with (35). Such a sim-
ple solution is not possible for the elastoplastic problem, since
both (24) and (25) have radially varying coefficients. The only
exception to this is the case of a linear-hardening material
where E is constant; the flow theory equation (24) is then of
the Euler type and an exact solution, similar to that of (35),
can be found. Note also that in the deep plastic range, where

Journal of Applied Mechanics

nr< <1, we have from (12) that R;y=1 and the flow theory
equation (24) then describes an elastic-orthotropic solid with
nearly constant moduli. This explains the transition of the
flow theory curves in Figs. 2(a)-2(b) to a constant asymptotic
value of S.

4 Comparison With Experimental Results

We turn now to a comparison of the results of our
theoretical analysis with the experimental data reported
recently by Bauer (1987, 1988). In these tests several annular
plates, with clamped boundaries, were subjected to in-plane
torsion. The onset of buckling was determined by tracing the
torsion-twist history and observing the formation of a buckl-
ing waves pattern. Critical loads were measured for a few
metals over a wide range of geometries.

Figures 3(a)-3(c) display the experimenal values for the
critical torsion moment M, along with the corresponding
theoretical predictions obtained from the two J, theories. Also
shown in Figs. 3(a)-3(c) is the background curve for purely
elastic buckling (35). The critical torsion moment is related to
our eigenvalue (14) by the expression

_ TwER
cr 12(1 — 1}2) ere
The stress-strain curves of the tension test for the metals used

in the experiments can be described by (31) with the following
constants (Lange and Bauer, 1987; Bauer 1987):

(36)

CuZn36: E=114400 MPa »=0.33 K=1.75:10° n=2.4
AL 98.7W: E=70000 MPa »=0.33 K=8.95-10"" n=4.46
ST 1403: E=210000 MPa »=0.3 K=3.7-102 n=49

It is clearly seen from Figs. 3(@)-3(c¢) that the deformation
theory predictions are generally in good agreement with the
measured values for M. Flow theory, by contrast, predicts
buckling loads which are considerably above the experimental
results. The difference between the critical torsion moments
obtained from the two theories is emphasized more in Fig. 4
which shows the ratio M, (theoretical)/M,, (experimental),
for all three metals on a common scale.

It is certainly possible that unavoidable initial imperfections
will reduce the maximum load prediction obtained from the
flow theory (Hutchinson, 1974). But from a purely practical
point of view, the deformation theory analysis of the bifurca-
tion loads appears to be of sufficient reliability. The extent of
the difference in the critical eigenvalues predicted by the two
theories—for thick plates the ratio between the critical
moments can reach an order of magnitude (Fig. 4)—provides
a strong example of the ‘‘plastic buckling paradox.”

The discrepancy between the results for the critical loads,
obtained from the flow and deformation theories reflects, of
course, the corresponding difference in the magnitude of the
instantaneous moduli. Indeed, while moduli (11) of the flow
theory essentially retain their elastic values (except G,; which
is the same in both theories), we find that the deformation
theory moduli (20) are considerably below those of the flow
theory (again, except G,). In the deep plastic range the ratio
of moduli E; obtained from the two theories will be approx-
imately E,/E< <1. A similar observation has been made in
the analysis of elastoplastic buckling of the cruciform column
(Hutchinson and Budiansksy, 1974).

5 Buckling of a Long Strip in Pure Shear

When the annular plate (Fig. I(a)) becomes very narrow,
with a— b, we may expect the critical load to approach that of
a long strip (Fig. 1(b)) under uniform shear along the
boundaries. The solution of the strip problem is fairly simple
since, unlike the plate problem, the prebuckling field is
homogeneous with r,, =7. The buckling equation is simply

SEPTEMBER 1989, Vol. 56 / 647

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Mcr[Ne -m]

Mcr [Ne-m)
2000 \ — — ELASTIC 5000 -
\\ [ FLOW THEORY
j DEFORMATION THEORY \
\ .
|\ EXPERIMENTAL 4000 - — — ELASTIC
1500 |- \\ \ ——— ~ FLOW THEORY
! \ DEFORMATION THEORY
\\\ \ *  EXPERIMENTAL
\\ b=35mm 3000 F \\\
1000 \\ h=0.5mm ‘\\
\
\
\\ \ b=35mm
s00 \ 2000 \ h=0.5mm
L \\
\\\: o~ ‘\
~ \\\
1\\|—~ . . ) 1000 | \\
0 2 4 6 8 b 10 \\\\
Mcr|Ne- m] ’ \\'_:
1 1 1 1
\ b=80mm 0 2 4 6 8 10
300 L \\ h=0.5mm Mcr [Ne.m] °
N 800 -
\\\\ \
200 \\\\\ 600\ . b=80mm
. \~\\T\ AN h=0.5mm
100 |- T~ N
. 400 |- S
L ¢ ~ \\
I 1 1 1 L S~ \\ —_—_—
0 2 4 6 8 p IO 200t Tt
a °
Fig. 3(a) Critical torsion moment for CuZn36, clamped boundaries \ . | | )
0 2 4 6 8 10
a
MC'—[Ne'm] Fig. 3(c) Critical torsion moment for ST 1403, clamped boundaries
\ — — ELASTIC
\ ——-~ FLOW THEORY
1250 DEFORMATION THEORY B2
‘\\\ *  EXPERIMENTAL T B W oex + 2UEy +2G )W TEpW 0l
\
ool 2w =0 o
\\\ b=35mm where (E,y, E,,, E,,, G,,) are, with the usual notation, the in-
‘\ h=0.5mm stantaneous moduli of the material. These moduli are here ex-
750 - \\ actly asin (11) for the flow theory, and as in (20) for the defor-
\\ mation theory, except for the transformation of the (r, )
‘\\ directions to the (v, x) directions.
500 - \\ The boundary conditions at the edges y= +c are taken as
\\ either clamped or simply-supported and we write the solution
W\ of (37) in the form
250 |- N \\\ iy
~2 w=Re{f(y)e ¢} (38
o .é\\'j—-— 3 L i where v is an unknown parameter. The boundary conditions
-2 can now be written as
Mcr _[N e- m]
\ f=0 f'=0 ata clamped edge (39q)
b=80mm .
400 B = =0 at a simply-supported edge
\\ h=0 Smm f=0 f"=0 at 1 ted ed 39b
300 L where here (and throughout this section) the prime denotes
differentiation with respect to y. Inserting (38) in (37) we get
200 L the ordinary differential equation
2
1 'y N
100 |- Enf" =2 (—5_> (B +2Gy)]"
1
0 2

iy (l) N+ (l) ‘B f=0 (40)
. 3 c
Fig. 3(b) Critical torsion moment for Al 98.7 W, clamped boundaries where

648 /Vol.56, SEPTEMBER 1989 Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Mcr (THEQORETICAL)
Mcr (EXPERIMENTAL)

18

16 ' x FLOW THEORY
e DEFORMATION THEORY

2L x x

| ————p e — - —— —— 1____‘___;_

] L 1 1

[¢] 20 40 60 80

06 120 140160
b-a
n
Fig. 4 The ratio M, (theoretical)/M,, (experimental) for both theories,
clamped boundaries

A+ =24 (TC) L @1)

Since the coefficients of (40) are homogeneous we can put the
solution for f(y) in the form

4
f= E Apexp(igf—y>
p=1 ¢

where o, are the four roots of the characteristic equation

42)

E, ot + 2y (Eyy +2G )0 + YN a+ 74 E,, =0 (43)
and A, are the four integration constants. Compliance with
the boundary conditions (394) or (39b) leads to a system of
four algebraic equations for constants A,. The requirement
for a nontrivial solution of that system gives the eigenvalue
equation for the critical load at which the strip will buckle.

Calculations were made with a few metals (the same as those
of Figs. 2(a)-2(b)) represented by relation (31). Since the effec-
tive stress is o, =V3 7 we find that the secant and tangent
moduli are here given by

—E;E—T= {1 +nK[—%*—(%> ’ } " } 7 g

E IN*  hN\Z2riy ol
G CON
E 24E c

The solution procedure is essentially the same as for the an-

nular plate problem, except that parameter v of (38) is here
continuous. Results for the critical load parameter

1-p? 3(1—1:2)(2(:)2

2E E \h.

are shown in Figs. 5(a)-5(b) for three different metals. The
behavior of S with increasing thickness is similar to what we
have seen for the annular plate in Figs. 2(a@)-2(b). In the elastic
range, for thin panels, we recover the results of Southwell and
Skan (1924): Sk =22.18 for the clamped panel and S} = 13.21
for the simply-supported panel. In the plastic range S

(44b)

*
Scr"
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Journal of Applied Mechanics

25’“

®
Scr
ELASTIC

20

______________ }FLOW THEORY

i COMMERCIAL
ALUMINUM

AL 2014 T8
ST AISI 4340

ASYMPTOTIC
APPROXIMATION

DEFORMATION
THEORY

Fig. 5(a) Critical eigenvalues for clamped panels

ELASTIC

N
\\\\
A e e FLOW THEORY

X e
v\
\d COMMERCIAL

ALUMINUM

AL 2014 T6

ST AlSt 4340
ASYMPTOTIC
APPROXIMATION

DEFORMATION
THEORY

Fig. 5(b) Critical eigenvalues for simply-supported panels

decreases with A/2c¢ and there is again a considerable dif-
ference in the eigenvalues predicted by the two theories.

Comparison of the critical stresses for the clamped annular
plate and the clamped long panel is shown in Fig. 6 for two
different materials. The eigenvalues for the annular plate
represent in Fig. 6 the critical shear stress at the inner boun-
dary through the parameter

The curves for the shear panel show the variation of S¥, from
(45) with the thickness ratio A/2c. In calculating the annular
plate curves we have assumed that #/a is maintained constant
so that T, from (46) can be determined for every value of b/a.
The variation of T, with A/(b—a) is shown in Fig. 6 for
decreasing values of b/a. It can be clearly seen that T, ap-
proaches asymptotically S¥ as &/a— 1 (implying that b—~a—2¢
for the same thickness). T, is always higher than S} and the
deformation theory curves are closer to the shear panel asymp-
totes in comparison with the flow theory and purely elastic
curves.

Since the instantaneous plastic moduli of the shear panel are
homogeneous, it is possible to establish a formal cor-

Ty = (46)
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respondence with the buckling analysis of elastic orthotropic
panels. That problem has been studied recently by Durban and
Stavsky (1982), where references to earlier work can be found.
Critical loads for the elastic orthotropic panel are presented
through an eigenvalue k which, in the present notation and
with E,, =E,., is defined by

»=0.33 for AL 2014 T6, and »=0.28 for ST AISI 4340. The
corresponding values of k(1/»), as read from Fig. 6 in Durban
and Stavsky (1982), are (17.3, 17.5, 17.2)? for the clamped
panel, and (9.80, 9.93, 9.63) for the simply-supported panel.
These values agree with the asymptotic results for S} in Figs.
5(a)-5(b) to within less than a percent.

With the deformation theory we find from (20), with the aid

2¢\ 2 M
k=3 <~—c—> Ter (47) of (18), that in the plastic range, where y,~1/2, E~1/v,=2,
h Ey the critical eigenvalue follows from (49) as
The dependence of k on the material parameter 4(1- ) E
~ E,. St =———" k) = (51)
E=—r—>=— (48) 3 E
E,, +2G,,

is shown in Fig. 6 of Durban and Stavsky (1982) for the
buckling of elastic orthotropic panels with various boundary
conditions. These results can be made to fit to our problem

where k(2) is the elastic orthotropic value of k at E=2. In-
serting in (51) the power-law approximations of (44b) and us-
ing (45) gives the asymptotic approximation

(with £=1) of plastic buckling, where the instantaneous S* _B ( h ——2%;11

moduli are load dependent, in the following way: Assuming er T ‘2?)

a value for 7, we find from (48) the associated value of E. .

The corresponding value of k is then obtained from Fig. 6 in with

Durban and Stavsky (1982), and (47) will determine the proper V3 ) 4k(2) 1V sy
thickness ratio #/2c for the assumed critical stress 7.,. Put dif- B=v3(-» )[W} : ¢2)

ferently, we have from (45) and (47) the critical load
parameter in the form
E

St=(1-k ==, (49)
Sample calculations made by this method have shown a very
good agreement with the curves of Figs. 5(@)-5(b) over the en-
tire elastoplastic range. Furthermore, simple and useful
asymptotic approximations for the behavior of S* in the
plastic range can be deduced from the elastic-orthotropic
curves.

With the flow theory we get from (11)-(12), that in the
plastic range, where Ry~ 1, G,, < <E, . Hence, parameter £
from (48) is nearly constant and equals £= 1/». Denoting the
corresponding value of k& by k(1/v), we find from (49) that

1
S =k(——>.
14

Thus, the flow theory results for S% exhibit a transition from
the linear elastic values to elastic-orthotropic values which re-
main constant in the plastic range. That phenomenon is con-
firmed by the curves of Figs. 5(a@)-5(b) (see also Fig. 6), and
the trend can be seen also from the annular plate results in
Figs. 2(a)-2(b). For the three materials considered here we
have the values of »=0.3 for the commercial aluminum,

(50)
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The elastic orthotropic values of k(2) are 18.6 for the clamped
panel and 10.9 for the simply-supported panel. The values of
coefficient B in the asymptotic approximation (52) for the
three metals follow as (6.2:1073, 1.69+102, 1.81+1072) for
the clamped panel and (5.37.1073, 1.63.102, 1.77+10~2) for
the simply-supported panel. Comparison of (52) with the exact
solution shows an excellent agreement (Figs. 5(@)-5(b)) in the
plastic range.

The elastoplastic buckling problem of shear panels has been
investigated by Stowell (1948). Using a one term approxima-
tion for w, in conjunction with a minimum principle and the
deformation theory, the critical load is determined by

1 1-c
= —— 2\/'4/1— 3 sin?2
Ter sin2¢>£ Ji 2 ¢

2 2
+2£,[1 + 2sin?¢ — (1 — q)cos%]}fg— (%) E,

(53)

where the wave angle ¢ is found from the solution of the
equation

2Numbers in brackets are for commercial aluminum, AL 2014 T6, and ST
AISI 4340, respectively.
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B-c)fs
27,

+(B+e)fy
A1 1= sin%2¢
2

Here c; =(1 + E/E;)/2 and (f}, f,) are constants that depend
on the boundary conditions. For clamped boundaries,
fi1=5.14, f,=1.24, while for simply-supported boundaries,
Si=f=1

Now, for the Ramberg-Osgood materials (31) we have in the
plastic range c; = (n+ 1)/2n. The solution of (54) is then load-
independent, and for the three metals of Figs. 5(a)-5(b) we
find the shear angles ¢ [rad] as (0.628, 0.621, 0.620) for the
clamped panel, and (0.576, 0.564, 0.562) for the simply-
supported panel. Substituting these values of ¢ in (53), and us-
ing the power law approximation for E, we recover again the
asymptotic expansion (52) with identical power terms and vir-
tually the same values of coefficient B. Stowell (1948) has
compared the theoretical predictions of (53)-(54) with the ex-
perimental measurements of Gerard (1948) on the buckling of
24S-0 aluminum alloy shear panels. The agreement of the test
data with the deformation theory predictions (53)-(54), over
the range of thickness ratio 2¢/h =45+ 103, reveals essentially
the same picture as in Fig. 4 of the present paper.

cos2¢p = (54)
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Moderately Thick Angle-Ply
Cylindrical Shells Under Internal
Pressure

Heretofore unavailable closed-form solutions are obtained for unbalanced sym-
metric as well as balanced unsymmetric angle-ply, moderately thick cylindrical shells
subjected to axially varying (axisymmetric) internal pressure loading, under the
Sframework of constant shear-angle theory (CST) or first-order shear deformation
theory (FSDT), for any boundary condition. The solutions are obtained for four
CST-based kinematic relations, which are extensions of the classical shell theories
due to Donnell, Love-Timoshenko, Love-Riessner, and Sanders. The available CLT
(classical lamination theory)-based solutions can be obtained from the present solu-
tions in the limiting case of the two transverse shear moduli tending to infinity.
Numerical results have been presented for two layer and three layer angle-ply cylin-
drical shells with simply-supported edges and have been compared with the cor-
responding CLT-based analytical solutions and also the LCST (layerwise constant
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shear angle theory)-based finite element solutions.

1 Introduction

Laminated composite structures offer the advantage of high
strength-to-weight and stiffness-to-weight ratios, corrosion
resistance, fatigue (including sonic fatigue) life, and the
possibility of optimum design through the variation of fiber
orientation, stacking pattern and choice of fiber, and matrix
materials (Calcote, 1969). Due to the low transverse shear
moduli relative to the in-plane Young’s moduli, the transverse
shear deformation effects are more pronounced in laminated
fiber-reinforced structures when compared to their isotropic
counterparts under same loading. A number of analyses for
laminated anisotropic shells, based on the classical lamination
theory (CLT), which neglects transverse shear deformation
altogether (Love’s first approximation theory or Love-
Kirchhoff hypothesis) exist in the literature. Surveys of these
analyses can be found in the works of Bert (1974a,b),
Chaudhuri (1974, 1983) and Abu-Arja (1986). Dong et al.
(1962) have formulated a theory of laminated anisotropic
shell, which may be considered to be an extension of the work
of Reissner and Stavsky (1961) on laminated anisotropic plates
to Donnell’s shallow shell theory. Cheng and Ho (1963) have
presented a CLT-based analysis of laminated anisotropic
cylindrical shells using Flugge’s kinematic relations. Reuter
(1972) has utilized Donnell’s shallow shell theory in obtaining
CLT-based analytical solutions for angle-ply cylindrical shells
under the influence of uniform internal pressure and
temperature. Balaraman et al. (1972) and Chaudhuri et al.

ITo whom correspondence should be sent. -

Contributed by the Applied Mechanics Division for publication in the JOUR-
NAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, N. Y. 10017, and will
be accepted until two months after final publication of the paper itself in the
JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied
Mechanics Division, March 19, 1987; final revision, August 6, 1987.

652/ Vol. 56, SEPTEMBER 1989

(1986) have obtained CLT-based closed-form solutions for an
arbitrarily laminated cylindrical shell of finite length under
uniform internal pressure, utilizing Love-Timoshenko’s
kinematic relations. The latter work also presents finite ele-
ment solutions, based on the LCST (layerwise constant shear-
angle theory, which assumes layerwise linear variation of the
surface-parallel components of displacement), due to
Chaudhuri (1983) and Seide and Chaudhuri (1987) for com-
parison. Bert and Reddy (1982) have presented exact solutions
for bending under sinusoidal transverse loading of two-layer
thin cylindrical shells of bimodulus material. Reddy (1984) has
used the CST (constant shear-angle theory), also known as
FSDT (first-order shear deformation theory), based on
Mindlin-Reissner hypothesis, to present series solutions for
cross-ply open shallow shells of cylindrical as well as doubly-
curved geometries utilizing Sanders’ kinematic relations.
Wilson and Orgill (1986) have studied parametrically the
deformation behavior of uniformly-stressed orthotropic cylin-
drical shells. Hutchinson and El-Azhari (1986) have developed
a series solution of the general three-dimensional equations of
linear elasticity for studying vibrations of isotropic hollow cir-
cular cylindrical body with traction-free surfaces. A brief
literature search reveals the nonexistence of exact solutions to
the problem of closed lamianted shells of finite length, which
incorporate either an approximate shear deformation theory
(e.g., CST) or a three-dimensional elasticity theory into the
formulation, even for such simple geometry as circular
cylinder or such simple loading condition as uniform internal
pressure. Recently, Abu-Arja and Chaudhuri (in review) have
presented solutions for axisymmetric cross-ply cylindrical
shells subjected to uniform internal pressure, under the
framework of the CST. The purpose of the present study is to
(a) obtain exact solutions for balanced unsymmetric as well as
unbalanced symmetric angle-ply shear-flexible moderately
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Fig. 1

Geometry of the cylindrical shell

thick cylindrical shells, subjected to axially-varying internal
pressure for arbitrary boundary conditions and (b) identify the
nature of shear deformation behavior of these angle-ply shells
by way of comparison with the available CLT-based analytical
and LCST-based finite element solutions.

2 Statement of the Problem

The strain-displacement relations of a circular cylindrical
shell (Fig. 1), subjected to axisymmetric loading are given by
(Reddy, 1984)

€ =€)+ Ky €= €3+ {Ky3 e =€l
es=¢3; €6 =€)+ {Kg )
where, using 8( . . . . )/86 =0, because of axisymmetry
=uy,; S=w/R; e§=¢y—vR; d=w,+¢,;
62=Uo,x; K =gy Ky =0; Ks =g+ CoUg /R,

@

in which u,, v, are the reference (middle) surface stretching, w
is the transverse or radial displacement; ¢,, ¢, are the rota-
tions of the reference surface about 6- and x-coordinate axes,
respectively. The x and #-coordinates are equivalent to 1 and
2-coordinates, respectively, and R is the mean radius of the
cylinder. ¢, is a constant and assumes the values of -1, 0,
1/2, and 1 for extension of kinematic relations, based on
Love’s first approximation theory due to Donnell, Reissner,
Sanders, and Timoshenko (Kraus, 1967 and Chaudhuri et al.,
1986), respectively, to the case of the CST. The equations of
equilibrium for a circular, axisymmetric cylindrical shell sub-
jected to axially-varying internal pressure, p(x), are given by
(Timoshenko and Woinowsky-Krieger, 1959)

Nx,x=0; Nxf},x'l'Qf)/R:O; NG/R_Qx,xzp(x);
Mx,szx; Mxo,szG; Nxf)_‘NGx_M()x/R:O; (3)

where N,, Ny, Ny, N, are the stress resultants, M, My, M,q,
M, are moment resultants, and Q,, Q, are transverse shear
forces, all per unit length. The stress resultants, moment
resultants (stress couples), and transverse shear forces are ex-
pressed in terms of the reference surface strains and changes
of curvatures and twist as follows:

N, = Aye)+Ape)+Agel + Bk + By + Bigrs (4a)
Ny = Aped + Aped+Aged + Bk + Byky + By (4D)
Ny = Ajge] +Apged + Agsed + By, + Bagky + Besks
+(Co/ RY(B1€? + Boged + Beged + Dygk,
+ Dygry + Dggkg) 4c)
Ny = A166?+A2662+A6662+316K1+B26K2+B66K6 (4d)
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M, = By e} +Bed +Bed + Dyyky + Dipky + Digrs (4e)

My = Bypel +Bped + Byged + Dipky + Dy + Dogks - (41)
My, = My =B g€} + Byed + Bgsed + Dygiy

+ Dygry + Deske (42)

Q= Aysed + Assel (4h)

Qs =Kused + Aysed (49)

where A, By, and D; ({,j=1, 2, 6) are extensional, bending-

stretching coupling, and bending rigidities, respectively, while
Ay (i,j=4, 5) are transverse shear rigidities.

3 Exact Solution of Balanced Unsymmetric Angle-Ply
Cylindrical Shell

Exact solution to the problem of a pressurized balanced un-
symmetric (for definition, see Reuter (1972)), angle-ply cylin-
drical shell is derived in this section for arbitrary boundary
conditions. For this type of shells,

Ag=Ay=A;=B =B =Bp=Bg=Ds=Dy=0. (5)

Substitution of equations (2), (4), and (5) into equations (3)
will yield

Anto e+ ApW /R +(Co+ 1)B g0 /R
+B16Qp xx/A4s =0
Qp +CoBgUgux + CoBos W o /R—RB 6 W o + RB16Qy; 1/ Asss
+[(co + c§)Dgs /R + RAe6100 1x + CoDis Qo xx/Aas =0 (6b)
Ao, /R+Apw/R%+(cy + DBy, . /R?

(6a)

+ B Qpx/ (RA L) — Oy = D) (60)

= QO + BigUgc = D1y W xx + D1y Qe /Ass =0 (64)
— Qg+ Bygig o + BagW /R +(co + 1)Dgg v /R

+DgsQp xx/Ags =0. (6e)

Equation (6a), on integration, gives
Ug = —ApW/A{AR)—(co+ 1B s,/ (RA )
—B16Qy /(A1 A4) + C, 9

where C; is an integration constant. Substitution of u,,, as
given by equation (7) into equations (6b)-(6e), and then suc-
cessive elimination of vy, Q,, and Q, from the resulting four
coupled ordinary differential equations (O.D.E.), will finally
yield a decoupled seventh-order O.D.E in terms of w. This, on
integration, will reduce to a sixth-order O.D.E.

(4,05 + A,D* + A, D% + A)w=(A;D* + AcD* + A))p(x) + C,
(8)

where the symbolic operator D" is defined by
Dt =qg"/dx" (n=1,..,6) ©)

and A; (i=1, . ., 7) are given by equations (A1), while C, is
an integration constant. It is noteworthy that in the case of
uniform internal pressure, p(x)=p,, the aforementioned
seventh-order O.D.E. reduces a homogeneous O.D.E., which
implies that the r.h.s. of equation (8) becomes merely an in-
tegration constant, C%. It is then evident that the solution, due
to the uniform pressure, is a degenerate case of its counterpart
due to axially-varying pressure loading, with C}=A,p, + C,.
The equation (8), on substitution of G,3 = G,; — o, reduces to
its CLT-counterpart (Chaudhuri et al., 1986) which, for the
case of uniform internal pressure, p,, is given by

AIDS + A3D* + AD? + AYyw=Alp, + C, (10)
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where A} (i=2, 3, 4, 7) are as presented in equations (42). It
may also be noted that

A= lim
"Gi3=0p—o

A, —0.
w,, the complementary solution of equation (8), is obtained
by assuming w = €™, which yields the characteristic equation
NotaN+a,N+a,=0 1D
where
a;=A;. /A, i=1,..,3). (12)

Considering A\?=m reduces equation (11) to a third-degree
polynomial which can easily be solved (Korn and Korn, 1968),

~

Bscosh(8,x)sin(a, x) + Bscosh(y, x) + Bgsinh(y, x)

w, =< B,sinh(8 x)sin{a; x) + B,sinh(B, x)cos{x, x) + Bycosh(B, x)cos(a x) +

B,cosh(,x)sin(o,; x) + Bscos(y,x) + Bgsin(y, x)

3
Y S
i=1

.

where a4, 8, v1, M, and F are as given by equations (43).
Bi(i=1, .., 6) are integration constants and f;(x) are defined
as follows:

if u;>0

BiCOSh(¢ix) + B,‘_H'Sinh(@ix)
i) = { (14)

Bcos(®,x)+ B;, ;sin(®;x) if u; <0

with u,(i=1, 2, 3) being given by equations (44) and
@, =+ ly,l.

If p (x) is prescribed, w,, the particular integral of equation
(8), can easily be obtained. For example, for the case
P (x)=po,

Wp=A7p0+Cz.

(15)
Once the complete solution, w=w,+w,, is known, the re-
maining quantities, Q,, Qy, 4y, and v, can easily be obtained,

which are as follows:

O, =hswO + hew o +hw, (16a)
Qf} =j1 w® +j2w,xxx +j3 W (16b)
Vg =y W + s Wy HisW o Hi7 W+ (g +7,C X+ Cy (16c)

Uy =k1 W(S) +k2W,xxx +k3w’x +k4_gw+ (k5 +k6C1)x+ C4 (16d)

where C,; and C, are integration constants, while #,(i=35, 6,

7, jii=1,..,9 and k;(i=1, .., 6) are as given by equa-
tions (AS5).

The ten integration constants, B;(i=1,..,6) and
Ci(i=1, . ., 4), can be obtained by prescribing five boundary

conditions at each of the ends (x= +.L/2) of the cylindrical
shell. The five boundary conditions are chosen to be one
member from each pair of the following equations

(W1Qx) = (Mx)d’x): (Nx’uo):'(Nx )UO) =(¢0;Mx0)=0' (17)

In the event the loading and the boundary conditions are sym-
metric, with respect to the central section of the cylinder,
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B,=B,=B;=C,;=C,=0 and the remaining five constants of
integration are obtained from the prescribed boundary condi-
tion at one end only.

4 Exact Solution of Unbalanced Symmetric Angle-Ply
Cylindrical Shell

Exact solution to the problem of a.pressurized unbalanced
symmetric (for definition, see Reuter (1972)) angle-ply cylin-
drical shell is derived in this section for arbitrary boundary
conditions. For a symmetric angle-ply shell,

Aus=0;  B;=0  (ij=1,2,6). (18)

Substitution of equations (2), (4), and (18) into equations
(3) will yield

B, sinh(8,x)sin{c, x) + B,sinh(8,x)cos(a;x) + Bycosh(B, x)cos(a; x) +

if F>0and m,; >0
13

if F>0 and m; <0

if F<0

Ao T AW, /R+ A0, =0 (19a)
Qp+RA U v + AW x — CoD 16 W s + €D 16O/ Ass
+ [eo(co + 1)Dgs/ R+ RA 414 v + oD Qp /A aa =0 (19b)
At /R+Apw/R?+ Ayt /R=0Q,,=px) (190)
= Qx =D W e + D1y Qe /Asss + (o + 1DV /R
+ D160 xc/Asa =0 (19d)
— Qs =D 6W s + D16 Qe /A'ss + Digs Q,xx/ A
(co + DDggvg /R =0. (19¢)

The system of five coupled O.D.E.’s is solved following the
procedure presented in the preceding section. The form of the
resulting sixth-order O.D.E., in terms of w and its derivatives,
is identical to its counterpart of the unsymmetric case. In the
interest of brevity the details of the solution, which are
available in Abu-Arja (1986), will not be presented here.

5 Numerical Results

Before obtaining numerical results for moderately thick
angle-ply cylindrical shells, thin unidirectional (R/¢=100)
shells of the same ply material and of otherwise the same
geometry, were investigated. The three theories—CLT, CST,
and LCST—predicted almost identical results. It is therefore
presumed that any difference in the predictions of these three
theories, in the case of moderately thick angle-ply shells, can
be attributed to the effects of thickness and of varying fiber
orientation from layer to layer.

The present study investigates, as the first example, a two-
layer balanced unsymmetric cylindrical shell with fiber orien-
tations of the layers, —6/8. The layers are of equal thickness.
The inner layer makes an angle, —0, negative sign implying
clockwise sense with respect to the positive direction of the
generator (x-axis). The length, L, of the cylindrical shell and
Young’s modulus, E,, in the direction parallel to the fibers are
5080 mm (200 in.) and 275.8 GPa (40 x 10° psi), respectively.
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Fig. 2 Variation of dispiacement, w, along the axial direction of cylin-
drical shells for — 15 deg/15 deg, — 45 deg/45 deg, and — 75 deg!75 deg
laminations

a top surface u*=6x10%u/L

0.8 middle surface v*=2x10%v/L
s bottom surface
08F  __ CSTLCST
. ——— CLT
> 04
’3
0.2
0 L x
0.1 0.2 0.3 0.4 0.5
x/L

Fig.3 Variation of up and v, displacements along the axial direction of
the cylindrical shell for — 45 deg/45 deg lamination

The other geometric and material parameters are given in the
nondimensional forms as follows:

L/R =20; R/t=5sothat L/(R)"/? =44.72
E\/E;=40; G (=G = G3)/E, =0.5;
V12(= Viz= 1123) =0.25.

In the previous equation ¢ is the wall thickness. E, is the
surface-parallel Young’s modulus transverse to the fiber direc-
tion. Gy,, Gy3, and G,; denote surface-parallel and transverse
shear moduli, respectively, while »,, »5, and »,; are surface-
parallel and transverse major Poisson’s ratios, respectively.
The material properties assumed here are the same as those of
Spilker et al. (1976).

Although the procedure is applicable to an arbitrary choice
of the admissible boundary conditions, as has been mentioned
earlier, space limitation forces the present study to limit itself
to only one type. The cylindrical shell is assumed to be simply-
supported with SSI type (Chaudhuri, et al., 1986) boundary
conditions, which are given by

w(£L/2)=M(+L/2)=N(£L/2)
=Ny(£L/2)=¢y(£L/2)=0,

Figure 2 shows the variation of displacement, w, along the
axial direction of the cylinder for —15 deg/15 deg, —45
deg/45 deg, and —75 deg/75 deg laminations. These plots
compare the present CST solution with the CLT-based
analytical and the LCST-based finite element solutions. It may
be noted that the three solutions (CLT, CST, LCST) have the
same displacement, w, in the central region, because of the
predominance of membrane action in this region. However,
the plots show disagreement among the three solutions in the
edge region. The reason behind this is that the bending action
predominates in this region, which brings into action the dif-
ferent transverse shear deformation effects approximated by
zero, constant, and layerwise constant shear deformation
theories. It may be noted that the difference between the CST
and LCST solutions (Fig. 2), for the same thickness, first in-
creases as § increases and then decreases until the two solu-
tions become identical for =90 deg (Abu-Arja, 1986). Figure

20
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Fig. 4 Axial variation of longitudinal stresses, o,, for — 45 deg/45 deg
lamination
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Fig. 5 Axial variation of gy for — 45 deg/45 deg lamination
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Fig. 6 Axial variation of displacement, w, of three-layered (9/—d/f)
cylindrical shells for § = 15 deg, 45 deg, and 75 deg iaminations

3 shows the variation of u, and v, displacements along the ax-
ial direction of the cylinder for —45 deg/45 deg lamination.
These plots show that the three solutions are the same in the
membrane region, while they disagree in the edge region, due
to transverse shear effects they approximate. The axial varia-
tion of longitudinal stresses, o, for —45 deg/45 deg lamina-
tion, is exhibited in Fig. 4. These plots show that ¢, is negligi-
ble in the central region, where the three solutions are almost
equal. However, ¢, becomes significant in the edge region,
where the aforementioned disagreements among the three
solutions, are also observed. Figure 5 shows the axial variation
of g, for the three solutions with —45 deg/45 deg lamination.
It may be noted that the behavior of o, here is different from
the behavior of o, for the cross-ply laminates (Abu-Arja and
Chaudhuri, in review), While o, behaves like w for cross-ply
laminates, o, behaves differently for —45 deg/45 deg because
of bending-twisting coupling effect.

The second example is a three-layer, unbalanced symmetric
cylindrical shell with fiber orientations of the layers, 8/ — /9.
The layers are of equal thickness. The length, radius, and
thickness of the shell, and the material properties of a layer
and the boundary conditions are identical to those of the two-
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Fig. 7 Variation of ug and v along the axial direction of the cylindrical
shell for 45 deg/ — 45 deg/45 deg lamination

layer balanced unsymmetric shell. Figure 6 shows the axial
variation of displacement, w, of the cylinder for 8 = 15 deg, 45
deg, and 75 deg laminations. These plots compare the present
CST solution with CLT and LCST solutions. As has been seen
earlier, the three solutions have the same displacement, w, in
the central region, while they disagree in the boundary region.
The reasoning is the same as stated in the preceding
paragraph. It is interesting to observe that the CST solution is
closer to its CLT counterpart for symmetric lamination (Fig.
6) than for antisymmetric lamination (Fig. 2). The reason
behind this is that the shear angle changes drastically from
layer to layer and that it changes twice for the symmetric
lamination while it changes once for the antisymmetric
lamination, for the laminates studied in this investigation.
This variation can be accounted for by the LLCST, while the
CST considers only constant shear deformation through the
entire thickness. Figure 7 shows the variation of u; and v,
along the axial direction of the cylinder for the three solutions,
with 45 deg/—45 deg/45 deg lamination. These plots are
similar to their counterparts for the anitsymmetric shell. Axial
variation of the stresses, g, and gy, are exhibited in Figs. 8 and
9, respectively. It is interesting to observe that the CST yields
stresses, which are identical to those given by the CLT, while
considerable disagreement between the CST-based analytical
solution and the LCST-based finite element solution is observ-
ed. This has been observed in the case of unbalanced sym-
metric angle-ply plates by Chaudhuri and Seide (1987, to ap-
pear). This behavior is unlike the case of balanced unsym-
metric shell of identical thickness, where the CST solution is
almost identical to its LCST counterpart, while considerable
disagreement exists between the CST and the CLT. The reason
behind this difference of behavior of the two types of lamina-
tions is the aforementioned change of shear angle from layer
to layer and insensitivity of the CST to that change.

6 Summary and Conclusions

Heretofore unavailable closed-form solutions are presented
for unbalanced symmetric and balanced unsymmetric angle-
ply cylindrical shells, subjected to axially-varying (axisym-
metric) internal pressure loading, under the framework of
FSDT or CST, for arbitrary boundary conditions. A constant
term ¢, introduced in this paper, assumes the values of —1, 0,
1/2, and 1 for extension of classical theories, due to Donnell,
Love-Reissner, Love-Sanders, and Love-Timoshenko, respec-
tively, to the CST. The currently available CLT-based solu-
tions can be easily obtained as a limiting case of the present
solution with G,; = G,; — . Furthermore, it is interesting to
observe that the decoupled O.D.E. in terms of w (resulting
from the five coupled O.D.E.’s after successive elimination of
Uy, Vg, Qy, and Q,) for the case of uniform internal pressure,
Do, becomes a degenerate case of the same due to axially-
varying pressure, p(x).

Numerical results using the CST have been presented for
two-layer unbalanced symmetric and three-layer balanced un-
symmetric angle-ply cylindrical shells. Comparison of the
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Fig. 9 Axial variation of the stress, g;, for 45 deg/— 45 deg/45 deg
lamination

results with the CLT-based analytical and LCST-based finite
element solutions suggests that, while they agree in the central
(membrane) region, as expected, some disagreement among
them has been observed in the edge (bending) region, due to
the varying degrees of shear deformation effects approx-
imated by the different theories inherent in these solutions.
Furthermore, comparison of the stresses for the two types of
angle-ply shells of identical thickness indicate different types
of shear deformation behavior in these two shells. For the
thickness and fiber orientations considered in the present in-
vestigation, the present CST-based solution in the case of the
balanced unsymmetric shell is almost identical to its LCST
counterpart while exhibiting disagreement with the corre-
sponding CLT-based solution, whereas in the case of the
unbalanced symmetric shell investigated, the CST and CLT
solutions are identical, while considerable disagreement is
observed with the corresponding LCST solution. This suggests
that while the former case exhibits nearly constant transverse
shear deformation through the laminate thickness, significant
layerwise variation of this shear deformation occurs in the lat-
ter case, to which the CST is totally insensitive and the LCST
is one of the viable alternatives to the three-dimensional
elasticity theory. Solutions presented herein should serve as
bench mark results for future comparisons.
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APPENDIX

Definitions of Certain Constants Referred to in the
Test:

A =ejeqes—ejegeq; Ay=eeqe o —ege;
+€,8985 + 465 — €285€1) — €1876¢ — €€y
Ay=—eet+egen—ere; — ey +eses ~eeg;
Ag=—ep—ey;

As=(ere505 +e189¢) —e €505 —eseghy)/by;  Ag=(erc
+e,0, +ees—egcs —egby)/ by Aq;=(cs+0,)/ by

where

e1=b4_b2b8/b7; 62=b3 +b2/b7; 63=b1_b2b6/b7;

ey=bs; es=—Bgby/by; eg=cy+Bi/by;
€7=—Bisbs/by; eg=Cy; eg=05/by; e =c4—bgcs/by
with

by=~cyBigA /(A1 R) + ¢oBy/R; b, =RAg
—colco + 1)[Bis/(RA ) — Des/R];
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by =RByg/Ass;  by=coDeg/ Ass— CoBle/(A11A44);
bs=—~RB;; bg=Au/R*~AL/(R*A);

by =(co+ 1)[By/R* ~ A1, Bs/(R*A )]

by =Bys/RA 44— AyB 6/ (RA | Ay);

by=A,/R; ¢ =By; ¢=—Dy; ;=D /Ass;
Cy=bgAy;
s =(co+ DDg/R—Bls/(RA);  co=b4/cq A1
A3=Dy, — [ABY)/[A(Ags +4Dgs/ R?) — 4B/ R?];
A3=[44,,B,4By — 44 ,Bs1/ 1A, (AgR* +4Dgq)
~4B3/R?)

Af=Apn/R* ~ [A}(R?Ags +4Dgs) — 84 ,B16Bys
+44,,B%1/[A (AR + 4D R?) — 4B} R?]

Ar=1.0 (A2)

H =—-a}{/3+ay; H,=2a,/3P-a,a,/3+ay;
F=[H,/3) + [H,/2)%

Hy=[-H,/2+VF1%; H,=[-H,/2-VF1%;
m=H;+H,—a,/3;

My =[~(Hy +H)/2—a,/31 +il[(H, — H,)/2V3) =ris;
ar=[(=r+Vri+s)/21%; B =[(r+Vr +52)/2]%;

v =V Im| (A3)
=2V —H,/3 cos(x,/3);
B23=—2V—H,;/3 cos(a,/3 +60 deg)
where
cos(ay)=H,/(2N — (H,/3)?) (Ad)
hs=—hygs/hg; hg=—[hy(gsh, +g¢)+ 27+ higslhs;

hy= —1h3(gsh, + &)+ &s1/hg;
hy=h,(gsh; +g¢)—1;
Ji=egh hi+eghy+ey;
Ja=hs/by=bgj1/by;  js=he/bs=bgj,/by;
Jo=h1/by=bgj3/by; j;=—be/b;
Js=Do/by;  Jo=—by/by;
ky=kajs +kgj;

ky =‘k7j6 +thyjs; ky=kyj;—Ap/(ALR);

j1=egh1h5; j2=€9h1h6+€9h2;

ky=kyjs+kgy;

ks=kqjg; ke=kajo+1;

where
81=€18y; Br=e;te; 8B3=€8 e,
84=e€3+ey; gs=es€y; L¢=E;
gr=esegteg; gg=e;; hy=1/hy

hy=(—8+8, +8583)/(hsg\);
hy=(—8381 +8&584)/ (4813
ky=—(cy+ 1)Bs/(RA,);

hy=86—858,/81;

kg =~ Bs/(A1A44). (A5)
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nonlinear, multidegree-of-freedom systems responding to arbitrary dynamic en-
vironments. The procedure uses nonlinear auxiliary mass dampers with adjustable
motion-limiting stops located at selected positions throughout a given nonlinear
system. A mathematical model of the system to be controlled is not needed for im-
plementing the control algorithm. The degree of the primary structure oscillation
near each vibration damper determines the damper’s actively-controlled gap size and
activation time. By using control energy to adjust the damper parameters instead of
directly attenuating the motion of the primary system, a significant improvement is
achieved in the total amount of energy expended to accomplish a given level of
vibration control. In a related paper, the direct method of Lyapunov is used to
establish that the response of the controlled nonlinear primary structure is Lagrange
stable. Numerical simulation studies of several example systems, as well as an ex-
perimental study with a mechanical model, demonstrate the feasibility, reliability,
and robustness of the proposed semi-active control method.
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1 Introduction

Analytical and experimental studies have shown that a class
of nonlinear auxiliary mass dampers, known as impact
dampers, may be more efficient than the conventional (linear)
dynamic vibration neutralizers in attenuating the response of
oscillating structures subjected to nonstationary, wide-band
random excitation. The main factor for the effectiveness of
properly designed impact dampers in limiting the vibrations of
structures emanating from arbitrary dynamic environments is
that the relatively small damping forces generated by the im-
pacting (auxiliary) mass introduces chaos in the primary
system response by disorganizing the orderly process of
amplitude buildup, thus significantly reducing the structural
response.

However, as in any passive device, even when the
characteristics of a particular damper have been optimized for
a given operating condition, its vibration damping efficiency is
limited in handling wide-band excitations due to the inability
of continuously adapting its governing characteristics to the
evolving environment. This limitation of passive dampers is
particularly pertinent in applications where not only the rms
level of the response but also the peak levels of the primary
structure response are of concern, as is the case in most struc-
tual applications.

Motivated by the above discussion, the authors have
developed and implemented two on-line active control
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algorithms (henceforth referred to as Methods 1 and 2) that
utilize pulse generators to emulate the action of optimally
designed impact dampers, to suppress the vibrations of linear
as well as nonlinear multidegree-of-freedom (MDOF) flexible
structures responding to arbitrary dynamic environments
(Masri et al., 1981, 1982).

The aforementioned on-line control procedures have been
shown to be quite effective in greatly reducing the rms
response as well as the peak response of vibrating structures
even when the excitation is nonstationary wide-band random.
This significant improvement in efficiency is achieved because
the active control algorithms under discussion are designed to
maximize the influence of the control actuators either by (1)
optimizing the relative magnitude of the control pulses
(Method 1) or by (2) choosing the optimum time for applying
the control forces (Method 2). Both methods assume the
availability of an external energy source to produce the control
pulses on demand.

Since in many practical cases the amount of energy available
for control purposes is limited, the present study explores an
alternate pulse-control strategy that economizes the use of
control energy. This is accomplished by devising an on-line
control procedure that attempts to optimize the parameters of
incorporated impact vibration dampers attached to different
locations within the vibrating flexible structure. Instead of us-
ing mass-ejection techniques (or equivalent methods) to direct-
ly furnish the needed control forces, an internal mechanism of
momentum transfer between the primary structure and the
auxiliary masses is employed. It is shown that the trade off be-
tween vibration damping efficiency and control energy
economy does not lead to a major deterioration in the overall
vibration reduction of the primary system as compared to
what can be achieved with fully active pulse-control methods.
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Actuator i
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NONLINEAR SYSTEM)
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Actuator j

Fig. 1 Model of arbitrary, noniinear MDOF system under directly ap-

plied dynamic loads p(t) and/or interface motions 0x(t) that is provided

with a number of active vibration controllers. Vectors 1x(t) and 2x(t')

define the absolute displacements of the primary and secondary

gystem, respectively. The mass of actuator number i is designated by
m;.

Section 2 of this paper formulates the problem and presents
the semi-active control algorithm, Section 3 presents
numerical simulation results to demonstrate the effectiveness
of the proposed control strategy under a wide variety of situa-
tions, and Section 4 presents some experimental results with a
mechanical model to demonstrate the feasibility of the pro-
cedure under laboratory conditions. A stability analysis of an
idealized version of the semi-active device is available in the
work of Karyeaclis and Caughey (1987).

2 Formulation

Consider the arbitrary, nonlinear multidegree-of-freedom
system shown in Fig. 1 under directly applied dynamic loads
p(t)=(py, P2s...,p, )" and/or support motions
O%(t)= (%, %%, . . ., 0x,,O)T. The equation of motion for
such a system can be expressed as

M X+ C "X+ K 'x+ M °X

+ Co"%+ KO + 1 (x, X, ) =p(#) 48]
where
x(8) = (Mg, "%y o el ‘x,,l)T is the system
displacement vector,
Ox (1) = (Ox, %, ..., °x,,1)T is the support
displacement vector,
M, C,, K;, = matrices, possibly function of time,

each of order (n, X n;), that charaterize
the inertia, damping and stiffness
forces associated with the n, system
degrees-of-freedom,

My, Cio, K¢ = matrices, possibly function of time,
each of order (n, Xxn,), that
characterize the inertia, damping, and
stiffness forces associated with the in-
terface motions,

fy(x,Xx,0) = an n, column vector of nonlinear, non-
conservative forces involving !'x(¢) as
well as °x(¢), and

p(t) = an n, column vector of directly applied
forces.

Assuming, without any loss of generality, that the system
mass matrix is diagonal allows equation (1) to be expressed in
the form

Im %+ 0K, 0%, 1) =p;(1); i=1,2,...,n, Q)

where

Journal of Applied Mechanics

'm,; is the mass associated with the system degree-of-
freedom i, and

1f, is the “‘restoring force” associated with system DOF i
arising from passive interactions.

If the nonlinear system under consideration is now provided
with a number (n,) of active vibration dampers distributed
throughout the vibrating structure, then the n, equations of
motion of the involved DOFs will change from the form of
equation (2) to

lmjl)zj—i-lfj(lx, Ox, 1x, OX)—ij(Zj, z'j)=p,-(t);
Jj=12,...,n,. 3)

Additionally, the passive system’s n, equations of motion will
have to be augmented by n, equations that govern the motion
of the active vibration dampers:

2m,2xj+2.f}(zj,zj)=pj(t)a j=1’29 N ) (4)
where

2x (1)

(2X1,2X2, LR |
ment vector,
z;(t) = 2x;(t)—1x;(¢) is the displacement of damper 2m;
relative to 'm;,,
2m; = mass of auxillary damper j, and
zfj = interaction forces arising from the presence of
damper j.

2x,,)7 = auxiliary masses displace-

It is seen from equations (1) through (4) that the following
convention is followed in the choice of notation: left
superscript (0) pertains to the n, interface (support) DOFs, left
superscript (1) pertains to the n, passive system DOFs, and left
superscript (2) pertains to the n, auxiliary mass dampers’
DOFs.

Consider now the class of nonlinear auxiliary dampers that
resemble dynamic vibration neutralizers (DVN) with resilient
motion-limiting stops. The performance of such devices under
a variety of excitations is available in the work of Masri
(1972). The influence of this class of devices on the primary
system to which they are attached can be expressed as:

ZL(Z/sz) =2mj2dj (Zj,ijjo)i j=1’2) L ] n2) (5)

where 2g;, the normalized force associated with damper 2m;,
is given by

2g;(2;,%;/0) = 8; (z;,d;) + hj(2),%;,d;) +1;(2;,5),  (6)

and the three terms appearing on the right-hand side of equa-
tion (6) are:

g;(z;, d;) = nonlinear conservative force arising from
the contact of damper 2m; with its con-
straining (limiting) stops of characteristic
dimension d;,

h;(z;,2;,d;) = nonlinear nonconservative force arising
from the contact of damper 2m ; with its
stops, and
r;i(z;,Z;) = nonlinear nonconservative forces arising
from the coupling mechanism between
damper ij and its attachment location
'm; when the motion-limiting stops are
not engaged.

To help interpret the various force terms appearing in the
general damper representation of equation (6), consider the
following special cases.

2.1 Special Cases.

Case (1); Dynamic Vibration Neutralizer (DVN): This
widely used linear damper (also known as the ‘‘vibration ab-
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sorber’’ or ‘‘Frahm damper’’) employs a linear elastic element
and, quite often, a linear viscous damping element to couple
the auxiliary mass to the oscillating structure. Thus, for this
case

2q;(2;,%;,/0) =98,2; +70,7,, )
where

{01 stiffness coefficient of the coupling sprihg, and
/0, = damping coefficient of the coupling dashpot.

Comparing equation (7) to the general form of equation (6)
yields

g() =0, ®)
hi(.) = 0, and )

ri.) =0,z +j02z'j. (10)

Case (2); Nonlinear Vibration Neutralizer: In this class of
dampers, the coupling element between 'm; and %m; has
nonlinear characteristics involving the stiffness and/or damp-
ing terms. For example, when polynomial-like nonlinearities
exist, if the spring has hardening stiffness and the damping
forces are a quadratic function of the relative velocity, the
three generic components of the damper force appearing in
equation (6) become:

g{() =0, {1n
hi() =0, 12)
ri() = jg[Zj +j022.j +f932j3 +j04Z'JZ (13)

Case (3); Impact Damper: In an ideal impact damper
which is moving freely in a container with a stiff, resilient
stops, the components of equation (6) assume the form

g/(.) = 70,lz;—sgn(z;) 0,Ju( Iz;1 ~/65), (14)
hi()) = 70,Zu( \z;1 —16y), (15)
r() =0, (16)
where
70, = stiffness of the slightly resilient damper stops,
79, = equivalent viscous damping coefficient involved
' during impacts,
70,4 = impact damper clearance, equal to one half of
the total gap size in the passive damper,
sgn(.) = indicates the algebraic sign of its argument, and
u(.) = unit step function defined by:

1if a>0,
u(a) =
0if a<0.

Notice that, in this case, no coupling exists between the col-
liding masses when the relative displacement of the auxiliary
mass is less than the available gap; consequently, the coupling
force r,(.) is zero.

Case (4); Nonlinear Vibration Neutralizer With Motion-
Limiting Stops: This device combines features of the con-
ventional DVN and the impact damper. In the terminology of
equation (6), it is responsible for the following forces:

a7

g() = 79, Zj_Sgn(zj)joalu( Iz;1 —963),
hJ() = jeziju( |Zj‘ —j03), (18)
rj(.) = j04Zj +j0521, (19)

where it is recognized that forces g; and #; are identical to the
corresponding terms in Case (3), and force r; has the same

660/ Vol.56, SEPTEMBER 1989

form as in Case (1). Notice that, here, parameters /6., /6, and
9, govern the performance of the damper in its nonlinear
range of motion (i.e., when the available gap is exceeded),
while parameters /8, and /6 determine the behavior of the
damper within its linear range.

2.2 Optimization Procedure. Consider again the
nonlinear system whose oscillations are to be attenuated:

'ml¥X 4 fi=p,(8); i=12,. .., =0y, 20

m g+ X+ = =D (1)
J=ni—n,+1,...,n, 21
2mlxe+2 =0, k=1,2,...,n,. (22)

Let y(¢), an n; column vector, denote a measure of the
primary system response of interest. For example, if the struc-
tural deformations with respect to a moving base are of con-
cern, y(¢) can be composed of a combination of the primary
system relative displacements and velocities. On the other
hand, if peak deformations are of interest, the entries in y can
correspond to the maximum deformations of designated loca-
tions. Hence, the response of the dynamic system with
dampers whose motion is governed by the (n, +n,) equations
given in equation (20)-(22) can be expressed as:

v(1)=y(10,20, . .., "26). (23)
Let the cost function to be minimized be
n t0+T0pt
e, .. =" o wy 24)
o

where W is an arbitrary weighting matrix.

In principle, the optimization task is now reduced to seeking
the set of damper parameters which will minimize J over the
response segment 7,,,. When this optimization is performed
once ‘‘off-line”’ for tfle whole response record, the result is an
optimized set of passive damper parameters. However, as
mentioned in the introduction, passive dampers, even when
optimally designed for a particular situation, may have limited
effectiveness when operating under wide-band excitations.

On the other hand, the continual optimization and adjust-
ment of the damper parameters (fully active control) requires
the ‘“‘on-line’’ solution of equation (24) and the continuous
feedback of the results to the control actuators. This ap-
proach, while mathematically appealing, is not feasible for a
variety of reasons, the leading one of which is the demanding
analytical and computational effort required to determine (let
alone adjust) the optimum damper parameters in a small frac-
tion of the structure time constant.

This study presents a compromise solution of the two con-
trol options discussed above: (1) passive dampers initially
optimized off-line, and (2) fully-active optimized dampers
with continuous feedback control. The alternate option of this
paper is to trade degraded optimization (i.e., open-loop,
suboptimal control) for ease of implementation in real life
engineering situations with actual hardware.

The motivation behind the proposed control algorithm is
the observed behavior of passive impact dampers configured
in the form of dynamic vibration neutralizers with motion-
limiting stops. When one such passive damper is attached to
an oscillating primary system undergoing transient excita-
tions, the auxiliary mass will sustain repetitive (possibly
chaotic) impacts on different sides of its container. The
number, location, and intensity of these irregular impacts is a
highly nonlinear function of the system characteristics and the
nature of the excitation. The ensuing plastic deformations,
Coulomb friction, and momentum transfer between the two
masses during collisions tend to reduce the vibrations of the
primary system.
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Fig. 2 Transient response of a linear SDOF system provided with a
passive impact damper and subjected to swept-sine excitation. A
representative segment of the primary system response between two
consecutive impacts separated by a time period Ty is considered. The
plotted curves show the variation of the indicated quantity with the gap
size d, all other parameters remaining the same. The primary system
ratio of critical damping is 0.05. The impact damper mass ratio is 0.10
and its coefficient of restitution is e=0.75. Notice that the time incre-
ment T, varies with the gap size. (a) Momentum transfer between the
colliding masses at the end of the observation time segment from t, to
to + Topts (b) peak value of the primary system displacement; and (c)
RMS value of the primary system displacement.

If the time of occurrence of one of these impacts is used to
define a reference time #,, then the variation of the peak and
rms levels of the primary system response with the gap size
that governs the time of occurrence of the succeeding impact
will be as indicated in Fig. 2.

Since the predominant mechanism that governs the interac-
tion between 'm; and ?m; is momentum transfer, it is
reasonable to expect a strong dependence of the criterion func-
tion J(.) on the discontinuity in the velocity of 'X; and/or 2x;
during the impact process. This expectation is borne out by the
results depicted in Fig. 2, where the value of the momentum
transfer is superimposed on the graph of the constituents of
J().

It is thus clear that, at least for the example problem shown
in Fig. 2, optimizing J(.) is practically identical to secking an
extremum value of the momentum transfer involved in the im-
pact process. For the class of problems under discussion, this
condition is equivalent to having an impact occur when the
primary system’s velocity is at its peak value.

2.3 Semi-Active Control Algorithm. The preceding
discussion established the guidelines for a procedure to op-
timize the operation of semi-active impact dampers configured
as mentioned above. To maximize the efficiency of an impact
damper between two consecutive impacts, the gap size d
should be adjusted so that the following conditions are
satisfied:

e For each damper mass 2m ;, an impact is made to occur
when the velocity of the corresponding primary system
mass 'm; has reached its peak value. This instant cor-
responds to the zero crossing of the corresponding
primary system displacement.

e The velocities of the various set(s) of two colliding masses
must be opposite to each other at the time of impact. This
condition insures that the impact process(es) will stabilize
the motion of the primary system.

On this basis, the following control algorithm for on-line
implementation of the damping device(s) is proposed. The
control strategy consists of detecting the displacement from
the neutral position (absolute, or relative to a moving support)

Journal of Applied Mechanics
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Fig. 3 Time history of a representative segment of the steady-state mo-
tion of a SDOF system, that is harmonically excited at resonance and
provided with a semi-active impact damper having a mass ratio of 0.1.
The time segment shown covers approximately two natural periods 74
of the primary system. For clarity, the amplitude of all the plotted quan-
tities have been normalized. (a) Absolute displacements of the primary
and secondary systems; (b) absolute velocity of the primary and sec-
ondary systems; (c) relative displacement and velocity between the
primary and secondary systems; (d) nonlinear stiffness force; and (e)
nonlinear damping force.

zero crossings of the oscillating structure damper locations,
and generating sets of impulsive control forces by inducing a
collision between each of the auxiliary masses and their cor-
responding structure locations. The essential features of this
approach can be summarized as follows:

e Virtually no on-line information regarding the global

dynamic system characteristics is needed.

® Whether the primary system is linear or nonlinear has no

bearing on the algorithm.

e Monitoring of only the system relative displacements at

the dampers’ locations is required.

® The on-line computation of the optimum clearance

distances is reduced to a simple detection process.

To illustrate the application of this approach, a represen-
tative segment of the motion of a linear SDOF oscillator being
controlled by such a semi-active damper is shown in Fig. 3.
The primary system is harmonically excited at resonance.
These graphs represent the absolute and relative state variables
of the system and the nonlinear conservative and noncon-
servative control functions, g and 4. The amplitude of all time
histories in this figure have been normalized to lie between
—1.0 and + 1.0. The length of time segment shown is approx-
imately two natural periods.

In Fig. 3(a), the solid line represents 'x, (¢), the absolute
displacement of the primary system ', while the dashed line
represents x;, the absolute displacement of the secondary
system 2m,. Similarly, in Fig. 3(b) the solid and dashed lines
represent ' X, (¢), the absolute velocity of 'm, and 2%, (£), the
absolute velocity of 2m,, respectively. The time histories of
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Fig. 4 Swept-sine excitation of a SDOF system with a variety of damp-
ing devices. (a) primary system response in the absence of any dampers;
(b) excitation; (c) response with a passive impact damper; (d) relative
displacement between the passive impact damper mass and the primary
system; (e) response when using on-line pulse control; (f) pulse control
torces; (g) response when using a semi-active impact damper; and (h)

evolution of the gap size in the semi-active damper.

the relative displacement z,=2x, —!x, and relative velocity
Z,=2%, — 1%, are represented by the solid and dashed lines,
respectively, in Fig. 3(c). The time history of the nonlinear
stiffness force g, (¢) generated by the contact of the oscillating
mass 2m, with its resilient ‘“‘stops’’ is shown in Fig. 3(d).
Similar results for the nonlinear damping force A, (¢) arising
during the impact process is shown in Fig. 3(e). As seen from
these results, suitable control impacts are applied twice every
fundamental period of the system. The total control energy ex-
erted on the structure during an impact is the sum of the areas
under the g and # functions.

The only significant disadvantage of this technique is the
lack of consideration for possible hardware delays in the ac-
tivation of the impacting mechanism. Two possible provisions
may be adopted to overcome this inadequacy:

e The first obvious choice is to design a high speed activa-
tion system with delays that are small when compared to
the fundamental period of the structural system.

e The alternative solution is to anticipate the system
response and thus activate the impacting mechanism
when the displacement of the structure has crossed a cer-
tain prescribed threshold level.

3 Stability Analysis

A stability analysis of the device under discussion has been
performed and is available in the work of Karyeaclis and
Caughey (1987). Using Lyapunov’s approach it is shown that,
under fairly permissive conditions, the response of a system
provided with the SAID under discussion is bounded.

4 Numerical Simulation

The efficiency of the proposed control strategy is
demonstrated by presenting numerical simulation results for
several SDOF and MDOF models with diverse characteristics,
subjected to deterministic and stochastic dynamic
environments.

Example (1): SDOF System Under Swept-Sine Excita-
tion. The results shown in Fig. 4 correspond to a linear,
viscously damped SDOF system consisting of a mass !m, hav-
ing a ratio of critical damping {; =0.01, and initially at rest,
that is subjected to swept-sine excitation F(¢) given by

662/ Vol. 56, SEPTEMBER 1989

F(t) =Fysin[Q(£)1]. (25)
The time variation of the exciting frequency, Q, is of the form
Q(t)=at+b. (26)

If this linear system is subjected to a swept-sine excitation,
shown in Fig. 4(b) of amplitude F, that varies according to
equation (26) between the frequency limits ©(0)/w, =0.5 and
Q(T,)/wy=1.5 in sweep time T,/T,=25, the transient
response shown in Fig. 4(a) is obtained.

Suppose now that the primary system under consideration is
equipped with a conventional impact damper having an aux-
iliary mass ratio u=0.1. Assume that the damper stops are
relatively stiff and have impact plastic deformation
characteristics equivalent to a coefficient of restitution e=0.8
(within the range provided by hardened steel). Let the damper
clearance ratio d*=[d/'x ] be optimized in accordance
with the response characteristics of such nonlinear devices
(Masri and Caughey, 1966) thus yielding an optimum
clearance of dj, =2.0.

The normalized response of the primary system with an op-
timized passive impact damper (PID) will then be as shown in
Fig. 4(c). Notice that, in this case, the peak amplitude is at-
tenuated by the factor =0.7 relative to the corresponding peak
response in Fig. 4(a). It is seen in Fig. 4(d) that, due to the
nature of the passive impact damper, the relative displacement
between the colliding masses is constrained to remain within
the fixed gap size of x=d/2.

It is clear from the results shown in Fig. 4(¢) that, while the
optimized PID did attenuate the peak response to some extent,
its efficiency was limited because it could not adapt to the
transient nature of the primary system response. This problem
can be easily remedied by using an active on-line pulse control
procedure previously developed by the authors. When this
control method is applied to the primary system under discus-
sion, it results in the response shown in Fig. 4(e). The control
forces that are used here are governed by the following rule
(““active’’ viscous damping):

=201%, (1), ty=t=(ty+Ty)
Fc(t) = 0

otherwise
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Fig. 5 Nonstationary random excitation of a SDOF system with the
same variety of damping devices used in Fig. (4).

where 1, is the pulse initiation time and 7, is the pulse
duration.

The time history of the control forces generated by the ac-
tuators that are using an external energy source are shown in
Fig. 4(f). Notice that, due to the nature of this control
algorithm, the actuation time of the pulse control forces coin-
cides with the primary system displacement zero crossings
(equivalent to velocity peaks). In addition, the magnitude of
the control force is changed once every one-half system period
to maintain a value which is a constant factor of the primary
system velocity.

The attenuation in peak amplitude with the on-line pulse
control is ['Ximax/ ¥imax] =0.3, which is substantially better
than what was achieved with the optimum passive dampers
discussed above. Obviously, the cost of this added efficiency is
the need to furnish an external energy source for the expen-
diture of the control energy.

If a semi-active impact damper is now attached to the
primary system under discussion, the response shown in Fig.
4(g) is obtained. The auxiliary mass has the same ratio
(#=0.10) used by the passive impact damper discussed
previously, and the damper stops have the same coefficient of
restitution as for the PID. The evolution of the adjustable
stops is shown in Fig. 4(A).

As might be expected, the efficiency of the SAID (a peak
reduction factor in the ratio of =0.4) is better than what was
achieved by the optimized passive impact damper, but not as
good as the active pulse-control procedure. A clear visual ex-
planation for the improved damping efficiency of the SAID is
furnished by Fig. 4(#) where it is seen that the envelope of the
optimum gap size, was being adapted to closely match that of
the primary system response. Furthermore, the time-varying
gap size caused the collisions between the oscillating masses to
occur at a time when the interaction force 2f)(.) components
had the most beneficial effect (as regarding motion attenua-
tion) on the primary system. Thus, %f,, the combined force
due to g, and A, is seen to play the same role, and to have the
same qualitative features, as the active control force F,(7)
shown in Fig. 4(f).

Example (2): SDOF Under Nonstationary Random Excita-
tion. This case is similar to the one in Example (1) except
that the disturbance is a wide-band nonstationary random ex-
citation. The identical damper parameters of Example (1) are
used again. The performance characteristics of the various
dampers are shown in Fig. 5. The relative efficiency of various
damping devices matches the results under swept-sine excita-
tion shown in Fig. 4,
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The time history of the adaptive gap size is shown in Fig.
5(h). The lack of any discernible pattern in the evolution of
the optimum gap size reflects the nature of the random dis-
turbance. The complex changes of z,(¢) between impacts
clearly illustrate the handicaps passive dampers have to cope
with, since their initial (fixed) gap size cannot change in time
to accommodate quiescent or active episodes of the random
response.

Example (3): Linear MDOF System Under Nonstationary
Random Excitation. Consider a MDOF linear frame struc-
ture that is subjected to wide-band random interface motion
and without any directly applied loads. The chain-like nature
of this example is in no way a requirement of the control
algorithm under discussion; it is merely a convenient choice so
as to make the system resemble, for example, a building-like
structure undergoing earthquake ground motion.

The response of this structure under a simulated earth-
quake, operating without any auxiliary mass dampers, is
shown in the LHS column of plots in Fig. 6. If a SAID of mass
ratio p;=0.05, i=1, 2, 3 is attached to each of the three
“stories,’’ then the controlled response would be as shown in
the middle column of plots in Fig. 6, and the corresponding
variable gap sizes are shown in the RHS column of plots.

Variable y; () represents the displacement of the ith level in
the structure with respect to the oscillating base. y, () is
closest to the base and y; () is the farthest away. For clarity,
different scales are used for the ordinates of the plots cor-
responding to ¥,, ¥,, and y; in Figs. 6(a), (b), and (c).
However, the middle column of plots uses the same amplitude
scales as the corresponding uncontrolled cases. Comparison of
the controlled and uncontrolled responses of various locations
indicates that nearly the same percentage vibration attenua-
tion is achieved at each of the controlled locations.

The influence of the SAID location on the efficiency of the
device is demonstrated in Fig. 7, where a single SAID is at-
tached to different locations in the MDOF system under
discussion. The LHS column of plots in Fig. 7 shows
schematic diagrams of the attachment points of the SAID, the
middle column of plots presents the controlled response of the
top mass m; (not necessarily the location of the SAID), and
the RHS column of plots gives the evolution if the optimum
gap size for each of the three tests.

The plots in Fig. 7 show the effects of the SAID locations on
the attenuation of the relative displacement of the top floor.
Notice that evolution of the damper clearance is clearly depen-
dent on the local oscillations in the vicinity of the damper. The
same relative reduction in the response is attained for the loca-
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Fig. 6 Response of a linear frame structure, resembling a 3-story
building, under nonstationary base excitation. The left-hand side, col-
umn of plots represent the transient response without augmented
damping, the middle column shows the corresponding response (plot-
ted to the same scale) when a separate SAID is attached to each level in
the structure, and the right-hand column of plots shows the evolution of
the dampers stops. Variable y;(t) represents the displacement of the ith
level in the structure with respect to the oscillating base. The mass of
each damper is 5 percent of the corresponding location mass.
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Fig. 7 Influence of the controller location on the response of the
structure in Fig. 6. The top row of plots indicate in part (a) the location of
a single SAID, whose mass equals 5 percent the total primary structure
mass, attached to the top “floor” mj of the structure, the controlled
response of mj relative to the moving base is shown in (d), and the
evolution of the damper gap is shown in (g). Similar results are shown in
the middle row of plots for the case where the location of the damper is
moved from m3 to my, and in the bottom row for the case where the
damper location is moved to m,.

tions that are not shown in the figure. Everything else being
the same, it is clear that the top floor is the best location to use
if a single SAID is to be employed.

The applied excitation is identical to that used in conjunc--

tion with the system of Fig. 6. The mass ratio of the single
SAID used in each of the three cases illustrated in Fig. 7 was
equivalent to that total mass ratio incorporated in the three
SAID used simultaneously in Fig. 6.

Information about the effect of the placement of active con-

trol devices on vibrating structures is available in the works of-

Lindberg and Longman (1984) and Chassiakos et al. (1988).
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5 Mechanical Model

5.1 Apparatus. A mechanical model resembling a SDOF
frame structure was designed and fabricated to investigate the
SAID under realistic laboratory conditions. This rudimentary
system, shown .in Fig. 8, consisted of the following major
components:

® a rectangle-shaped container (approximately 35X 10 cm

in plan) used to constrain the motion of the auxiliary
mass,

® a bearing-mounted auxiliary mass which was allowed to
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(a

(b)
Fig. 8 Mechanical model used for implementing the SAID algorithm:
(a) top view and (b) front view

move, with slight friction, in grooves at the center of the
container face plates which were rigidly connected to the
primary structure,

e four movable panels that were used to position the stop-
pers and cause an impact between the auxiliary mass and
the primary structure. Each of the panels could be moved
forward and backward, relative to the centerline of the
panel, and :

e a set of 16 spring-loaded ‘‘stoppers’’ mounted on each of
the panels. These stoppers are hinged wedges, approx-
imately 2-cm apart. They are connected to the moving
panel with pins designed to allow the auxiliary mass to
move freely in only one direction. The top set of panels
allowed unimpeded motion in one direction along the
longitudinal axis of the container while the lower set did
the same for the opposite direction of motion. Conse-
quently, the panels provided -electromechanically-
controlled ratchet action.

The principal goals of this design (schematic shown in Fig.
9) is to eliminate all sensors required to monitor the state of
the auxiliary mass and to simplify the control to an on/off-
type algorithm (i.e., there is no need to compute and supply a
value for the gap size). The latter feature minimizes the com-
putation time involved in the decision making process. This
shortens the delay, thus allowing more time for hardware
activation.

The control logic was implemented on a Z-80
microprocessor using the FORTH language. Upon detection
of the displacement zero-crossing by the microprocessor, an
“impact” command is issued. This event switches a relay cir-
cuit, activating magnetic solenoids and moving the impact
barriers. As a result, an impact in the desired direction will oc-
cur. The solenoids used were capable of moving the panels in-
to impact position in 4 milliseconds (about 1/20th of the fun-
damental period of the structure).

5.2 Experimental Studies. The response of the structure
photographed in Fig. 8 with and without a SAID, under
swept-sine and wide-band random excitation is shown in the
upper and lower parts of Fig. 10, respectively. The damper
mass ratio p was =0.10. It is seen that under swept-sine excita-
tion the peak displacement response is =0.45 of the cor-
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N O o & i

8. SOLENOID MOUNTING PLATE
9. MAGNETIC SOLENOCID
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Fig. 9 Schematic SAID control apparatus
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Fig. 10 Transient responses of the mechanical model with and without
a SAID. The top and bottom groups of plots correspond to the swept-
sine and random excitations, respectively.

responding value in the absence of the damper, while in the
case of random excitation this quantity '5,/'y, is =0.42,

Among the factors contributing to the lowered efficiency of

the test apparatus are:

e relatively low coefficient of restitution due to the use of
aluminum in constructing the controlling fixture.
Analytical studies indicate a much superior performance
for the SAID with relatively high values of e, which
reduce the loss of impact (control) energy,

e spacing between adjacent stoppers (resolution) was not
fine enough to ensure optimum impacts at all times, and

e fabrication inaccuracies (contributed by inexperienced

666/ Vol. 56, SEPTEMBER 1989

student machinists) in the controller assembly introduced
a significant amount of backlash (dead-space nonlineari-
ty) thus increasing the influence of mechanical energy
dissipation (at the expense of momentum transfer) on the
interaction forces between the structure and the auxiliary
mass.
- The aforementioned problems can be circumvented by the
use of more suitable materials and-hardware coupled with
more precise fabrication procedures.

6 Summary and Conclusions

A simple, yet efficient, method is presented for the on-line
parameter control of linear as well as nonlinear multidegree-
of-freedom systems provided with adjustable-gap impact
dampers responding to arbitrary dynamic loads. The on-line
control algorithm is suitable for situations in which detailed
knowledge of the system structure is not available; only local
measurements in the vicinity of each of the attached impact
dampers are needed with this adaptive control method to
determine the evolution of each impact damper clearance so as
to optimize the vibration attenuation efficiency of the in-
dividual dampers.

A stability analysis, simulation studies, and experimental
tests with a mechanical model have demonstrated the feasibili-
ty, reliability, and robustness of the proposed semi-active on-
line control method.
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To show its essential features a typical example of cubic nonlinear systems, the
clamped-hinged beam, is analyzed. The numerical results for the almost periodic-

free vibration are surprisingly close to that obtained by the incremental harmonic
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balance (IHB) method, and the analytical formulae for steady-state solution are, in
Jact, identical with that of conventional method of multiple time scales. Moreover,
detail calculations of this example revealed some interesting behauvior of nonlinear

responses, which is of significance for general cubic systems.

I Introduction

It is well known that the perturbation method is one of the
commonly used quantitative methods for analyzing nonlinear
problems. Nayfeh (1973, 1981) has presented an account of
various perturbation techniques, pointing out their
similarities, differences, and advantages, as well as their
limitations. The most representative perturbation methods
used in nonlinear structural vibrations are the Lindstedt-
Poincaré method, the method of multiple time scales, and the
KBM method. The first method employed by earlier
astronomers expands the dependent variable and frequency in

power series of small parameter, resulting in a set of linear or-

dinary differential equations which can be solved successively.
With this method, one directly determines the periodic mo-
tions. In comparison with the Lindstedt-Poincaré method, the
method of multiple time scales appears more involved, but it
can provide a more general solution which is able to treat
various resonance phenomena and therefore has been widely
applied to nonlinear vibration problems in recent years (e.g.,
Nayfeh, 1983, 1984; Sridharet et al., 1975, 1978; Mook et al.,
1985, 1986).

In this paper, a different perturbation procedure of multiple
scales is presented. This method is, in fact, a generalization of
Lindstedt-Poincaré method and is capable of treating various
complicated resonances of multiple degrees-of-freedom
systems. In this procedure, the multiple time variables 7, = w,¢
(but not the time scales 7, =¢"¢ as in the standard procedure
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of multiple scales) are employed, so that it may be called the
method of multiple dimensions. The dependent variables, as
well as the frequencies w,,, are expanded into power series of
small parameter, and the original nonlinear equations are then
separated into a series of linear partial differential equations,
which can be solved in a stepwise manner. The solution of
each approximation expressed in the form of multiple Fourier
series is generally an almost periodic steady-state vibration.
Only when the nonlinear frequencies are commensurable with
each other will the periodic steady-state solution be reduced.
The governing equations for the amplitudes and frequencies
are algebraic equations, which can usually be solved by
routine methods.

The main advantages of the present approach are its intui-
tion in idea and versatility in application. Moreover, it leads
directly to the almost periodic or periodic steady-state solu-
tions, which are probably the most attempted in practice.

For convenience of presentation of the general procedure,
only cubic nonlinear system is treated in this paper. Obvious-
ly, the same procedure can be applied to the systems with dif-
ferent kind of nonlinearities.

To demonstrate the application of the present method, the
nonlinear vibrations of a clamped-hinged beam, which is a
typical example of systems with cubic nonlinearity possessing
internal resonances, are analyzed. The numerical results of
almost periodic-free vibrations are quite close to that obtained
by IHB method (Lau, Cheung, and Wu, 1983). The internal
resonance of the beam has a similar characteristic with that of
elastic thin plates (Lau, Cheung, and Wu, 1984). However, it
is found by this example that the nonlinear response
characteristic is usually excitation-level dependent. It is in-
teresting that this fact provides an eéxplanation of the
discrepancy in behavior between different computed results
(see Iu and Lau et al., 1983).
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II General Procedure

Consider the oscillations of a system having cubic
nonlinearities

Uy

dt

'l

dr?

Qu, +e p,

N N N
te Y, Y Y Tt 4y 1y =1, cos(@t)

m=1 p=1 g=1
n=1,2,... 1)

where u, are generalized coordinates of the linear normal
modes, {1, linear natural frequencies, I',,,,, coefficients of the
nonlinear terms, u, coefficients of modal viscous damping, f,
excitation amplitudes, © the exciting frequency, and ¢ a small
constant parameter.

Following the same consideration of Lau, Cheung, and Wu
(1983), one can first introduce multiple time variables defined
as

Ty =NWyt 2

in which w, are the nonlinear frequenices of responses (in free
or forced vibration) generally incommensurable with one
another, and % is a rational number depending on the
resonance to be sought. The introduction of multiple times 7,
enables the procedure to treat general multiple degrees-of-
freedom systems, especially under almost periodic vibrations.
For a more detailed explanation of this consideration, please
refer to Lau et al., (1983). The generalized coordinates u,
(n=1, 2, ...) are then regarded as functions of independent
variables 7,. Let u, and w, be expanded in power series of ¢
similar to that of Lindstedt-Poincaré method:

u"(TI, Tas » o TN)= E u,,k(Tl, Ty v o o TN)Ek (3)
k=0
Wn= g W @
k=0
and assume that
fn = Efnk ek (5)
k=0
whereupon
du ou N
L= Y= = ) Y e D, ©
dt i=1 i k=0 I=0
d*u, l ) %u,
dar L Xt ar.97

= f) Y f) e+t Dt 0]

where the operators D, and D%, are introduced for con-
ciseness:

Y o2
Dy= Y0 oy — ()
K= 2 O o ‘
D)
=D, D= b Wy ——— . 9
y D= i=1j=ln Wix Wjr a0, )

Substituting equations (3), (5), (6), and (7) into equation (1)
and then equating the coefficients of powers of ¢, we obtain

D2ty +Qu,g=f,0 cos T (10)
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1y 2
Dyt +Qin,y = — 2D 10 — py Doty

N N
E L X Tumptnottptt +f 03T (1D
m=1 p=1 g=
Diyttyy + 921,y = = 2D§yu,y — D} 19— 2Dpi g
— HUn (DOunl +Dlun0)
N N N
- E E E 0‘nmpq mo upO uql +fn2 cos T (12)
m=1 p=1 g=1
where
%mpg =L nmpg *+ L npgm + T namp
T=Qt

In the case of resonance, it can be expressed for generality as

N
T= Eaﬂ'i
i=1

in which g; are rational constants. The solution of equation
(10) can be expressed as

(13)

Upo=A g cOS(T, + @) +Fpgcos T (14)
in which 4, and ¢,, are integration constants, and
N N
FIIO =fn0/ <Q%,— E E‘r]zw,»owjoa,-aj) (15)
i=1 j=1
wpo=9,/7. (16

While the term A4,, cos(r, + ¢,) is a solution of the corre-
sponding homogeneous equation,

D%Ou,,o—i-ﬂf,u,,():(). (17)

Note that there are many other solutions of equation (17),

such as
( Q, ) (29,, Q, )
€O0s Tils COos Ti— Ty )
Wip Wio Wno
N
20 Q
cos( — 7—- —L—7 ) i#n
:;1 (N=Dwy " @ "

etc., but these are precluded in the present solution. To ex-
plain this let us be reminded of the fact that for Lindstedt’s
method, the solution is expanded into a single Fourier series,
i.e.,

Y 14, cos(rr) + B, sin(rn)]

similarly, for the present case with multiple time variables, the
generalized steady-state solution should be in the form of
multiple Fourier series (Lau et al., 1983).

,Z: E 12: [ i) ---jmcos(;jk"'k>
im Sin(;jka)] )

where j, (k=1, 2, ...) are integers. Therefore, within the
frame of this solution form, the solution for the homogeneous
equation (17) should be taken as

+Bj1j2 B

=An0 COS(Tn + d)no)- (18)

Upy=C,y cost, + E, sinr,

Inserting (14) into (11), we obtain
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D(Z)Ounl + 9121 Uy = 2 nzwnownlAnO COS(T,, + ¢n0)

N N
+2 E E nzo),-owﬂ.aiajF,,o cosT

i=1 j=1

N
+ 00,04 o ST, + Bp0) + iy E 7 WipliFyg SInT

i=1

N N N 1
- E E E {_4_ anqumoApOAqo

+ T LpmpglAmoA oA go COS(T, +7,— Ty Do+ Dpo — Do)

+ ApoApoFgolcos(7,, + 7, + T+ b + dpg)

+¢08(7,y + 7, — T+ g+ Do)

+¢08(7, —Tp + T+ g — bpo) + 087y — 7 — T+ P — o)l
F Ao F oo g0 [C0S(7) + 2T + p0) + €OS(T), = 2T+ b 0)

+2 cos(r,, + Do)l

1
+ e Tmpg Fmo Fpo Fpol3 cosT+ cos3 Tj}

+ fin cosT. 19)

The terms containing cos(r, +¢,) or sin(r, +¢,,) on the
right-hand side of equation (19) will produce the secular
terms, which should not be parts of a uniformly valid expan-
sion. To eliminate these secular terms, the coefficients of
cos(7, + ¢,0) and sin(r, + ¢,,) must be zero. This leads to a set
of algebraic equations governing the relationships between
amplitudes A4,, and frequencies w,,. Thus, various resonances
corrected up to the first order can be easily obtained by solving
these equations.

Having known 4,, and w,,, we can determine u,; from
(19). Then, substitute them into equation (12) and continue
this procedure to determine u,,, #,3 . . . , and so on.

The procedure is obviously the generalization of the
Lindstedt-Poincaré method and will be demonstrated in the
next section in which the details of treating the specific
resonances of beam problem are considered.

III Application to Nonlinear Vibrations of Clamped-
Hinged Beam

This problem is a typical example of cubic nonlinearity
system possessing the phenomenon of internal resonance, and
was first analyzed by Nayfeh, Mook, and Sridhar (1974, 1975)
using the standard method of multiple scales. Lau, Cheung,
and Wu (1983) analyzed the almost periodic-free vibration of
this problem numerically by the use of the IHB method with
multiple time variables. In this section we consider both the
free vibrations and the forced vibrations including fundamen-
tal resonance and combination resonance under the influence
of internal resonance using the method developed in Section
II.

1 Almost Periodic-Free Vibration. The governing equa-
tions describing the transverse-free vibration of a undamped
clamped-hinged beam using a two-mode shape approximation
finally can be written as (Lau et al., 1983):

du,
3 —
dt2 +Q%u1+a11u1+a12u%u2+al3ulu%+(xl4u%-—0
d?u :
dtzz +Q3u, + 0y U3 + By + cpy i} Fagul =0, (20)

Journal of Applied Mechanics

Where 4, and u, are normal mode coordinates, ¢ is the nor-
malized time, Q, =1, Q, = 3.24064 are the first and the second
normalized linear frequencies, respectively, coefficients o
(i=1, 2; j=1, 2, 3, 4) are constants (see the Appendix). Ob-
viously, equation (20) is a special case of equation (1) with
,=0,f,=0. N=2and e=1.

The following solution clearly illustrates that the introduc-
tion of multiple time variables are necessitated for obtaining
the almost-periodic vibration solutions.

Following the procedure developed in Section II, we can ob-
tain each successive approximation solution as follows:

The first approximation solutions are

wyo =% yg =15 (21)
Uy =A 10 COST, Usg =A20 COST;. (22)
The second approximation solutions are
1 3 1
wyy =—2‘§1—(T oy Ay + > 0‘13A%O>
1 3 5 1 5
Wy =ﬁ2—(T ay A + BN 01231410) (23)

uy, =C{f* cost, + C{) cos3r, + C{} cosr, + C{) cos3r,

+ CY cos2r, + 1) + CR cos(2r, ~7,) + C) cos2ry +7,)
+ C{}) cos(2r, — 1))

Uy = CYY cost, + C8Y cos3r, + CYY) cost, + C§) cos3r,

+ ) cosry +7,) + C8 cos2r, — 7)) + C) cosQr, +75)

+ CH) cos(27, —7,). (24)
The third approximation solutions are
1 3
= | =0k A+ —— ay, AHBCR + L
V) 2w [ Wiy Ay 2 oy AfHBCY CSZ))
1
+ > Qi A} (3CH + )
1
+ 5 %n Ay Ay2CH + CfY +C1))
1
+ 5 a3d s Ap2CH) + CH + CR)
1
+ 2 %u A{RCY +CH + )
3
+ = ey, ARQCR+CR+CP)|
Wy = _1‘—[_0.’2 A + i [s2 A2 (3C§l)+q12))
YeomAn 21 Az + == o Al 1
1
+ 7 %2 A3BCY +CiP)
1
+ 5 %2 Az A1pQCHY + CY + CHY)
1
+ = o= Ay ApQCHY + Y + CY)
1
+ s A} QCH + Y + )
3
+ = ooy ALQRCR +COR + )] (9)
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Table 1 . The values of C;; in equations (27)

Present Method

Present Method

Method IHB Method THB Method
2nd Approximation 3rd Approximation 2nd Approximation = 3rd Approximation
W 1.01556 1.01568 1.01555 1.0427 1.0436 1.0426
Wy 3.25841 3.25845 3.25841 3.2898 3.2902 3.2898
oy 0.300,9 0.300 0.300 0.500 0.500 0.500,
Chy 0.2285 4 0.2350. 4 02275 4 0,997, 4 0.1095. 0,998,
Ci3 —0.3235_3 —0.3245_3 —0.3235_3 ~0.1515_, ~0.1505_, —0.149z_,
Cius -0.353;_5 —0.3495_5 —0.3535_5 —0.1675_4 ~0.1615_4 —0.168;_4
Cis -0.389;_, —0.397;_, —0.3895_4 -0.1745_; ~0.1845_; -0.1735_;
Cis —0.2245_, ~0.195,_, -0.2205_, -0.1435_, ~0.9015_, -0.1235_,
Cir 0.340%_, 0.343;_, 0.3405_4 0.1555_4 0.1595_3 0.1555 4
Cis 0.6475:- 4 0.648;_,4 0.6475_,4 0.3015_3 0.300;_; 0.3005_1
Cy 0.150z, 0.1505, 0.150z, 0.250, 0.2504, 0.2504,
Cy 0.3865_4 0.389;_, 0.3865_4 0.1765_4 0.1805_4 0.176_4
Cy3 0.6285_5 0.633;_, 0.6275_4 0.289;_5 0.293;_, 0.2865_5
Cyy 0.5305_4 0.466y _, 0.5215_4 0.333;_, 0.2165_, 0.2865_,
Cys —0.4205_, —-0.4305_, —0.4205_4 —0.1875_4 —0.1995_4 —0.1865_,
Cy -0.101g_4 —0.100g_5 —0.1005_, —0.486;_4 —0.4635_4 —0.4675_;
Cy 0.2165 02225, 0.2165_, 0.9525_4 0.1035_3 0.9475_4
Chg -0.4175_3 —0.4205_3 —0.4165_3 -0.192;_; —0.1955_, —0.189;_,

U, = C® costy + CF cos3r, + C¥ cosr, + CF cos3r,

+ C¥ cos(21, + 7,) + CF cos(2r, — 7,) + CH cos(2r, +7,)
+C® cosQry~7)+ ...

Uy, = CP costy + CH cos3dr, + CF costy + CF cos3r,
+C® cos(27, + 7,) + CR cos2r, — 1)+ CH cos2r, +7,)

+C&2g COS(ZT] “"T2)+ voe ey (26)

where coefficients C{P’ and C@ (i=1, 2; j=2, ..., 8) are
given in the Appendix. Therefore, the almost-periodic steady-
state solutions to the third-order approximation are given by

(n=1,2)

uy, =Cyy cost + C, cos3r; + Cyy costy + Cyy cos3T,

+ C)5 €08(27; + 73) + C 0827, — 73) + Cy7 COS(27, + 1)
+Cg cOSQry—71)+ . ..

Uy = Cyy cosTy + Cyy c0837; + Cy3 costy + Cyy cos37;

+ Cy5 €081y + 1) + Cy €08(27y — 71) + Cy7 cOS(27; +73)

Wy =Wpy t+ Wy + Wy

+ Coq cOsQr —T3)+ . . . 27
where

T =uwl, Ty =Wyl (n=1)

Cy=Ap+CP+CP

Ci=CP+CP i=1,2;j=2,3,...8. (28)

In order to make comparisons the coefficients Cj,
calculated by the present method and by IHB method (Lau et
al., 1983), are listed in.Table 1. It can be seen that the
discrepancies of the results between the two methods are quite
small. In fact, the results of the second approximation have
already been accurate enough for the case of moderately large
amplitudes.

2 Forced Vibration With Internal Resonance. For the
forced vibration of the beam with two-mode approximation,
the governing equations read:

d*u,
dr

du,

dt
+(¥13u1u% +a14u% =f1 cosT

+Q%ul+ﬂl +a“u?+0{12u%u2

d*u,

R .
dt2 + ey u2+a22u%ul

+ Q%uz + Ha

du2
dt
+ g3 Uy + gy til = f, cosT (29)
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where p; and p, are viscous damping coefficients, f; and f,
are forcing coefficients, and T=Q¢, Q is exciting frequency.

2.1 Fundamental Resonance, @ Near Q;. In this case, we

should take @=w,, i.e.,
T=1,. (30)

It should be stressed that w,, as well as w,, are nonlinear
response frequencies in the present formulation.

The second linear frequency, Q,, is nearly three times the
fundamental frequency ,, and therefore, the internal
resonance is likely to occur. For a periodic solution we should
let Wy = 3(JJ1 N i.e.,

€D

Since T=1,, fip must be zero, otherwise it will produce a
secular term in ;. Hence we have F\,=0. Similarly, to
eliminate secular terms, the coefficients of cos(r, + ¢ ) and
cos(r, + ¢0) in equation (19) for n=1 and n=2 must be zero,
respectively. Thus we obtain the solvability conditions relating
amplitudes A, phase angles ¢, and frequencies w,; .

T, =37,.

1 .
pnwipd g+ e oy AgAzgsin(g, — 3640)

1 . 1 .
e apAfyFosing o + e 0134 104 20F508I0(@50 — 26 19)
3 5 ) 1 .
T arygA3Fsing o — e o34 10 F5osin2é
3 .
+ e 01144 50F50510( 50 — b 10)
3 . .
e 14 F30sing o + f1,8in¢ o = 0
2 3 3 1 2
2t wypwy Ay — 4 oy Aip— > o34 ,0A4%
1
T 012 A%0A 29€08(¢20 ~ 36 16)
3 1
T a3 A1 F3C08¢ 15 — e o134 oA 20 F3c08(¢ag — 2¢19)
3 . 1
-5 0114 A% F 08 — o+ 3 A 10F5(cos2¢g +2)
3 3
e 014 A20F5c08(d30 — ¢10) — e a4 F30cosdyg
+fucos¢10 = O
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. 0/

AMPLITUDE OF FIRST HARMOMIC TERM Ayq

Fig. 1 Forced frequency response as f{; = 0;03, T=rq forced
frequency response, - - - - - wq backbone curve, A4 =amplitude of
first harmonic term

1 ,
pyMwagA g — e 014 AoSIn(bg — 3610)

1 ,
T 0133 A% Fypsin(dg — 2610)

1 . 1 .
e A o F5sin(day ~ $10) — e 0ty Fosingao =0
2 3 3 2
2 wypwy  Agg — e o A3 — N a3 AyAt
1 3
e 094 A16c08(dy0 — 300)
3 1 5
-5 0y Ay F3y — e 0tga ATpF20C08(d50 — 20010)

1
— 012 A20A 10F20c08¢ 1 — e 03p A 10F50c08(d30 — B10)

1
- _Z"‘ 0121F%0C08¢>20 =0. (32)

Nayfeh and Mook (1979) analyzed equations (29) with the
method of standard multiple scales in which they considered
p,=0and f,,=0, n=1, 2. If we take n=1, p; =p, =0, and
F,, =0 in (32), then obviously ¢, = ¢,,=0. Hence, equations
of (32) are reduced to

3
2w A0 — _4‘ o1111‘1?0— T 0‘13141014%0

1
T apAfyAyy + 11 =0

3 1
2wy Az — —— 0121A%0 - 5 ‘Y23A20A%0
4 2

-z 34 A%=0. (33)
1t can be found that equations (33) are, in fact, the same as
those obtained by Nayfeh and Mook.
Figures 1 and 2 show the frequency response curves @ —A
and Q—A,, for undamped forced vibration. The undamped,

Journal of Applied Mechanics

/o

AMPLITUDE O THIRD HARMONIC TER® A,,

-1.6

Fig. 2 Forced frequency response as 4 =0.03, T= 1 forced
frequency response, wibackbone curve; ———— wp
backbone curve. Ay = amplitude ot third harmonic term.

free vibration backbone curves for A, and A4,, are also plot-
ted with dotted line and dash-dotted line, respectively, to
facilitate the understanding for the relation between forced
and free vibration. It is apparent that there are two separate
branches of solution, i.e., the ‘‘in-phase’’ and the ‘‘out-of-
phase’’ resonances. The in-phase resonance is shown by curves
AR, AP and ALY, AR, while the out-of-phase resonance is
shown by A} and A$}. It can be seen from Figs. 1 and 2 that
the superharmonic resonances caused by internal resonance
exist in both in-phase and out-of-phase responses. However,
detail calculation reveals that the out-of-phase response is
excitation-level dependent, If the excitation increases beyond a
certain critical level, the out-of-phase superharmonic
resonance disappears. An example of response at critical ex-
citation is shown in Figs. 3 and 4. This phenomenon can be ex-
plained in that the out-of-phase response curve will shift
towards far right to the backbone curve as the applied forces
increase beyond the critical excitation. Therefore, no
superharmonic resonance can be excited.

It is worth pointing out that the forced vibration responses
of beam with internal resonance exhibit the same character as
those of thin plates and sandwich plates computed with the
IHB method by Lau, Cheung, and Wu (1984), and by Iu
(1985), respectively, as they are all of cubic nonlinearity with
similar frequency distribution. The particularly interesting
point is that the out-of-phase superharmonic resonance, as
shown in Figs. 1 and 2, which occurs exactly in the same man-
ner in the case of thin plate, does not appear in the computed
response of sandwich plate (i.e., its responses are similar to
those shown in Figs. 3 and 4). This discrepancy may now be
explained as such that the former results correspond to an
undercritical excitation, while the latter results an overcritical
excitation.

2.2 Combination Resonance, & Near 1/2(Q;+Q,). FPor
treating this case, we should take @ =1/2(w, + w,), i.e.,
1
T= —-2—'(7'1 + T2) (34)
and let
=37 (35)

in line with the periodic solution. Thus, 7 can also be rewritten
in terms of 7, alone as

T=2 7,. (36)
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Fig. 6 Combination response with internal resonance T=1/2 (14 + 75),
Fig. 3 Forced frequency response as fy4=0.064, T=r1y, A= 73 =31y, 10 =0.5, fo0 = 0.5, Ao = amplitude of third harmonic le1rm 2
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Fig. 4 Forced frequency response as fy;=0.064, T=r;, Ay = Fig.7 Combination response with internal resonance T=1/2 (14 +1,),
amplitude of third harmonic term 19 =314, f4g9 =2, f59 =2, A4 = amplitude of first harmonic term
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Fig. 5 Combination response with internal resonance T=1/2 (r{ + 72), Fig.8 Combination response with internal resonance 7=1/2 (14 + 75),
19 =374, t4g = 0.5, fog = 0.5, A1g = amplitude of first harmonic term 12 =314, 119 =2, fyp =2, Ajy =amplitude of third harmonic term
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The solvability conditions are obtained from equation (19)
by letting the coefficients of cos(r, + ¢,o) and cos(r, + ¢,,) for
n=1and n=2be zero, respectively.

1 .
pn wipAdig+ e a1, A% A 8in(dyg — 36 15)

1
—— anFieFy

1
- (— oy F + )

4

3 .
+ e 0‘14F§0>A205m(¢zo +0,0)=0

3 1
2"12“’1003111410 Ty apdiy— IR 341045

1
e 011, A%gA20c08(d20 — 36 10)
3 1
- (’“2"" ay Fiy+ o FioFy + 5 O‘13F%0>A10
1 1
- (T aF + = a3 F 10 Fy
3
+ T 0‘14F%O)A20003(¢20 +¢)=0

1 .
B2t WA — e 0124 AT8in(dz0 — 3619)

3 1
- (T 0y P + DN agnFpFy

1 .
+ a aZZF%O)A 10810(d50 + 1) =0

2"}2°~’20(ﬂ21Azo~ —4‘“ azlA%o“ T 0‘23*’4%01420

1

T 0034 A3c0s(@30 ~ 3¢ 19)
1 3

- <T 03 Fy + agp FioFpg + 5 OleF%o)Azo
3 1

- (‘4— oy Fhg + - a3 F1oFy

1
+ + 0‘221:%0)/410(:05(%0 +di0) (37)

Figures 5-8 show the undamped combination resonance
curves plotted against Q/2Q, from the solutions of equations
(37), with p, = p, =0 and f,,=0.5, 2, f,,=0.5, 2, respectively.
Obviously, the curves are symmetrical with the frequency axis.

From Figs. 5-8, some interesting phenomena can be listed
as follows:

(1) The combination resonance only occurs when 0>2Q,,
i.e., the exciting frequency is greater than twice the linear fun-
damental frequency Q,.

(2) There are two branches of solution which indicate that
two different responses may exist beyond certain exciting
frequency.

(3) The response is also excitation-level dependent. For
higher level excitation, A, and A,, are dominant in different
response curves, respectively. However, for lower-level excita-
tion, the response curves become more involved. The
dominance of modes may exchange in a single response curve

Journal of Applied Mechanics
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Fig. 9 Damped combination response with internal resonance
T=1/2(rq +13), 79 =314, #49 =135 =0.5, py =py =0.001; (a) Frequency-
amplitude curve of first harmonic term, (b) Frequency-phase curve of
first harmonic term, (c) Frequency-amplitude curve of third harmonic
term, and (d) Frequency-phase curve of third harmonic term

as energy transfers from mode to mode occurring at a certain
frequency range.

(4) Since the first mode vibrates at a frequency of £/2 and
the second mode at 3Q/2, the first-mode dominant response
can be regarded as a subharmonic resonance of order 1/2,
while the second-mode dominant response has a superhar-
monic resonance of order 3/2.

Figures 9 and 10 show the combination resonance response
curves with damping ratios u, =, =0.001 and 0.003, respec-
tively. They are all plotted against ©/2Q, from the solution of

SEPTEMBER 1989, Vol. 56/ 673

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1.2 |

0.8 -

0.4 -

0 | 1 | B/
1.0 1.1 1.2 1.3 ) 1.4

Fig. 10 Damped combination response with internal resonance T=1/2
(rq +73), 19 =371, f1g =199 = =0.5, pq =y =0.003; Ao = amplitude of
first harmonic term; A, = amplitude of third harmonic term

equation (37) with the forcing term f,;,=/f5,=0.5. It is in-
teresting to note that the originally separate response curves in
undamped systems become connected together to form a com-
plex loop due to the influence of damping. Figure 10 indicates
that the response loops shrink rather rapidly when increasing
the damping ratio. This fact implies that there must be a
critical damping ratio where the combination resonance may
be completely suppressed.

IV Concluding Remarks

(1) An alternative perturbation procedure of multiple scales
for nonlinear dynamic systems is presented. It is capable of
treating periodic and almost-periodic steady-state vibrations
for multiple DOF systems, with various resonances including
the combination resonance, which the conventional Lindstedt-
Poincaré method cannot apply. Obviously, this method can be
further generalized.

(2) The aim of this paper is to introduce the essence of the
method, so only solutions of nonlinear responses are con-
sidered. However, to fully understand the complete picture of
nonlinear vibration behavior of the system, the inclusion of
stability analysis is definitely necessary. In fact, for a given
periodic vibration, the stability analysis can be carried out by
considering the corresponding variational differential equa-
tions and applying the Floquet theorem. Hsu (1972, 1973,
1974) has developed an efficient method for approximating
the transition matrix of the variational equations, during one
period, by a series of step functions. Hsu’s is a very convenient
method to be implemented on a computer.
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On Realization of Program

Jan Parczewski

Wojciech Blajer

Constraints: Part |1—Theory

The problem of realization of program constraints is considered. The classical

theory approach based on replacing the constriant reactions by adequate control
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Technical University of Radom,
26-600 Radom, Poland

Jforces has been generalized to the case when the control forces are not collinear with
program constraint vectors or, in the extreme, when the control forces do not pro-
Ject in these directions at all (control forces are tangent to constraint manifolds). A

classification of possible ways of program constraint realization is proposed and a
general solution of the problem is presented.

1 Introduction

In the classical theory of mechanical systems an idea of
reactions of ideal constraints is introduced. In principle, these
reactions are postulated to be collinear with so-called
‘‘constraint vectors” or, in other words, orthogonal to con-
straint manifolds (see Arnold (1978), Gutowski (1971), Kam-
man and Huston (1984), Kane (1968), Nejmark and Fufajev
(1972), Wang and Huston (1987), and Wittenburg (1977)). Ac-
cording to these works, the constraint reactions can be written
in the matrix notation as

R=B\, (1)

where B is an n X m full-rank matrix of constraint vectors and
A is an m-dimensional vector of Lagrange multipliers
associated with m constraints imposed on the system.

Equations of motion with the constraining forces (equation
(1)) coupled with the equations of corresponding constraints
then become the Lagrange’s equations of first order. In a
general case, when the dynamic equations in quasi-coordinates
are considered, the full set of governing equations may be ex-
pressed as follows (refer also to Blajer (1988a,b), Hemami et
al. (1979,1981), Lotstedt (1982), Nikravesh (1984,1985), and
Wittenburg (1977)):

M(qyo=f(w,q,t) +B X\, (2a)
g=g(w,q,t), (2b)
BT o+ b(w,q,t)=0, (20)

where M is an nXn symmetric positive-definite matrix,
w=[wy,...,w,)" and g=I[g,, ..., q,]7 are vectors of
quasi-velocities and generalized coordinates, respectively, ¢ is
time, f and g are n-dimensional vectors, and b is an m-
dimensional vector. If the motion in generalized coordinates is
considered, w becomes the vector of generalized velocities and
(2b) simplifies to ¢ =w.
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The equation (2¢) represents a set of m-constraint equations
in the second-order kinematic form. They are linear in &, i.e.,
B can be a function of w, ¢, and ¢. Usually, however, con-
straints imposed on the system are of the form of geometric
and/or first-order kinematic constraints, u#(g,t)=0 or
v(w,q,t) =0, respectively. Thus, in order to transform them to
the form (2c¢), they must be differentiated with respect to time
twice or once, respectively. As a result, according to the con-
straint form, the rows of BT are

{(gwuq T=uze;

vl for v(w,q,t) =0.

for u(q,t) =0, (3a)

(3b)

The constraint vectors, defined by (2¢) or (3), projected in the
directions of quasi-coordinates 7= [, . . ., 7,]7, T=w, are
contained in B as columns. Evidently, if geometric or first-
order kinematic constraints are imposed, their transformation
to the form (2c¢) yields appropriate conditions imposed on the
initial value problem of (2).

In applications, see Gear et al. (1985), Létstedt et al.
(1982,1986), Hemami et al. (1979,1981); the Lagrange
multipliers are often eliminated from the equations (2), i.e.,

A=—(BTM-'BYy"'(BT M~ f+b). 4)
Then, the equation (2a) becomes
Mo=f+BBT M- By~"Y(BT M~! f+b) )

and, including (24), a set of 2n ordinary differential equations
(ODEs) in [w,q]” is obtained.

The aforementioned approach and other techniques for
solving (2), as well as other types of equations of motion used
in analytical mechanics (Lagrange’s equation of second order,
Hamilton’s canonical equations, Gibbs’ equations, Kane’s
equations, . . .), all of them originate more or less directly
from the fundamental postulate of orthogonality of constraint
reactions (1) to the corresponding constraint manifolds. (See
Arnold (1978), Hemami et al. (1979,1981), Kamman and
Huston (1984), Nejmark and Fufajew (1972), and Wang and
Huston (1987)). The constraints imposed on the system are
called ideal constraints and usually refer to material con-
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straints, since the constraining forces represent the reactions
of environment to the system. The situation may change,
however, when a system with program constraints is
considered.

Program constraints are meant here as requirements im-
posed on the system motion (see Blajer (1988a,b), Gutowski
(1972), and Walker et al. (1984)). The motion consistent with
these constraints (program motion) must be ensured by an ex-
actly adopted model of control (program control). Control
forces, however, being an inner feature of the system, may
have arbitrary directions in relation to the constraint
manifolds and may not be able to replace the constraint reac-
tions in the sense of classical mechanics. As a consequence, the
approach defined by (4) and (5) may fail because of the
noninvertibility of a matrix corresponding to BTM~1B (A now
denotes the vector of control forces).

The objective of this paper is to present possible ways of
realization of program constraints and to formulate a general
mathematical model for determination of control ensuring ex-
act execution of assumed program. It will be shown that the
program constraint realization is possible when control forces
do not satisfy the condition of orthogonality to constraint
manifolds and, in the extreme, when they are tangent to these
manifolds. The results obtained generalize, to some extent, the
classical theory of constrained dynamical systems.

2 Formulation of the Problem

An n-degree-of-freedom controlled system with m program
constraints is considered. According to the formulation (2) of
motion equations for a system with ‘“material’’ constraints,
the governing equations for a controlled mechanical system
subjected to program constraints have been taken in the
following form (refer also to Blajer (1988a,b) and Hemami et
al. (1979,1981)):

Mao=f+A4C, (6a)
g=g, (6b)
BT 4+b=0, (6¢)

where C=[C,, . . ., C,]7 is a vector of control forces and 4
is a full-rank n X m matrix of control force representation in
the n-dimensional space of #. Similarly, as in (2¢), B is an
n xm full-rank matrix of program constraint vectors, m=<n.

It is worth noting that the solution of (6) and the determina-
tion of control reactions ensuring the realization of program
constraints by using the classical theory approach described in
Section 1 will be possible as long as the matrix BTM~!A4 is in-
vertible. In many works such a condition is postulated a priori
(or, simply, 4 =B) (see Do Sanh (1984), Gutowski and Rad-
ziszewski (1969), and Hemami et al. (1979,1981)), which is
equivalent to the demand that the control reactions replace the
reactions of program constraints treated as ideal ‘‘material’’
ones. In a general case, however, the directions of control
forces, being an individual characteristic of the system, may
have nothing to do with the directions of program constraint
vectors contained in B as columns. Hence, the matrix
BTM~!'A may be singular and the classical theory approach
may be not valid. In this case the solution of the problem
described needs a modified procedure.

Let us factorize the matrix B as follows:

p .
B=A P+A*Q=(A!A*) |: i|, (7)
Q
where the full-rank nxk (k=n—m) matrix A* is an or-
thogonal complement of M~!A such that

(A*)T M~ A=0. ' ®)

Journal of Applied Mechanics

Table 1

rank (P)=m OR

1
rank (Q) =0 (orthogonal realization)
rank(P)=m NOR

O<rank(Q)=g=<m {nonideal orthogonal realization)

O<rank(P)=p<m .
3 O<rank(Q)=g=<m

MR
(mixed realization)

prg=m
rank (P) =0
4 TR
rank(Q) =m (tangent realization)
2m=n

The m X m matrix P and k Xm matrix Q can be found from
the following relation:

P
{ } =[4,4*]"'B. ©
Q

The factorization (7) consists in the determination of
tangent and orthogonal components of constraint vectors B in
relation to the directions of control forces C in the n-
dimensional space. According to the ranks of P and Q, the
following classification of program constraint realization is
proposed (see Table 1).

Substituting & from (6a) into (6¢), and considering (7) and
(8), it can be found that

(PTAT+ QT (A*)Ty XM~ f+ PTATM'A C+b=0. (10)
Analyzing (10), the possibility of OR and NOR can be easily

deduced since P and A”M~'A are invertible and (10) can be

solved univocally for C, i.e.,

C=—(ATM1A) " Y(PT)"Y(PTAT+ QT (A"T)M~'f+b).
an

In the classical case of OR (Q =0 and B=A), the relation (11)

transforms to (4) and C plays the role of the Lagrange

multiplier vector.

In the cases of MR and TR, equation (10) cannot be solved
for C—the matrix P is not invertible. In these cases, a special
approach to the problem must be undertaken. However, prior
to the presentation of the solution, another form of the gov-
erning equations of motion will be introduced. It will be of
some use in further considerations.

Premultiplying (6a) by the full-rank matrix (4, 4*)7 or, in
other words, projecting the equations (6a) in the directions of
vectors contained as columns in (4, A*) and considering (8), it
follows that

ATo=ATM-1f+ ATM-'A C,
(A*)T(b= (A*)T Mhlf.

(12a)
(12b)

Now, the equations (12b), (6b), and (6¢) form a new set of
equations of program motion, the dimension of which is
reduced to 2n (note that the dimension of (6) is 2n + m). Since
the matrix ATM 1A is invertible, (12a) will serve only for
determination of demanded control ensuring the exact real-
ization of program constraints. The problem of control deter-
mination then becomes a secondary one and follows from the
transient dynamic solution of program motion equations. Ob-
viously, in the cases of OR and NOR, the program control will
be found rather from (4) or (11) than from (12a).

The aforementioned approach is used in classical mechanics
for reducing the equations of motion with constraints (see
Amirouche et al. (1987,1988), Hemami et al. (1979,1981),
Kamman and Huston (1984), and Wang and Huston (1987)),
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and is known as the Maggi transformation (refer to Nejmark
and Fufajew (1972)).

The set of program motion equations (12b), (6b), and (6¢)
can be converted to a standard ODE system in {w,g]7 if

AYT
rank([ (BT) })=max=n. (13)
Considering that
[ (A*)T (A*)T 7 ‘ 0 (A*)T
BT J h l:PTAT-i-QT(A*)T:l - !:0 PT} l: AT :]
0
+ [ }, (14)
Qr(AMT

the existence of condition (13) for the cases of OR and NOR is
evident. However, for the cases of MR and TR,

rank( [ (ZZ)T ] ) < max,

and the problem cannot be solved using the classical theory.

(15)

3 Solution of the Problem

As it was shown in Sections 1 and 2, for the cases of OR and
NOR, the problem of control ensuring the realization of pro-
gram of motion can be easily solved using the classical theory
of constrained systems or a slightly modified (generalized) ver-
sion of this theory. For the case of OR, the demanded control
can be found from (4), where C=A, and the governing equa-
tions of program motion are formed by (5) and (2b) (or (12b)
and (6¢), alternatively). For the case of NOR, the program
control can be determined from (11), whereas the equations of
program motion can be composed either of (6a) (after
substituting C from (11)) and (6b) or of (12b) and (6¢).

Let us concentrate now on the solution of the problem when
the cases of MR and TR are faced. First, we will show that the
case of MR can be transformed to a form equivalent to TR,
and then the solution for both the cases will be presented.

For the purpose of the analysis, let us rewrite the reduced
dynamic equation (12b) and the constraint equation (6c) as
follows:

(AHTo=(ANTM 1, (16a)

(PTAT+ QT (AMTYo+b=0. (160)

Denote now that for the case of MR, rank(P) =p=m—/ (see
Table 1). In this case, / rows of P are linearly dependent, i.¢.,

UTPT =0, a7

where U is an m X/ full-rank matrix. Let U* be a complement
of U in the m-dimensional space. Thus, rank ((U*)T
PT) =max = p. Premultiplying now the equation (165) by the
matrix (U*, U)7, and considering (164), the equations (16) can
be manipulated to the following form:

(A" To=(A"TM", (18a)
(UHTPTATo= — (U*)T(b+ QTA*M~'f), (185)
UTQT (A% o= —UTb. (18¢)

Since rank (((4*)T, (U*)TPTAT|T) =max =n—I, the form
(18) is structurally similar to (16) and the equations (165) and
(18¢) represent the program constraints which are realized by
“‘tangent’’ control forces. Substituting & from (6a), these
equations can be rewritten in the generalized form as follows:
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QT(AYTM™'f+b
UTQT(A*)TM~'f+ UTb.

(19a)
(195)

w{w,q,t) =

Note that the dimension of (19b), referring to the MR case, is
{=m—p, whereas, the dimension of (19a) is m.

Taking into account the previous considerations, the
schemes for solution of the problem for MR and TR cases are
similar. In the following we will deal with the case of TR,
where P=0, rank(Q) =m, and w=BTM~!f+b. Now, the

governing equations of program motion can be reformulated
as a set of differential/algebraic equations (DAEs), i.e.,

(ANNTo— (AHNTM-1f=0, (20a)

g—-g(w,q,t) =0, (20b)

w(w,g,t} =0. (20¢)

According to the theory of DAEs, a range of ODE methods
can be used to solve the problem stated in equations (20). The
idea of using ODE methods for solving DAE systems directly
was introduced by Gear (1971) and is based on the backward
Euler method. The original algorithm analysis was performed
under the assumption that the index of system is equal to one.
For our case it means that the matrix ((4*)7, wI)7 is non-
singular, where w, denotes the nxm Jacobian matrix. With
some care, techniques based on this method can be con-
structed for solving DAE systems even if the index exceeds one
(for details refer to Brenan (1983)). For the purpose of this
paper, however, a reduction technique to rewrite the system in
the form with lower index will be applied to get a set of DAEs
with index equal to one.

The techngiue is based on the algorithms proposed by Gear
(1984), Gear and Petzold (1984), Létstedt and Petzold (1986),
and, apart from reducing the index of systems, it is also useful
for determining their index value. The applied algorithm can
be stated as follows: '

Algorithm 1. (1) Differentiate with respect to time the
equation (20c¢) to get

@n

(2) If the matrix ((4*)7, wl)7 is nonsingular, then we are
done (the equations (20a), (20b), and (21) can be transformed
to a set of ODEs).

(3) Otherwise, premultiply the set of equations (20a) and
(21) by a nonsingular n X n matrix R to zero out a maximal
number of rows of ((4*)7, wI)T and permute the zero rows
to the bottom to obtain

{Al} Iifl(w’q!t) :|

o+ =0.
0 wl(w,q’t )
Now, apply the process to this new system, which is in the
form of the equations (20@) and (20¢).

Of course, by differentiating the algebraic equations a
number of integration constants are introduced, which means
that we must determine the correct initial conditions. This can
be done by satisfying w(w,,q,,0) =0, w,(w,,q,,0) =0 or other
algebraic equations which may appear in the next steps of
Algorithm 1.

wlo+wig+w,=wlo+h(wg,t)=0.

22)

4 General Remarks

A more detailed discussion of this formulation is provided
at the end of Part II of this paper, where practical implications
of the general theory are demonstrated. In this section we
would like to emphasize only some interesting conclusions
resulting from the analysis investigated in the previous section.

One of the most valuable results seems to be the generaliza-
tion of the concept of constraint reactions. The mathematical
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formulation presented in the paper can make it possible to
analyze mechanical systems with so-called nonideal con-
straints (constraints with friction, for example). Moreover, a
new type of constraint realization has been defined. It has
been proved that the realization is also possible by constrain-
ing forces which are tangent to the constraint manifolds. Ob-
viously, this refers mainly to a subclass of constraints—the
program constraints, the realization of which is ensured by
control reactions.

One may face difficulties in the determination of or-
thogonal complements of the matrix M~'A4 and U, and in the
determination of the matrix R introduced in Algorithm 1.-As
it will be shown in Part II of the paper, the task seems quite
simple for small systems. For large systems, the methods sug-
gested by Kamman and Huston (1984) or by Wang and
Huston (1987) may be valuable. The problem has not been
considered in this paper.

In Section 3 the governing equations of program motion
have been introduced in the form of the DAE system—the
equations (16) and (18). One of the important characteristics
that determines the behavior of DAEs is the index of the
system. Following the definitions suggested by Gear (1984),
Gear and Petzold (1984), and Létstedt and Petzold (1986), the
index of (16) equals zero for the cases of OR and NOR. In
these cases the condition (13) is fulfilled and (16) can be
transformed to a standard ODE form. For the cases of MR
and TR, the corresponding index exceeds one and the pro-
posed algorithm must be used. It might be worth noting that if
the program of motion consists of any geometric constraints,
they must be first differentiated twice to be transformed to the
form (2¢). Considering this the global index of the problem for
the cases of MR and TR is at least four. Examples of such
systems will be presented in Part II.
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On Realization of Program
Constraints: Part [l—
Practical Implications

Practical implications of a general mathematical model of realization of program
constraints are investigated. lllustrative examples of different types of this realiza-

tion are demonstrated and discussed. Some general conclusions concerning the
problem of program constraint realization are drawn.

1 Introduction

A general methodology for analyzing the dynamics of con-
trolled mechanical systems subjected to program constraints
was presented in Part I of this paper. Different types of pro-
gram constraint realization were classified there. A general
mathematical model for determination of control forces en-
suring the exact realization of program constraints and for
formulation of governing equations of program motion were
also contained there.

In Part I1 of this paper, practical implications of the general
formulation are demonstrated and discussed. The examples of
particle and aircraft trajectory motion are used to present dif-
ferent types of possible ways of program constraint realization
by adequate control forces. Through these examples, the
general formulation of Part I becomes clearer. The practical
implications enabled us also to draw some general conclusions
concerning the mathematical model of Part I. They are
discussed at the end of this paper.

Many of the equations and definitions used in Part II refer
closely to Part I of the paper. Reading both parts as a whole is
suggested.

2 Particle Trajectory Motion

Let us consider a particle of mass m and charge ¢ moving in
the gravitational, electric, and magnetic fields. Let us limit
ourselves to the case of planar motion and assume that the
vector of gravity acceleration lies along the z-axis
(downwards), the vector of electric force is parallel to the x-
axis, and the vector of magnetic induction lies along the y-axis
(see Fig. 1).

The governing equations of the particle motion expressed in
the path axes are, as follows:

mV=—aV?—mg siny + gE cosy, (1a)

mVy = —mg cosy—qE siny +qVB,,, (1b)
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where V is the velocity, a is a constant value (aV? denotes the
drag force), g is the acceleration due to gravity, E is the electric
field intensity, B, is the value of magnetic induction, and v is
the inclination angle of V. The path axes have been chosen
since, in these axes, it is convenient to formulate the or-
thogonal and tangent directions to the predetermined path
(constraint).

The equations (1) must be completed with the kinematic
equations:

x =V cosy, (2a)

(2b)

Let us assume now that the particle is postulated to move
along a prescribed trajectory (program constraint), the equa-
tion of which is

Z="V siny.

Sx,2)=0. 3)

Assuming that f{x,,2,)=0 and tgy, = — f(X,,2,)/f;{X0:20)>
the geometric constraint (3) can be transformed (after two dif-
ferentiations) to the second-order kinematic form, i.e.,

Vy—V2k=0, “
tangent /
en
gent-_,
N
\\
4
\.qVBy
[ S X 2
7/ QV
/;/ N L
7 mg \\/norrna
i N
/ AN
//
-
- \trajectorg'
Hx,g) =0
Fig. 1 Particle trajectory motion
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where k= (ff? + /. /2/(f2+/2)%? is the curvature of (3).
Since, in the sense of equations (1) the quantity Vv should be
interpreted as a quasi-acceleration (the corresponding quasi-
velocity has no physical interpretation), the matrix M and the
constraint vector B (see Part I) can be formulated as follows:

o) =11
M= , B= . (5)
0 m 1

Example 1 (OR). Let us postulate that the particle motion
along the trajectory (3) is ensured by changes in the Lorentz
force gVB,, (control force) or, in other words, by changes in
the value of magnetic induction B,, (control parameter). In
accordance with the mathematical formulation of Part I, we
can find that the matrix A of control force representation and
the matrix A* (orthogonal complement of M~! 4) are

IR

It is evident that B=A, P=1(1 x I identity matrix), Q=0 and,
consequently, we have a case of orthogonal realization (OR).
Then, the actual value B, ensuring the exact realization of the
program {3) can be found from the relation following from
(1) and (4), i.e.,

_ mV2k+ mg cosy +gE siny

B
M av

)

Taking into account equation (7), the dynamic equations (1)
transform to

mV=—aV?—mg siny + gE siny, 8a)

mVy=mV. (8)

Example 2 (NOR). Let us assume now that B, is a
suitably differentiable arbitrary function and that the particle
trajectory motion is controlled by the electric force g £ (E is a
control parameter). Then, the matrices A and 4* are

cosy siny
A= ;0 A¥= . ®
- siny cosy

Following the mathematical model proposed in Part I, we
can find that

[P] [cos'y —siny 0
T ] N { ]
9] siny cosy 1

—siny

cosy .
Since, for siny=0, rank (P)=1=max, and rank (Q)>0, a
case of nonideal orthogonal realization (NOR) has been ob-
tained. The actual value of control parameter E ensuring the

particle trajectory motion can be found from the equation (10)
of Part 1, i.e.,

(10)

mg cosy—qBy V+mV%
q siny '
Note that for siny = 0, the realization of the control defined by

(10) is impossible, and that for cosy =0, the problem becomes
an OR case (rank (Q)=0).

E=

an

Journal of Applied Mechanics

Considering (11), the dynamic equations (1) become

mV=—aV?—mg siny — (mg cosy —gB, V+mV3)ctgy,
(12a)

(12b)

Comparing the equations (8) and (12), it is worth noting
that in both cases (OR and NOR) the dynamic equation (1b)
has been replaced by the same equation mVy = mV?«, which is
equivalent to (4). This equation expresses the actual value of
external force projections in the normal direction demanded
for trajectory motion. From this condition the control forces
gVBy in Example 1 and gF in Example 2 are derived. Since
the control reaction g¥VB,, is orthogonal to the trajectory, it
can be interpreted as an ideal constraint reaction. The control
reaction gE, however, is not ‘‘ideal’”” and gives projections in
both normal and tangent directions. The tangent projection is
represented in (12a) by the last factor.

mVy=mV.

Example 3 (OR). This example will also be classified as an
OR case. The analysis will be of some use in further
discussion,

In addition to the trajectory constraint (3), an additional
constraint on particle velocity is postulated;

V=¢(x,2,1). (13)

If V,=6(x,,z,,0), the condition (13) can be replaced by its
differentiated form
V-b=0,

where b= V¢, cosy + Vo, siny + ¢,.

In the example considered now, the number of constraints
equals the number of degrees-of-freedom. As a consequence,
both of the dynamic equations (1) will be replaced by the con-
straint equations in the second-order kinematic form (4) and
(14). Moreover, both control forces, gVB,, and gE, must be
applied to ensure the realization of the program.

The matrix of constraint vectors can be written as

(14

01
B= s (15)
10
and the matrix of control force representation
0 cosy
A= s (16)
1 —siny
where the vector of control forces is meant as

C=1[qVB,,,qE]”. Note that the matrix A* does not exist, so
the matrix Q does not exist either.
It is easy to deduce that

tgey 1 01
P=A"'B= X
cos™'y 0 10

1 gy
0 cos~ly ’

and that rank (P)=max =2, if only cosy0. Then, in accor-
dance to the classification provided in Table 1 of Part I, a case
of OR has been obtained.

The governing equations of the program motion can be
composed now of the constraint conditions (4) and (14) and
the kinematic equations (2). The actual values of control
forces ¢VB,, and gFE (or control parameters B,, and E) follow
from the equation (11) of Part I, i.e.,

a7

SEPTEMBER 1989, Vol. 56 / 681

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



qVBy
C =
qE

|

where b is defined in (14).

Note that in this example, classified as an OR case, the
realization of the program is not ‘‘ideal” in the sense of
classical theory. Since A4 # B, the control forces gVB,, and gE
cannot be, in principle, identified with ideal constraint reac-
tions. It refers to the gE control force giving projections in
directions of both constraint vectors defined in (15). Of
course, for y=0 or y=, the realization becomes ‘‘ideal”’,
and for y=Fu/2, the realization defined by (I8) is
impossible.

mg cos ™'y +aV2igy+mV2ik+ mbigy } as)

aV? cos~ !y + mgtgy+mb cos 'y

3 Aircraft Trajectory Motion

An aircraft program flight along a prescribed trajectory
may be used to introduce examples of the other types of pro-
gram constraint realization classified in Part I. For a more
detailed discussion of the problem of aircraft trajectory mo-
tion, the reader is referred also to Blajer et al. (1987, 1988a,b).
Here, we will quote the governing equations of motion and
discuss a simple case of planar motion.

Using similar notation as in Section 2, the governing equa-
tions are (see Fig. 2):

, 1
mV= 5 S V2 cp(e)—mg siny+ T cosa,  (19a)
. 1 .
mVy:-—i—p S V2 ¢, (o) — mg cosy + T sine, (19b)
. 1 ac,,
JQ=——p S V2 ¢, (c,,,o(a,Q)+-———6H), (19¢)
2 36y

where p is the air density (for simplicity p=const), S is the
wing area, cp and ¢; are the drag and lift force coefficients,
respectively, ¢, is the mean chord value, c,, is the pitching mo-
ment coefficient, J is the aircraft moment of inertia, o is the
value of attack, Q is the aircraft angular velocity, T is the
thrust force, and 8 is the elevator deflection.

The modeled aircraft can be controlled by changes in 7 and
8y values. Assuming that ¢, depends linearly on 6, (see
(19¢)), the control forces are T and 1/2(o S V? ¢,)dc,,/36,(85)
(T and & are control parameters).

The dynamic equations (19) must be completed with the
kinematic differentional equations

TI777

/
- /\trojectorg

Fig. 2 Aircraft trajectory motion

682/Vol. 56, SEPTEMBER 1989

x=V cosy, (20a)
Z="V siny, (200)
=0, (20¢)
and the geometric relation following from Fig. 2
' 0=c+7. Q1)

Example 4 (TR). Let us assume first that the aircraft is
postulated to fly along the prescribed trajectory (3), and that
the program motion is ensured by changes in 8 value (T is
assumed to be an arbitrary continuous function, for simplicity
T =const). Using the mathematical model proposed in Part I,
the matrices M, B, A and A* can be stated as follows:

mO0O0 0
M=|0mo0]|, B=i|1], (22)
0 0J 0
0 10
A=|0|, A*=|01 (23)
1 00
Then, it can be easily deduced that
P
=4, A% B
o
001 0 0
=100 x |1} =]0 (24)
010 0 1

Since P=0 and rank (Q)=1, a case of tangent realization
(TR) has been obtained. Using the mathematical model pro-
posed in Section 3 of Part I, one can easily prove that the
equation (19¢) will serve only for determination of demanded
control, whereas (194) and (19b) must be combined with the
twice differentiated form (4) of the constraint (3). To solve the
problem the algorithm introduced in Part I has to be used and
the differential condition (4) must be transformed to the
following algebraic form

1
w=—->p S V2 ¢; —mg cosy + T sina—mV2k=0,

5 (25)

which follows by substituting v from (195).

The governing equations of the program motion are com-
posed now of (19a), (19b), (20), and (25), and form a set of
DAESs with the state vector (w7, ¢71T=[V,v,0,x,z,017. Since
the index of the DAE system exceeds one, the following
transformation have to be used.

Differentiating with respect to time, and taking into account
(20c) and (21), it can be found that

_ ) 3 X
w=w,V+ (‘/2,0 S VZ%-}- Tcosa)Q+w7'y=O, (26)

where w,=p S V ¢, -2mVk, w,=—p § V*(3c,/da)
= T coso + mg siny. One can easily prove now that the matrix
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1 0 0

’((A*)T,WDTz 01 0 27)

wy, w, 0

is singular, the index of the DAE system exceeds one, and that
the Algorithm 1 proposed in Part I has to be used to solve the
problem. Using the nomenclature proposed there, the matrix
R can be defined as

i 0 0
R= 0 1 0 (28)
—-w, —w, 1
to obtain
100
A,
=R((AMT,wD)T = 010 29
0
000

Premultiplying the set of equations (194), (19b), and (26) by
R, we can find a new set of DAEs of the form

. 1 1
V=—;1—<——2—p S V2 ecp—mgsiny+T cosoz) , (30a)
. 1 1 .
Vy =—r7<7p S V2¢, —mgcosy+T sma), (30b)
w, [/ 1 .
W= (7'0 SV2ep+mg smy——Tcosa)
W, 1 .
+ p (Tp S V? ¢, —mg cosy+ Tsma)
v
1 d
¥ (—— oS L cosa)Q=0. (300)
2 da

Now, it is easy to prove that the index of the DAE system
(30) is an equal one, since dw,/0Q#0, as far as ¥2 p S
V2(3c, /9c) + T cosa#0. Obviously, by differentiating (30c)
once more, the system (30) can be, in principle, standardized
to an ODE system. In this case the initial values must satisfy
the conditions w(V,,v,,8,)=0, and w(V,,v,,0,,6,)=0.

In practical applications of the problem described, the
mathematical formulation can be considerably simplified.
Since (19¢) serves only for determination of the actual value of
6, ensuring the exact trajectory flight, the set of DAEs
describing the program motion can be stated as being com-
posed of (19a), (4), (25), and (21) (The initial position of the
aircraft must satisfy (3) and the vector of ¥, must be tangent
to the trajectory.) The state vector of the DAE system is
[V,v,0,017 and its index is equal to one. As a consequernce, a
standard ODE method can be used to solve this DAE system
(Gear (1971, 1984), Brenan (1983)). Demanded values of 65
can then be found from (19c), where Q=& —¥, and & and ¥
can be determined by numerical differentiations of « and ¥
obtained from the solution of the DAE system (for details see
Blajer and Parczewski (1987)).

Example 5 (MR). In the last example, the case of MR will
be presented. Assume that in the trajectory flight, as in the
previous example, an additional constraint (13) is imposed on
the value of the aircraft velocity. Now, the control by changes
in 6 and T values must be applied, and the corresponding
matrices B, A, and A* are defined as follows (the matrix M
has been already defined in Example 4):

Journal of Applied Mechanics

01
B=10, 3D
00
cos 0 —sino
A= | sina 0 |, A*=| cosa |, (32)
0 1 0

and C=[T,(1/2)p S V? ¢,(3c,,/355)64]7. The matrices P and
Q can be defined then as

P
[ ] =(4, A")"'B
Q

sina  cosa

cosa sina 0 01
= 0 0 1 X 10| = 0 0 33)
—sino cosa 0 00 cose — sina

Since there are two constraints imposed, rank (P)=1 and
rank (Q) =1, the case of mixed realization (MR) has been ob-
tained (see Table 1 in Part I).

Considering the theory proposed in Section 3 of Part I, the
problem can be solved as follows, defining the full rank matrix
(U*,U) in the form

sina  cosa
0= [ } ,

cosa —Sino

34

one can easily prove that UTPT =0. Then, the equations (18)
of Part I take the following form

. . 1 1
~ Vsina + Vy cosa=——[— o S V2(cp sina
mi2
+¢; cosa) — mg cos(y+ a)] , (35a)
V cosa + Ve sina = + V2k sina + b cosa, (35b)
1 1 R
W[Tp S V?(cp sina+ ¢y cosa)
—mg cos('y+a)] — V2« cosa— b sine=0. (35¢)

The aforementioned set of DAEs can be solved using the
algorithm described in Section 3 of Part I and used previously
in Example 4. The algebraic equation (35¢) must be differen-
tiated twice to get an ODE system or once to reduce the index
of (35) to one. Obviously, appropriate conditions on the initial
value problem have to be imposed.

The actual values of control forces (or control parameters)
ensuring the exact realization of the program can then be
found as

C=(ATM 1A 1 ATo—ATM"')). (36)
For the case considered, (36) takes the form
. . i .
T=mV cosa+mVy sina~7 o S V¥(c, sina
—cp cosa) + mg sin(a+7), (37
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1 ac, . 1

-—2— p S V? Ca—a—af—”;—(sH=JQ—‘Tp NG Cy Cro»
In practical applications, the actual values of V, v, and Q in

(37) and (38) can be found numerically, following time

histories of V, v, and a(Q =7+ a).

(3%

4 Discussion

In this paper the number of control forces C has been
assumed to be equal to the number of program constraints &
imposed on the system. In many applications it may appear
that dim (C)>dim (®)=m. In such a case, the m “‘control-
ling’’ forces must be chosen in advance, whereas the remain-
ing ones can be taken as arbitrary, suitably differentiable
functions of time and state variables. ,

The problem of ‘‘controlling’’ forces should be discussed
more thoroughly. Let us consider again Example 4, which
relates to the aircraft program flight along a prescribed trajec-
tory. We have assumed that the aircraft is controlled by
changes in 6, value, and a case of TR has been deduced.
However, if the aircraft would be controlled by changes in T
value (8 is an arbitrary function now), we could find that

Coso —sino 0
A= sina |, A*=| cosa O |, (39)
0 0 1
and then
sino
P _____
=(A,A*)"'B= cosa (40)
Q 0

Now, if sina#0, rank (P)=1 and rank (Q)=1, and the case
can be classified as NOR. Theoretically then, as far as
sina 0, the aircraft trajectory motion can be controlled by
variations in 7. However, the problem stated in such a way is
ill-conditioned. The angle « is normally small, up to a dozen
or so degrees, and T projects mainly in the tangent to the tra-
jectory direction. Even small changes in ‘‘normal’’ projection
of T demanded for the trajectory flight will cause big varia-
tions in V (see the equation (194)), and then in other state
parameter values. As a consequence, the motion controlled
this way may be unstable and, possibly, unrealizable.

Let us assume now that the model of control introduced in
Example 4 is slightly modified, i.e., assume that & also af-
fects c; :

(1)
where ¢;, =dc,,, /36, c; =0c; /36y, and ¢,,,, €, €y and ¢; do
not depend on . In fact, ¢; is usually negligible and has been

introduced here for theoretical considerations only. Denoting
C=(1/2)p S V*&y, it follows that

0 1 0

Cn =Cpo + by €L =Cpp +¢i8m,

(42)

0 Jei x][07
P
[ —,A%B= 2 |x 0 of|1]=
9]

0 c,cm X 0
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Fig. 3 Modei of aircraft 5,;-control

Jep
! 0 43
= ) 43)
CCICI;I

where d=det (4,4*)=m cic,,? + J ¢/? and x denotes nonzero
entries being of no use in the following.

Now, rank (P)=rank (Q)=1 and, in principle, a case of
NOR has been obtained. Then, the demanded values of &, en-
suring the realization of program can be determined from the
relation

1 1 .
7(—5—;) S V3¢, —mg cosy+ T sma)

1

1

The problem stated in this way also seems to be ill-
conditioned. The value ¢; is usually negligible in comparison
to the value of ¢;,. Moreover, ¢/ <0, thus, the variations of 8,
demanded for the trajectory motion through producing a gain
in the lift force ALy, =1/2(p S V?c]6y), will cause an incre-
ment of the pitching moment AM,=1/2(p S V?c.c;,b5),
which in turn will cause the growth of both « and the lift force
in the opposite direction to the ‘‘controlling’® AL (see Fig. 3).
Then, the simulated flight will be unstable and the proposed
way of the program constraint realization is impossible in
practice.

This discussion indicates that the choice of possible ways of
program control needs a careful consideration, particularly
when the orthogonal realization (OR) of program constraints
imposed cannot be provided by the system.
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A method of obtaining a sufficient almost-sure (a.s.) asymptotic stability condition
Sor second-order, linear systems with both ergodic damping and stiffness coeffi-

cients is presented. The probabilistic property of the correlation between the damp-
ing and stiffness coefficients is taken into account. A sufficient condition for a.s.
asymptotic stability is derived and numerical results are presented for the case of
Gaussian noise coefficients. Results obtained in some of the previous investigations
are included in the present study as special cases.

Introduction

The specific system considered is described by the second-
order differential equation

X42[0+/(0)]X+[1+g(D)]x=0, )

“where f(t), g(¢) are zero mean, ergodic stochastic processes
and ¢ is the damping coefficient.

When f(¢) and g(¢) are ergodic, wide-band Gaussian pro-
cesses which may be approximated by white noise processes,
the influence of the correlation between f(¢) and g(¢) on the
almost-sure asymptotic stability of the system has been con-
sidered by Mitchell and Kozin (1974), who employed a method
of Khas’minskii (1967) to obtain numerically the exact stabil-
ity boundary. However, for arbitrary random excitation, this
method is not applicable. In this paper, a method of obtaining
a sufficient condition for a.s. asymptotic stability when the ex-
citations f(¢), g(¢) are arbitrary ergodic, correlated or in-
dependent random processes is presented. Sufficient stability
boundaries are obtained numerically in the case of Gaussian
excitations.

Basic Equations
Consider a stochastic differential equation of the form
X425 +f(D1X+[1+g(4)1x=0, o))

where f(2), g(t) are ergodic processes with mean zero.
Ariaratnam and Ly (1989) considered f(¢) and g(¢) to be

uncorrelated, and were able to get the best available results so

far for the stability boundary. However, in general, f(¢) and
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£(¢) can be correlated random processes with correlation coef-
ficient p.

In order to bring in the correlation effect, we first seek a
transformation of the form

x=ye ¥, )
which, when substituted into equation (1), yields
J+2f()y+lc+h(H]ly=0, 3
where
c=1-¢,

h(t) =g(t) =28f(1).

Equation (3) can be written in the state equation form as

};1 = }’2,
Yo = =2f(t)y, ~[e+h()]y;. “
The norm of the vector y= (¥, ,), lyll, may be defined by

Ilyl2=V=yTAy, 5)

where A is a positive-definite matrix given as

0112 Qy ) 5
, af —as >0,

Oy 1

A=

Evaluation of V along the trajectories of (4) yields
V=y'By, ©
where
— 20{2(C + h)

ol —2a,f— (c+h)
- [af~2a;f—(c+h) } '

2(12 - 4f
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Therefore, since A, B are real symmetric matrices, and A is oF aF (17

positive-definite, ) = P
vV y'By B . . .
—= =NMBAD, (7) Substituting (16) into (17) results in
174 yTAy
where \ is the maximum eigenvalue of BA~!, i.e., A\ is the ___6172 : _4§2+4g}+2(a12—c)=0,
maximum root of the determinantal equation : d(ai) (18)
Nl = ' oF
IB—NAI=0. ®) o . 822, + 8co, — 4H, =0,
Therefore, a sufficient condition for asymptotic stability with 2
probability 1 (w.p.1) is given by (Infante (1968)) from which the optimization parameters o?, o, are obtained
~20+EN()]1< —¢, €>0. © *
Substituting A and B into equation (8) yields af=1+¢ —20}, w=H,/2. (19)
—2a,(c+ h) —Naf af —2a,f— (c+h) ~ha,
IB—AAl= =0,
at —20,f— (c+h) — Ny, 200 —4f— N
which gives Substituting (19) into (16) results in a sufficient asymptotic
bili
N2 dfh— G/ (o — ad) =0, (10) stability boundary

4(1+g'2)af2—4af4+H1 - H;} -4 =0, 20)
where

ince E[f(1)g(£)]=po,0,, one h
G = (0 — ) + 4o — day(al +C)f + dadf? — Ao fh Since E[f(£)g()]=pasoy, one has

Hy = E[R*(1)]=E[g* (1) —4{f (g (1) +48, (D],
+ (dad +2c—2af)h+ A2,
— g2 48252
so that one obtains the maximum eigenvalue as 05 —48poyo, +4¢ 07,
A= = 2f+ [4f2 + G/(a} — a})] V2. (1) H, = Ef()h(H]=Elf(H)e(n) =22 (D],
Substituting (11) into (9) leads to a sufficient asymptotic = pﬂfag—szf%-

stability condition
=20+ E[-2f+ (4 + G/(al —ad) 1< —¢, €>0. (12)
Since f(¢) has zero mean, this simplifies to
=20+ E[(A + G/(a — afP? < —e, €>0. 13)

Therefore, equation (20) becomes
(1= p*o%)ol —4p(1 — 0}ao, +4(1 — o DI + Mo}~ {*1=0.
@n
In the following, some particular cases are studied in detail.
(1) The case f(t)=0. Equation (1) becomes
If no further information other than the mean and the X420+ [1+2(D)]x=0. @2

variance of the processes f(¢) and g(¢) and their correlation A sufficient a.s. asymptotic stability condition is
coefficient p is available, one can apply the Schwarz in-

Systems With Arbitrary Ergodic Coefficients

equality to (13) to obtain a stability boundary o; <48, (23)
E[4f? + G/ (a} —a)] =48, which is the same as that of Infante (1968).
or (2) The case g(®)=0. Equation (1) becomes
F=—4{2(a} - o) +4(a? —a)o? +E[Gl=0,  (14) X+2[f+f (DX +x=0. @9
where G is given in (10), and f(¢) and g(¢) have zero mean. A sufficient a.s. asymptotic stability condition is
Then one can calculate E[G] as (1= )L + 2o} - 21 <0,
ElGl=(af —0)* +4caf +4afa} + H — 4oy H,, (15)  which gives
where H,=E[h*(t)], H,=E[f(t)h(1)], and equation (14) , .
then becomes af <T§'2’ 25
F = —4(al - af)+ 4ol —af)o} +(af —c)? which is also the same as that of Infante (1968).
+4caf +4afo} + Hy — 4o, H,, (3) The case f(1) =0, g(1)=0.
= 0. (16) (1) p=0, ie., f(t) and g(t) are uncorrelated. A sufficient

a.s. asymptotic stability condition is, from (21),
In order to obtain the optimal stability boundary, « and «, 5 ) 2 a2
are varied to get maximum o, and o,, which are given by g +4(1~oP)I(1 + {*)af - £*1<0, (26)
do do do, do which is the same as that found by Ariaratnam and Ly (1989).
f S 8 _ 20 e . . . .
Aa?)  da,  d(ad) O, The stability region defined by (26) is shown in Fig. 1(a) for

. . . various values of ¢,
These conditions turn out to be equivalent to (Ariaratnam and
Ly (1989)) (ify p=0, i.e., f(t) and g(t) are correlated. A sufficient
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— stable regions

0.0 0.5 0 o

Fig. 1(a) Regions of almost.sure asymptotic stability for
X+ 2[¢ + {Yix +[1 + g(t)]x = 0 via Schwarz Inequality (045 =0)

8.0 |
70

77 Stable regions

6.0 |

0.0 0.5 Lo 15 oy

Fig. 1(b) Regions of almost-sure asymptotic stability for
X+ 2[f + #(t))k + [1 + g(t)]x =0 via Optimization Method (psq =0; f(t), g(t)
Gaussian)

a.s. asymptotic stability boundary is given by the general form
of (21). In Figs. 2 and 3, the stability boundaries are plotted
for the cases when p= £0.5, p= x1, respectively, for dif-
ferent values of the damping parameter {.

It appears that the correlation coefficient of f(¢) and g(¢),
, has a definite influence on the sufficient asymptotic stability
boundaries. When f(¢) and g(¢) are positively correlated, the
stability boundaries are enlarged, while when they are
negatively correlated, the effect is opposite. The larger the
value of lp |, the larger is this effect.

It should be mentioned that the present results are only suf-
ficient asymptotic stability conditions and can be improved
further. In the special case when ¢{=1 and f(¢)=0.5g(¢), it
has been shown recently by Kozin (1988) in a private com-
munication that the system is a.s. stable for any value of the
variance parameter ¢2. Kozin’s analysis is presented (with per-
mission) in the Appendix.

Journal of Applied Mechanics

—>+r— stable regions T

0.0 0.5 Lo oy

p =403

Fig. 2 Regions of almost-sure asymptotic stability for
X+ 2[f + {t]% +[1 + g(t)]x = 0 via Schwarz Inequality

— 7777~ stable regions

%
3.0 | ¢=1.0
2.0
¢=05 !
1.0 /”%\
! .
0.0 0.5 1.0 oy 9
pp=t1

Fig. 3 Regions of aimost-sure asymptotic stability for
X+ 27 + (1 + [1 + g(t)]x =0 via Schwarz Inequality

These stability regions can be enlarged if the distributional
properties of f(¢) and g(¢) are known. To show this improve-
ment, the particular case of Gaussian excitation is considered
in the following section.

Systems with Ergodic Gaussian Coefficients

(1) Optimization Model. Suppose that the joint prob-
ability density p (f, g) of the random processes f(¢) and g(¢) is
available, so that for any integrable function F[f(?), g(¢)],

BFGan= | FUenUedie,

and (13) can then be calculated numerically.

To obtain the maximum stability boundary, it is necessary
that for fixed o, (at a given {), the parameters and «, be op-
timally chosen so as to get the maximum value of g,. Then one
can construct the following optimization model subject to
nonlinear constraints, namely

@n

Maximize: V=02,
Subject to Constraints: —a < o, <ay,
—2¢{+E[{ 412 +

+G/(at—ad)}?] > ~-
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One convenient method of carrying out this optimization
numerically is described in the following subsection.

(2) The Complex Method for Constrained Optimiza-
tion. The complex method for constrained optimization, due
to Box (1965), enables one to find the maximum of a
multivariable, nonlinear function subject to nonlinear con-
straints, i.e.,

Maximize: F(X, X5, ..., Xx),
Subject to Constraints: Gy=X,<H,,k=12,...,M.
(29)
The implicit variables Xy, ,, . . . , X, are dependent func-
tions of the explicit independent variables X, X5, . . . , Xy.

The upper and lower constraints A, and G, are either con-
stants or functions of the independent variables.

The algorithm proceeds as follows (Richardson and Kuester
(1973)):

(1) An original ‘‘complex” of K=N+1 points is
generated consisting of a feasible starting point and (K — 1) ad-
ditional points generated from random numbers and con-
straints for each of the independent variables as follows:

XiJ=Gi+riJ(Hi—Gi), i=1,2,...,N;
j=12,...,K-1,

where r;; are random numbers between 0 and 1.

(2) The selected points must satisfy both the explicit and
the implicit constraints. If at any step the explicit constraints
are violated, the point is moved a small distance 6 inside the
violated limit. If an implicit constraint is violated, the point is
moved one half of the distance to the centroid of the remain-
ing points:

X, j(mew)=[X, ;(old)+ X, .1/2, i=12,...,N,

where the coordinates of the centroid of the remaining points,

X, ., are defined by

_ 1 [
K= | L Xy= X)), i=12,. ., N,

“TK-1 L

This process is repeated until all the implicit constraints are
satisfied.

(3) The objective function is evaluated at each point. The
point having the lowest function value is replaced by its
reflected point, chosen as follows:

The centroid of the remaining points

_ 1 [&
X,-_c=—k—_T[EX,- =X, (lowest value)], i=1,2,...,N,
j=1

is calculated so that the reflected point corresponding to the
point having the lowest function value is given by

X, (new)=y(X,.—X;;(old)+ X, i=1,2,...,N.

A recommended value for «y is 1.3.

(4) If a point repeats in giving the lowest function value on
consecutive trials, it is moved one half the distance to the cen-
troid of the remaining points.

(5) The new point is checked against the constraints and is
adjusted as before if the constraints are violated.

(6) Convergence is assumed when the objective function
value at each point is within e units for m consecutive
iterations,

This method is a sequential search technique, which has
been proven to be effective in solving problems with nonlinear
objective functions subject to nonlinear inequality constraints.
No derivatives are required. The procedure attempts to find
the global maximum because the initial set of points is ran-
domly scattered throughout the feasible region.

688/ Vol 56, SEPTEMBER 1989

(3) Numerical Solution for Systems With Ergodic Gaus-
sian Coefficients. Assume that f(¢) and g(¢) are jointly
distributed Gaussian random processes with jointly probabil-
ity density of the form

- f?
pU.8= Zroyo, (1= p2) 2 P { 20%(1 - p?)
g ofg ]
- + , 30
202(1-p%)  as0,(1—p%) G0
so that for any integrable function F(f,g)
+ +
erg=| @ Frenede. Gy
Changing to new variables defined by
fo_ S
2(1 -p»2q,°
(32)
pe— &
231 -pH20,’
equation (31) becomes
T +
T PGl | exa(— g2
+ oo
| Flopoym. mexpotmexn(—rdn. (33

The R.H.S. of (33) can be calculated numerically by the
double Gauss-Hermite integration formula. Therefore, the
sufficient asymptotic stability condition (9) becomes

=27

+ S _: exp(— £2)d¢ S _: Nof,04,0,€,m)

x exp(2o&n)exp(— 12)dn < —¢, e>0. (34)

One can then construct the optimization model that may be
solved by the complex method as foliows (for any given o,):

Maximize: V=02,

Subject to Constraints:
0.01=X, =0,=<10.0,
0.0l<X,=0a,=5.0,
— o 14+0.01 s X, =y < lr; | = 0.01,

0.0<X, <27¢/(1 —p?)V2,

(35)

where

2 +oo
Xy = | e e

+oo
| Mepopptmexposmenn(—tyd,

and A is given by (11).

In the optimization model (35), the values of the upper and
lower constraints have been chosen for convenience of com-
putation. Then one can solve the problem numerically by the
complex method for constrained optimization.

For the case p=0, i.e., f(¢) and g(¢) are independent
stochastic processes, the results of numerical computation are
plotted in Fig. 1(b) which are the same as those of Ariarat-
nam and Ly (1989), and Kozin and Milstead (1979).
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0.0 0.5 1.0 1.5 oy

Fig. 4 Regions of aimost-sure asymptotic stability for
%+ 2[¢ + HO]% + [1 + g(t)]x = 0 via Opimization Method (o4 = + 0.5; /(1), g(1)
Gaussian)

For the case p = £0.5, the results of the numerical computa-
tion are plotted in Fig. 4 and Fig. 5.

Since the results obtained by using the Schwarz inequality
are sufficient stability conditions for arbiirary ergodic coeffi-
cients, they can be used as the original ‘‘complex’’ points, i.e.,
initial values in the numerical computation,

Obviously, within the stability domain, the positive-
definiteness of matrix A is always satisfied, since it is
guaranteed in the explicit constraints of the optimization
model.

Conclusion

A method of obtaining a sufficient a.s. asymptotic stability
condition for second-order systems with ergodic coefficients,
which takes into account the correlation between the damping
and stiffness coefficients, has been presented. A sufficient
condition for stability has been derived and numerical results
have been presented for the case of Gaussian noise coeffi-
cients, where some of the previous investigations were includ-
ed as special cases.

It is obvious that the correlation coefficient, p, of f(¢) and
g(t), has a definite influence on the sufficient asymptotic
stability boundaries. When f(¢) and g(¢) are positively cor-
related, the stability boundaries are enlarged, while when they
are negatively correlated, the effect is opposite. The larger the
value of lpl, the larger is this effect.

Mitchell and Kozin (1974) also found a definite effect on the
stability boundaries due to correlation between excitations.
Their results, which are necessary and sufficient, pertain to ex-
citation by white noise, and cannot therefore be directly com-
pared to the present results. For instance, the behavior near
¢=1and {>1 for the case p= + 1 is not obtainable by the pre-
sent approach in the case of arbitrary ergodic excitations with
finite variance.
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APPENDIX

Consider system (1) with parameter {=1 and f(¢) =0.5g(?),
namely

(A1)

where g () is an ergodic process with zero mean and variance
o2. System (A1) can be written as

X+R+gOIx+ 1 +(H))x=0,

X+x+[1+g(Hlx+x)=0,

which is reduced to a single first-order linear equation by set-
ting y =x+x, with y, =%, + X,

y)+[1+g()y(n)=0. (A42)
The solution of (A2) is given by
y(1)=y,e~"00, (A43)

where G(t) = {{g (s)ds. By definition of y, one has
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X+x=y +e "G,
whose solution is

t
x(t) = e™! [xo +¥ SO e*G(S)ds],

i

(A4)
t
xX(t) =e™! [—xo +yoe~ ) =y, SO e'G(”ds]. .

It can be shown that x(¢) and x(¢) approach zero as t—oo,
w.p.1. Clearly xoe~* approaches zero. The integral {,e~¢*)ds
is monotonic nondecreasing since e~ =0. Therefore, the
integral will approach a finite limit or + oo, samplewise,
w.p.1. If the sample limit is finite, then clearly e~‘|je~%)ds
approaches zero. On the other hand, if the sample integral ap-
proaches infinity, L’Hospital’s rule is employed to yield

690/ Vol.56, SEPTEMBER 1989

¢t
—G(s)
e ds
SO e"'G(t)

= lim -
t—o0 e

——I—S(';g(s)ds

= lim e

{—o0

lim
f— o0 ef

Since the stochastic process g(¢) is ergodic with zero mean,
one has a sample limit

1 ¢t .
lim o~ fogtsras] _

t—oo

0. (AS)

Hence, from (A5) it is found that lim x(¢) =0, w.p.1; and a

similar results holds for x(¢), whichtgsofablishes the asymptotic
stability for system (41). Furthermore, it may be noted from
(AS) that for any mean value — 1< E[g(t)]< o0, the system
(A1) is almost surely stable for any value of ag?.
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advantages.

Introduction

Interpolated Mapping has been shown in previous works
(Tongue, 1987; Tongue and Gu, 1988) to be a very efficient
tool for the global analysis of nonlinear systems. The technique
was shown to be suitable for determining the basins of at-
traction for a system’s attractors and for conducting accurate
fractal determinations. One of the attractive advantages of the
method that has not yet been fully exploited is the ability to
analyze the transient motion of any trajectory in phase space,
thus permitting an examination of local stability characteris-
tics. This paper will focus on the identification of a system’s
Lyapunov exponents (Benettin et al., 1980; Wolf et al., 1985)
to illustrate this capability. As is well known, Lyapunov ex-
ponents measure the exponential rates of divergence or con-
vergence associated with an attractor of a system. For periodic
attractors, one obtains only negative and zero exponents, in-
dicating convergence to a highly predictable motion, whereas
a chaotic system will exhibit at least one positive exponent. A
positive exponent is significant because it gives an indication
of the rate at which one loses the ability to predict the system
response. This is closely tied to the property of sensitive de-
pendence on initial conditions which is present in chaotic sys-
tems. Therefore, one way to determine if a system is behaving
in a chaotic manner is to calculate the Lyapunov exponents.
A further motivation for calculating these exponents is that a
knowledge of the full spectrum of Lyapunov exponents can
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transient system behavior, specifically the efficient determination of the Lyapunov
exponents for a simple nonlinear system. Both the continuous Lyapunov exponents
as well as the corresponding Lyapunov exponents of the Poincaré map for a forced
Duffing’s oscillator are found. The use of Interpolated Mapping is compared to
straightforward numerical integration and is shown to offer distinct computational

be used to calculate an approximate value of the fractal di-
mension of the attractor (Farmer, Ott, and Yorke, 1983).

The chief problem with Lyapunov exponents is that they
can be costly to calculate. Because the individual exponent
calculations can vary widely over short time intervals, the ex-
ponents are defined as a long time average over the entire
attractor. This forces long computer simulations that serve
only to give the exponents for a given set of parameters with
a particular group of initial conditions. This is obviously lim-
iting when there is more than one attractor in the same region
of phase space. Thus, there exists a need for calculating Lya-
punov exponents cheaply and quickly. Ideally, one would want
to be able to determine the exponents analytically from the
differential equation. However, as this is not generally pos-
sible, an approximate technique would be helpful.

In this paper, it will be shown how some characteristics of
the Lyapunov exponents can be calculated using both analytical
and approximate methods. The methods will be applied to a
general second-order Duffing’s equation. In the first section,
an analytical method for calculating the Lyapunov exponents
of linear systems will be presented. Following this, some of
these same techniques will be applied to nonlinear systems in
order to determine what information about the exponents is
available. Next, some of the numerical difficulties involved in
a calculation of the exponents for nonlinear systems will be
discussed. In the final sections, methods for calculating a Lya-
punov exponent spectrum using the Interpolated Mapping
technique will be proposed and the results compared to
straightforward numerical integration.

Predicting Lyapunov Exponents

Linear Systems. It is quite simple to calculate the Lyapunov
exponents of a linear system. Linear differential equations can
frequently be solved exactly, and the exponents determined by
an inspection of the solution. For example, the unforced
problem
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¥+5x+6x=0 1)
has the solution ,
x = AeM! + BeM! (2)

where the Lyapunov exponents, A\; and A,, are equal to —2
and — 3, respectively.
Even for the case of a forced system such as

%+ 5% + 6x = Gos(w), 3)

the same exponents are obtained, but with an additional ex-
ponent that has zero as its real part. This fact is obvious from
the general solution of the problem, which is easily recognized
as:

X = AeM! + Beh + F(ell + e~iw), )

Notice that the exponents are constants at all points in phase
space (i.c., they do not depend upon the value of x). Further,
because the forcing function does not alter the complementary
solution, A; and A, are independent of G and w. This makes
the computation of the Lyapunov exponents for linear systems
very easy.

Nonlinear Systems. Nonlinearities can cause a repeated
stretching and folding of even small regions of phase space
(Guckenheimer and Holmes, 1983) which causes the locally
determined Lyapunov exponents to vary widely over the at-
tractor. Thus, one must examine the long time average of the
exponents. Furthermore, unlike the case for linear systems,
the Lyapunov exponent behavior changes with forcing am-
plitude and frequency. Even for a relatively simple nonlinear
differential equation, such as the Duffing equation, it is known
that periodic as well as chaotic responses can be obtained for
a given set of system parameters merely by changing the forcing
amplitude and frequency. For example, the Duffing’s equa-
tion;

¥+ 0% — x + 23 = 3.2 cos(wf) (5)

yields a periodic response {two negative Lyapunov exponents)
for w = 0.482, but exhibits chaotic behavior for w = .475
(Tongue, 1987). This indicates that the exponent has shifted
from negative to positive over a very small change in w.

Even though there is no analytical way to determine the
Lyapunov exponents for a general system of equations, one
can still obtain some information about the local rate of di-
vergence (or convergence) experienced by perturbed trajecto-
ries from an attractor by examining the differential equations
of motion. Consider the general Duffing’s equation:

¥+ ax + Bx + yx3 = G cos(wd). 6

A standard linearization about a solution involves expressing
x as the sum of n(¢) and p(r), where n represents the nominal
trajectory and p represents a local perturbation from this tra-
jectory.

In this case the equation for p is

P+ ap+ (B+ 3yn¥)p = 0. M

One can easily transform this into an undamped equation
by expressing p as

_ e,
p=ye ? ®)
in which case the equation for y is
. o?
J+ (B - 37n2>y = 0. ©

For small intervals of time, the stiffness term of equation (9)
is essentially constant, leading to solutions for y of the form

Vi = Ae*c, 10)
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It is therefore clear that the sum of the Lyapunov exponents
for the given system are

— o

2 +b > b = a.
This is true everywhere locally and so will be true over the
long time average. This implies that no matter how widely the
exponents vary, they must always vary symmetrically about
—.5a. The fact that A\, + \,, which governs the rate of phase
space contraction, is equal to the negative of the damping
coefficient can be used as a convenient means of checking the
accuracy of the numerical routines. This property is a specific
case of the more general observation that the sum of the ei-
genvalues of a system having a characteristic polynomial equal
to

(1D

s+ oastl o+ L+ g

is simply —a,,.

The foregoing will be illustrated by a numerical calculation
of the Lyapunov exponents for the following Duffing’s equa-
tion:

X+ dx — x + x* = 3.2 cos (.4750). (12)

The general method of numerically calculating the exponents
of a dynamical system proceeds in the following manner. First,
a point that lies on the steady-state attractor of the system of
interest is selected. Initially, a vector of magnitude ¢ and ar-
bitrary direction is formed and placed with its base at the point
on the trajectory. It is important that e be small because non-
linearities cause, in general, a repeated stretching and folding
of phase space, and only the stretching of the space is of interest
here. A small test vector, as would be expected, is better able
to avoid any effects of folding. A second vector, perpendicular
to the first, but with equal magnitude, is also constructed at
the test point. Additional vectors are added in a similar fashion
until the vector set forms an orthonormal basis for the space
in the region of the test point. The test point and the vector
set are then integrated a short time into the future. The largest
vector is used to calculate the [argest local exponent from the

equation
L[
)\1 = A_t ll'l ( —E— )

where At is the time interval over which the system was inte-
grated and //is the length of the largest vector after integration.
This vector will automatically tend toward the direction of
maximum divergence (or minimum convergence). The second
vector, however, is not free to tend toward the second greatest
direction of divergence because of the effect of the largest
exponent upon its direction. Thus, the second exponent is
calculated through the calculation of the sum of the first two
exponents, which measures the rate of contraction of a two-
dimensional box in state space. This is governed by a similar

equation:
1 Ay
N+ N=— —
1 2 = A In < 2 )

where A is the final area of the space covered by the first two
vectors. Subsequent exponent sums would be computed in a
similar fashion for higher dimensional systems. The largest
vector is then renormalized to a magnitude of ¢, while its
direction is preserved, enabling this vector to continue con-
verging to the direction of the largest exponent. The remaining
vectors are again constructed perpendicular to the first. This
process is repeated over a long time interval and the exponents
are calculated as a long time average over the steady-state
motion. This long time average is extremely important, as even
very close trajectories leading to periodic orbits can diverge
from each other over short time intervals. Indeed, this phe-
nomenon is what characterizes transient chaos.

(13)

(14)
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The above method is conceptually similar to that of Wolf
et al. Figure 1 shows the local behavior of A; and \, for the
system given by (12) as a function of time. For this graph,
Va(\; + \y) = —.0500. Figure 2 shows the cumulative averages
of A\; and A;. Note that, as expected, the sum is not changed
by averaging. The analytical method derived here would in-
dicate that Y2(\; + Ny) = —.05, a precise match.

Behavior of Phase Space in Lyapunov Exponent Cal-
culation

Before attempting to calculate Lyapunov exponents for a
point-to-point mapping such as the Interpolated Mapping tech-
nique, it is helpful to know what sort of behavior to expect
from small regions of phase space. To examine this question,
three different cases, each exhibiting period one behavior, were
examined. The cases considered were: a forced linear oscil-
lator, a forced Duffing’s oscillator with positive linear stiff-
ness, and a forced Duffing’s oscillator with negative linear
stiffness. Each case selected has a Poincaré map with a stable
fixed point in phase space, and, thus, each orbit possesses two
negative exponents.

The method used to examine the local region around the
fixed point of the Poincaré map was as follows. A set of initial

Journai of Applied Mechanics

conditions was chosen and this point was numerically inte-
grated for 1000 full forcing periods to ensure that the point
was very close to the fixed point. This point was then sur-
rounded with 32 points in a circular pattern at a small radius
of e. Each of these points was numerically integrated over one
full forcing period and its final position reproduced on the
same plot as the original circle. Thus, one is examining the
behavior of the Poincaré map of the system. It is natural to
expect that, for small enough ¢, the mapped image will lie
entirely within the original circle. Figures 3-6 show the actual
results. Note that the axes have been shifted so that the fixed
point is located at the origin.

For the linear case (Fig. 3), the first iterate map of the circular
region lies well within the original circle. Even for the forced
Duffing oscillator with positive linear stiffness (Fig. 4), the
image does not leave the boundary of the original set. However,
in the case of a forced Duffing’s oscillator with negative linear
stiffness (Fig. 5), most of the points map outside of the original
circle. Smaller values of e yield qualitatively identical results.
As Fig. 6 shows, the entire region is asymptotically stable to
the fixed point, so it must have two negative Lyapunov ex-
ponents. However, these exponents can only be determined as
a long time effect.

At first it seems inconsistent to state that a stable system
has points arbitrarily close to it that diverge. However, stability
requires only that for every region U there exists a region W
such that all future iterates of U remain in W (Lefschetz, 1977).
Clearly one can draw a larger circle around the ellipse in Fig.
5 within which all subsequent iterates of the original circle will
remain. This is the reason that the numerical technique used
here requires that the direction of the largest exponent be
allowed to evolve over time. Although this effect does not run
counter to any established stability theory, it is certainly coun-
terintuitive. An awareness of this sort of behavior is important
to an understanding of the use of point-to-point mapping tech-
niques in finding a set of exponents for a system.

Generating Lyapunov Exponents Using an Interpolated
Trajectory

Interpolated Cell Mapping (ICM). This technigue provides
an efficient means of generating continuous system trajectories
and allows one to obtain a variety of system characteristics
(such as a system’s attractor or a plot of the corresponding
basins of attraction). The method has been discussed at length
(Tongue, 1987), so only an overview will be given here. To
utilize Interpolated Mapping, a region of phase space which
is to be investigated is defined. One then overlays an array of
points over the phase space. Each grid point is used as an initial
condition. The system is then numerically integrated for a given
length of time and the final location of the trajectory is re-
corded. Since the object of previous work was to examine
Poincaré maps, the length of this integration was set equal to
the period of the forcing function. This restriction will be
removed in the work to be presented later in this paper. Once
a mapping array has been generated, an arbitrary initial con-
dition is chosen and its mapped location is found by inter-
polating between the terminal points of the trajectories
emanating from the four initial condition grid points that sur-
round the chosen point.

Calculation of the Lyapunov Exponents. To calculate the
Lyapunov exponents of a full-time series using Interpolated
Mapping requires a knowledge of the system behavior at all
phases of the forcing function, not just at periodic intervals,
as has been the case previously, when considering a system’s
Poincaré map. To accomplish this it is necessary to record the
position of each point in the ICM array, relative to its previous
location, at each numerical time step, so that each position

SEPTEMBER 1989, Vol. 56 / 693

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.04

107

0.02

>
0.00

-0.02

0.04

-0.04

0.02

¥ L
-0.02 0.00 ,
*10°

-0.04

X

Fig. 3 Mapped image: X + .1x + x = 3.2 cos (.4821), 1st iterate

-

o]
.

N

o

¥ oy
o
]

% 8 : ._- :' .
=8 s
™~
(@]
S
>
<
o
T
T T T 1
~0.04 Z0.02 0.00 0.02 0.04
*10 ™
X

Fig. 4 Mapped image: X + .1x + x + x3 = 3.2 cos (.4821), 1st iterate

can be used to interpolate to the next. If an Interpolated Map-
ping grid that is reasonable for a Poincaré map is used, how-
ever, this method fails to converge due to the wanderings of
the trajectory. Specifically, a typical region in the initial array
maps outside of the array bounds after less than ten inter-
polations. Expanding the array to the degree needed to en-
compass all of the wanderings of the system for all phases is
infeasible, as this would require a grid of such magnitude that
all computational advantage would be lost. It would appear,
therefore, that Interpolated Mapping is impractical (in its
standard form) for finding the exact exponents of a system.
Thus, a modification to the technique is in order.

Sequentially Generated Mapping. To obtain the quantity
of transient information necessary to determine the Lyapunov
exponents, while preserving the computational advantage of
Interpolated Mapping, the following technique is used. A test
point in phase space is selected and numerically integrated until
it has converged onto an attractor. Once the generated tra-
jectory has converged to an attractor, the interpolation process
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begins. When the point begins its next forcing period, it is
surrounded with four other points. Each of these four points
are then numerically integrated to their position after just one
time step in the numerical integration routine, and their final
positions are recorded. The test point is interpolated to its next
location at the next time A¢ in the future, and the process is
repeated. Each time the point advances a step forward, a test
is made to see if the point is surrounded by any existing array
points, If it is, then the point is interpolated to its next position
and the process continues. Otherwise, another group of sur-
rounding points is created in the manner just described before
continuing. The procedure used in finding the exponents by
this technique is identical to the general method except that at
each time step the vectors are interpolated, rather than inte-
grated, to their next positions at some point Az in the future.
The calculations are then performed in the same way as before.
In this way, the minimum covering set of array points is cal-
culated that encloses the attractor,

Because of the transient information recorded, the array can
be used to recreate an entire trajectory for the system. The
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Table 1 Comparison of exact and approximate exponents

Exact Approximate
Period 1 —.00860 —.00865
—.09139 -.09135
Period 2 —.04995 —.04996
—.05004 -.05004
Period 4 —.03218 - —.03287
—.06780 -.06713
Chaos 01755 01713
—.11754 . —.11713

Table 2 Comparison of CPU requirements

Exact Approximate
Period 1 486.1 75.1
Period 2 487.2 77.0
Period 4 486.2 77.6
Chaos 486.9 283.0

Table 3 Comparison of exact and discrete map exponents

Exact Mapping

Period 1 —.00860 -.01004
—.09139 —.08617

Period 2 —.04995 —.04024
—.05004 —.23666

Period 4 —.03218 —.01339
—.06780 —.07438

Chaos .01755 .01612
—.11754 —.10830

Table 4 Comparison of CPU requirements

Exact Approximate
Period 1 486.1 70.2
Period 2 487.2 70.9
Period 4 486.2 71.2
Chaos 486.9 71.6

results of the Lyapunov exponent calculations obtained with
this approach are compared in Table 1 with those found through
direct numerical integration. Equation (12) was used in the
calculations, except that the forcing frequency was chosen to
be {0.482, 0.4776, 0.476, 0.475} to allow the different period
responses to be studied.

These results indeed show that the exponents found using
the Sequentially Generated Mapping are close to the exponents
calculated through exact numerical integration. The practi-
cality of the method is further illustrated by a comparison of
CPU times required to complete the calculations, Table 2 shows
the CPU time required by a CYBER 855 computer to perform
the calculations illustrated in Table 1. In each case, 200 forcing
periods at 80 time steps per period were used to eliminate the
transient behavior. The calculations were then based upon 5000
additional forcing periods.

It is clear from Table 2 that this approximate method is less
computationally intensive than ‘‘exact’’ numerical integration
for the periodic cases. Even for the chaotic case, the Sequen-
tially Generated Mapping technique took only about half as
long as the direct integration method. Because all of the nec-
essary grid points have been generated by the time 5000 forcing
periods have been followed, the savings in computation will
increase if longer times are examined. Therefore, this sort of
approach to Lyapunov exponent calculation appears to be

Journal of Applied Mechanics

practical and inexpensive, especially in the case of periodic
orbits.

Exponents of the Mapping

When dealing with a previously calculated array for Poincaré
map generation, transient information is not available. How-
ever, the exponents themselves may not be as important as
their sign and how they compare with other exponents. It is
therefore of interest to see what information can be gained
from the use of the entire mapping array and considering the
system to be represented by a point-to-point map. That is, the
At used in the exponent calculation becomes a much larger
period of time, such as the full period of the forcing function
for the system. This approach was undertaken for the same
cases as was done previously for the Sequentially Generated
Array. An exponent was considered to have converged when
its average exhibited a change of less than 104 over 10 iter-
ations. In order to allow a fair comparison with the previous
results, the number of forcing cycles was chosen to be equal
to 400,000. This was because the Sequentially Generated data
used 5000 forcing periods with 80 time steps per period, a total
of 400,000 individual time increments. In the present case one
jumps forward an entire period at a time, thus the 400,000
total periods of interpolation. The computational results are
shown in Table 3 and the associated costs in Table 4.

It must be noted that an Interpolated Mapping array must
first be found for this method and that the cost of this is 114
CPU seconds. Presumably the array would have been found
in both cases if a global determination of the various attractors
had been desired. The results show that, generally, there is not
an exact correlation between the exponents found from nu-
merical integration and their discrete-mapped counterparts.
The smallest exponent for the exact period-two motion, for
example, is smaller in magnitude than the corresponding value
for the period-one motion. However, the reverse of this trend
is evident in the exponents calculated from the mapping. At
other times, an increase in the exact system exponents is met
with an increase in the mapping exponents. It is also very
interesting to note that the exponents found for the chaotic
system were almost identical for the two methods. This suggests
that more information is available in the strange attractor of
a system than in the periodic attracting sets. This would seem
to be reasonable in view of the fact that the dimension of a
chaotic attractor is higher than that of a periodic attractor.
Also, it should be noted that a positive exponent remained
positive and a negative exponent remained negative whether
the system was viewed as a continuous dynamical system or
as a discrete mapping. This sort of calculation, therefore, can
serve as a means of classifying the global behavior of a system
as periodic or chaotic in nature.

Conclusions

The method of Interpolated Mapping has been extended to
the case of transient analyses, specifically that of Lyapunov
exponent determinations. Using the newly presented Sequen-
tially Generated Mapping, results that were extremely close to
those found from numerical integrations were generated at
reduced computational costs. The results of determining Lya-
punov exponents from a point-to-point mapping were pre-
sented and shown to preserve the sign of the actual exponents,
thus permitting an efficient identification of a system as being
chaotic or not.

The results shown indicate that more extensive transient
analyses, stability calculations, optimal trajectory planning,
etc., may well be efficiently obtained through the use of In-
terpolated Mapping. Furthermore, the examination of higher
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dimensional systems would seem to be readily accomplished.
These topics shall be addressed in a future paper.
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Identification Procedure Used in
Nonlinear Dynamics

The advantage of nonparametric identification methods based on the use of approx-
imations of the restoring forces is that they do not require the a priori knowledge of

a model for the nonlinear behavior of the structure. However, the main difficulty
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encountered with this type of methods is the fitting of nonlinear forces in the force-
state mapping fields where there are not sufficient experimental data. In this paper,
an improvement of the regression technique in conjunction with the use of two-
dimensional Chebyshev orthogonal polynomials by introducing an interative com-
putation process is presented. It is shown that the proposed method can properly

identify the discretized model even in the case of high cross-product displacement-
velocity terms and that this method can be used for structures presenting important
nonlinear modal coupling.

1 Imntroduction

A real structure always presents nonlinear characteristics,
and the modal extraction and synthesis procedure based on the
theory of linear systems often gives erroneous results.
However, the use of modal analysis can inform the ex-
perimenter to the fact that the structure is nonlinear and can
give a rough idea about its behavior (Busby, 1986). In most
cases, the nonlinear characteristics of a structure are low and
its dynamic behavior can be considered as linear. Therefore,
most mechanical structural identification methods (Caughey,
1963; Iwan, 1972; Rakheja, 1985; Fang, 1986) are based on
equivalent linearization models able to provide a good approx-
imation of forced steady-state responses of quasi-linear
systems. Nevertheless, such models cannot reproduce such
classical phenomena observed in the case of nonlinear struc-
tures as jumps in frequency response plots, and secondary, in-
ternal or combined resonance.

Therefore, many studies (Tomizuka, 1977; Wysocky, 1979)
have compared tested structure response with the response of
models of nonlinear ‘‘plants,’”” made of few branches, where
linear subsystems are present. These models can be identified
from harmonic study of responses obtained by varying the fre-
quency and the magnitude of the harmonic excitations
(Wysocky, 1979). This type of procedure consists in approx-
imating the Volterra kernels that represent the nonlinear
behavior of the studied structure. Using the properties of
separable processes, Billings and Fakhouri (1978, 1982) have
proposed a method allowing to separately identify the linear
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part and the memoryless nonlinear characteristics of a system.
Such a procedure appears especially suitable for identifying
large structures often presenting nonlinear joints (Jezequel,
1984). However, when dealing with systems that incorporate
commonly encountered nonlinearities such as polynomial
nonlinearities, the evaluation of higher degree terms requires a
great amount of tests often extremely difficult to perform as
well as extensive computer storage requirments and high com-
putation costs,

The use of the Hilbert transform (Simon, 1984) also allows
to extract the linear part of a system and to detect
nonlinearities in a frequency response curve. Even if the struc-
ture presents nonlinear characteristics, its dynamic behavior in
a given frequency range can be approximated by a discrete
model of a few degrees-of-freedom. Therefore, many studies
have been devoted to the extension of modal synthesis
methods to the nonlinear case (Jezequel, 1985). Szemplinska-
Stupnicka (1983) have shown that the introduction of
nonlinear normal coordinates in relation to the notion of
nonlinear modes permits to improve the classical Rayleigh-
Ritz method using linear system modes. In the same way, the
efficiency of the use of local modes in relation to a tangent
stiffness matrix has been shown (Morris, 1977; Almroth,
1978) during the computation of the nonlinear system
response. Recently Ibrahim (1984) has proposed to use the
I.T.D. (Ibrahim Time Domain) method for identifying the
modal characteristics depending to the excitation magnitude
from transient responses.

However, within the modal synthesis framework, it might
be more appropriate to use a model based on a discretization
in relation to fixed trials functions. The methods of control
and optimization theory can then be applied to correct a set of
discrete parameters of the model. Further, in most cases the
knowledge of basic equations is not sufficient to have a
‘‘good’’ discrete model. Very often in the literature, the
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knowledge of the connectivity of the discrete model is as-
sumed. This knowledge allows, by means of an appropriate
coordinate change, an uncoupling of the nonlinear cross-
product terms involving displacement and velocity and to
facilitate their identification. In accordance with modal syn-
thesis methods, it would be consistent to use a normal model
with a linear part identified from low-level vibration tests.
Thus, the nonlinear part appears as a function of the modal
coordinates and their derivatives in time. This part obtained
experimentally by substracting the inertial forces from the ap-
plied forces is often assumed to be of polynomial form.
Therefore, it is identified by means of fitting techniques of
force-state mapping (Distephano, 1975; Yang, 1985; Crawley,
1986). Such a nonparametric identification procedure is at-
tractive, because it does not require the knowledge of
nonlinear characteristics appearing in the dynamic behavior of
the tested structures. The fitting method proposed by Masri et
al. (1979, 1982a, 1982b, 1987) is particularly interesting
because it is based on the use of a regression technique based
on Chebyshev polynomials. This method has been used suc-
cessfully in several cases. In relation with this method, this
paper presents a new interpolation procedure which improves
the identification of the nonlinear part of lumped parameter
systems in areas of the state-space fields where experimental
data are insufficient. When the connectivity of the model is
unknown, the proposed modifications of the procedure
become essential to properly identify the nonlinear modal
coupling for any structural discrete model. The technique is
applied to two simple systems presenting high velocity and
displacement cross-product terms or high modal coupled
terms. Analysis with the proposed modifications yields good
agreement with actual structural behavior.

2 Identification Procedure

For a discretized dynamic system with N-degree-of-
freedom, the restoring forces f are defined from the equation
of motion by

J(x,x) =p(t) —m.X(1) 18))
where m is the mass matrix (N xN) which can be estimated
using a finite element procedure and where X(¢) (Nx1) the
acceleration vector and p(f) (N X 1) the excitation forces vec-
tor are assumed to be available from measurements over a
period T,,,.. No assumptions are made on the discrete model
connectivity as are often assumed in the literature—for exam-
ple, a chainlike structure that consists of a lumped mass model
with elementary masses being connected to one another by
unknown nonlinear elements (Masri, 1982a) or a more com-
plex model called a branched system with NXN restoring
forces elements (Yang, 1985).

According to modal synthesis methods (Jezequel, 1985), a
more appropriate modal representation is used. Let

x=Pu 2)

where ® is the modal matrix (Nxr). Its r columns represent
estimations of the r “‘linearized”’ normal modes. & is iden-
tified by means of an usual method of linear identification
from low-level magnitude experimental tests.

Equation (1) can be expressed in the form

h(u, u) =P(t)—i(t) 3)

with h=®'f; P=®'p 1

Thus, for a given excitation p(¢), and r coordinates 4; of &
are known for the experimental points Q, (u, #) of state plane
E of dimension 2r. The modal coordinate vectors u(#) and
u(t) can be obtained from measurements or successive in-
tegrations of the modal acceleration vector #(¢).

An estimation of the #; over the whole plane E must then be
made. It is assumed, in relation to the modal representation,

and #=%m X.
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that A;(u, u) can be expressed as the sum of a main term
h;(u;, ;) representing the contribution of mode i to 4; and
some other terms resulting from the interaction of modes
J(j#1) with mode i.

From the knowledge of the measurements of A; (u, ), A0
(u;, u;) is approximated in the phase plane (u;, #;) by a func-
tion ;) expressed in terms of two-dimensional Chebyshev
polynomials.

A (u;, ui)zﬁp)(ui’ u;)
= Y Y CUP T, () Ty () @

ko
It is assumed that the residual error [, (u, 1) —A{N(u;, 4;)]
due to the previous approximation constitutes an estimation

of hP(u;, u;), which is also developed in a Chebyshev
polynomial expansion.

RO (w;, u;) = hP (u;, u;)
= );JE@}C;‘)Tk(u,-)T,(u,-). ®)
!

As just indicated, [h;(u, u)—hO(@w;, ;) —hP (u;, u;)]
allows an approximation of #,®(1;, u;)

ROy, 1) = APy, 1) = Y3 YO T, () Ty (1), (6)
k1

The convergence criterion taken for the calculation is as
follows

[ i - T Ao <e @)

where e is a small positive quantity and where the II. |l norm is
the root-mean-square (rms) value over the K experimental
points, defined by

1 &
= —= 2 S (Q) 2 ®)
e=1
Finally, an estimation of 4; (u, ) is obtained by

Ry (u, i) = By (uy i) = RO (g, i) + Y RO (5, 1))
i
+ Py, 1) + A (uy, 8) + RO, 05). ©)
The 4, terms due to the interaction between modes j and
mode / (j very higher than /) are usually neglected in com-
parison with A0, This simplification is valid due to the
change of representation to modal coordinates. Thus, only
(i—1) and (i+1) indexes are usually taken into account in
equation (9).

3 Chebyshev Polynomial Approximation

The estimation of 4;(u, u) is based on two-dimensional
least-squares orthogonal polynomial approximation. The
choice of Chebyshev polynomials of first kind is particula